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Abstract: Crying is a newborn’s main way of communicating. Despite their apparent similarity,
newborn cries are physically generated and have distinct characteristics. Experienced medical profes-
sionals, nurses, and parents are able to recognize these variations based on their prior interactions.
Nonetheless, interpreting a baby’s cries can be challenging for carers, first-time parents, and inex-
perienced paediatricians. This paper uses advanced deep learning techniques to propose a novel
approach for baby cry classification. This study aims to accurately classify different cry types associated
with everyday infant needs, including hunger, discomfort, pain, tiredness, and the need for burping.
The proposed model achieves an accuracy of 98.33%, surpassing the performance of existing studies
in the field. IoT-enabled sensors are utilized to capture cry signals in real time, ensuring continuous
and reliable monitoring of the infant’s acoustic environment. This integration of IoT technology
with deep learning enhances the system’s responsiveness and accuracy. Our study highlights the
significance of accurate cry classification in understanding and meeting the needs of infants and its
potential impact on improving infant care practices. The methodology, including the dataset, prepro-
cessing techniques, and architecture of the deep learning model, is described. The results demonstrate
the performance of the proposed model, and the discussion analyzes the factors contributing to its
high accuracy.

Keywords: audio processing; cry sound analysis; deep learning; spectrogram; transformer models;
convolutional neural networks

1. Introduction

The Internet of Things (IoT) has revolutionized various aspects of our daily lives,
and its influence extends to the care and development of children and infants [1,2]. IoT–
enabled devices bring about significant improvements in health monitoring, safety, and
education for young ones [3–5]. For example, smart baby monitors equipped with sensors
can monitor an infant’s vital signs, sleep patterns, and room conditions, providing real-time
alerts to parents and caregivers [6]. These devices not only ensure a higher level of safety
but also enable prompt interventions when necessary. Moreover, educational toys and
tools connected to the IoT can facilitate interactive learning experiences tailored to a child’s
developmental stage, fostering cognitive and motor skills through engaging activities. The
incorporation of IoT in these areas not only enhances children’s well-being and safety but
also provides parents with actionable insights and data-driven decision making, thereby
supporting them in their caregiving roles.

For newborns, crying is the primary means of communication. Even though baby
cries seem to be similar to each other, they are physically generated and have distinctive
features. Experienced carers such as parents, physicians, and nurses can identify these
differences based on their previous interactions [7,8]. However, it can be difficult for
carers, new parents, and untrained paediatricians to interpret baby cries. Accordingly, it is
imperative to differentiate between cries that have distinct meanings by utilizing associated
auditory characteristics [9–11]. This can interpret a baby’s needs and provide parents with
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appropriate ways to calm their infants. It can reduce stress for parents and other carers
by helping them to avoid misinterpreting their infants’ cries. Moreover, it can prevent
infant mistreatment and neglect. Furthermore, analyzing an infant’s screams provides a
non-invasive way to evaluate their health without needing to perform invasive tests. In
this situation, an automatic infant classification system helps medical personnel keep an
eye on the baby’s health and helps new parents understand their baby’s needs based on
their cries.

One innovative application of IoT for neonatal care is the real-time monitoring and
analysis of infant cries [12]. This process entails recording and labeling baby cry sounds,
typically carried out by parents or trained medical professionals. Because infants and
young children have limited control over their vocal tracts, their cry sounds are considered
short-term stationary signals. However, the available infant cry datasets are relatively
small, with most being self-recorded for research purposes and not publicly accessible due
to the sensitive nature of the data collection and limited resources. As a result, some studies
have turned to generating synthetic data for testing and training their methods [13].

Infant cry categorization is extremely difficult because of the available datasets’
small size and class imbalance [14–16]. Dunstan Baby Language [17], Baby Chillanto
Database [18], and donate–a–cry Corpus [19] are a few of the datasets that are accessible in
the literature. The cry recordings’ duration, the classifications of cries they contain, and
their sizes differ among these datasets [20].

The categorization of baby cries is typically a signal processing and machine learning
task. In particular, it classifies the reason for crying using spectrogram image processing
and machine learning approaches. In this context, research has been conducted [11,21–27].
For instance, Sharma et al.’s study [23] focused on using four primary classes: hunger,
attention, discomfort, and stomach problems. All other classes were grouped under the
category “Unidentified Reasons”. To investigate the recordings’ acoustic properties, the
authors extracted 20 audio variables, such as median/mean frequency, standard deviation
frequency, kurtosis, spectral flatness, and more. Three clustering algorithms were used
in their experiments: Gaussian mixture models, hierarchical clustering, and k-means
clustering. Gaussian mixture models performed the best of the clustering models, showing
the fewest overlapping points.

Jiang et al. [24] similarly concentrated on four classes: fatigued, terrified, hungry, and
uncomfortable. Several preprocessing procedures are used for cry signals in their suggested
model. They first performed linear filtering to highlight high-frequency regions (i.e., High-
order Spectral (HiSpec)). The SAI model was then used, which consists of peak picking,
power-law compression, half-wave rectification, and a gamma tone filterbank. The next
step was to extract logarithmic energy and linear prediction coefficients (LPCs) to model
the envelope and amplitude. Ultimately, the researchers employed the Gaussian Mixture
Model–Universal Background Model (GMM-UBM) for classification since it performed
better than the support vector machine (SVM) model. In light of this, their research shows
that the SVM model struggles with damaged signals but works well for small datasets.
The more adaptive UBM, GMM-UBM, performs better at identifying baby cry signals
than the SVM model. Under clear cry signals, however, there is a considerable difference
in the HiSpec feature between SVM and GMM-UBM. By 14.6% and 13.7%, respectively,
their suggested auditory model-based feature increases recognition accuracy. However,
additional research into alternative techniques for extracting features from the auditory
model remains imperative.

Furthermore, the authors of [25] proposed a deep learning-based ensemble model that
uses three different input types: MFCC features, STFT features, and face photos of infants
in tears. Applying the donate–a–cry Corpus data [19], the authors validated the sound
features retrieved using the suggested STFT and MFCC methods. They used a combination
of autoencoders and deep neural network (DNN) algorithms to classify audio features.
Ozseven [27] recently investigated various methods for analyzing baby cries, including
cutting-edge deep learning models and conventional machine learning models using man-
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ually constructed features. Their analysis of the donate–a–cry dataset showed that the most
promising outcomes came from separating crying signals into spectrograms and scalo-
grams and then classifying the data using either ResNet-18 or Shuffle-Net. Scalograms with
ResNet-18 and Shuffle-Net and spectrograms with ResNet-18 were their best-performing
models. The use of pre-trained CNN models limits the usefulness of this work. Similar
to this, the authors of [26] studied feature ablation using multiple spectral features and
a range of classifiers, including Random Forest, SVM, KNN, and Logistic Regression, on
recordings belonging to four categories: burping, hungry, belly pain, and discomfort. The
most effective features, when combined with the Random Forest and K-Nearest Neighbor
algorithms, were found to be Mel-frequency cepstral coefficients (MFCCs), Gamma Tone
Frequency Cepstral Coefficients (GFCCs), and Zero Crossing Rate (ZCR).

Most studies used convolutional neural network (CNN) architectures, neural network-
based classifiers, and conventional machine learning classifiers that used hand-crafted
features, according to an overview of the literature on baby cry classification. After re-
viewing the literature, we discovered that transformers and attention-based categorization
techniques still need to be applied in these investigations [28]. Transformer architecture has
been applied, adapted, and extended to various areas, including computer vision, audio
processing, and more, following its breakthrough in natural language processing (NLP)
applications. Transformers have also been used in the audio domain for various tasks,
including audio categorization, speech recognition, and music production [29–31].

Our paper contributes to the research literature as follows:

• We carried out an extensive cry sound analysis study involving data preprocessing
and the creation of spectrograms from cry audio signals generated from IoT sensors.

• Addressing the challenges of limited data and class imbalance, we implemented data
augmentation techniques that proved to be highly effective.

• Our research introduced an improved Vision Transformer architecture, which not only
was optimized for small-sized datasets but also outperformed all other published
results across the five classes in the donate–a–cry dataset, a significant achievement.

The remainder of this paper is structured as follows. Section 2 describes the methodol-
ogy. Section 3 presents the experimental evaluation of our method. Section 5 discusses the
threats to validity. The paper concludes and provides future work in Section 6.

2. Methodology
2.1. Data

The data used in our research consist of cry audio recordings obtained from the donate–
a–cry Corpus [19]. It comprises baby cries recorded by volunteers using their cell phones
through a mobile application and made publicly available through a GitHub repository. The
dataset initially consisted of 1128 audio recordings, divided into nine classes (hungry, needs
burping, belly pain, discomfort, tired, lonely, cold/hot, scared, don’t know). However,
due to labeling inconsistencies caused by volunteers, the research group performed data
cleaning, reduced the dataset in size, and used the Dunstan Baby Language (DBL) [17]
categories as a reference. The dataset includes a total of 462 recordings covering five
classes of baby cry analysis: belly pain (17 recordings), burping (9 recordings), discomfort
(28 recordings), hungry (383 recordings), and tired (25 recordings). Moreover, each record
also contains information about the gender (male, female) and age of the baby (0–4 weeks,
4–8 weeks, 2–6 months, 2 months–2 years, or more). The recordings vary in length from 3
to 6 s and are available in wav format. The sampling frequency is 8000 Hz, and the bit rate
is 128 kbps.

2.2. Data Preprocessing and Augmentation

Since the data were crowd-collected, a data cleaning step was mandatory to ensure
the quality of all records. All the cry recordings were manually audited, and any irrelevant
audio segments were removed in the case of empty records or trimmed in the case of records
with trailing/opening non-cry sounds. This step ensured that the dataset only contained
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cry sounds relevant to the classification task. After the cleaning process, the distribution of
cry sound classes was as follows: burping (8 samples), discomfort (24 samples), hungry
(252 samples), pain (14 samples), and tired (17 samples).

A significant class imbalance in the dataset presents challenges in training a robust
cry classification model. The dataset has an uneven distribution among the classes, with
the hungry class having a more significant number of samples than the other classes. This
imbalance raises concerns about potential bias towards the majority class and the risk of
overlooking the minority classes during model training [27].

To mitigate the effects of limited data and class imbalance, four data augmentation
techniques were systematically employed. First, we applied non-overlapping random
cropping to extract smaller segments of different durations from the cry recordings. Specifi-
cally, we generated randomly cropped segments, each with a duration of 3 s, introducing
temporal variations and enabling the model to handle cry sounds of different lengths [32].

Next, we apply noise injection, enhancing the model’s ability to generalize across
different environmental conditions. This technique involved adding Gaussian noise, also
known as white noise, to the cry recordings. Gaussian noise is a type of random noise
that simulates various background noise levels, improving the model’s performance in
real-world scenarios where cry sounds are often accompanied by ambient noise [33].

Additionally, volume adjustment was also performed to modify the sound intensity
of the cry recordings. By adjusting the volume, our model recognizes crying sounds with
different intensity levels, improving its robustness to variations in sound amplitude.

Finally, speed perturbation and pitch variation techniques were employed to introduce
variations in the tempo and pitch of the cry sounds, respectively. These techniques enabled
the model to recognize cry patterns across different speeds and frequencies, enhancing its
ability to generalize and classify cry sounds accurately [32].

To ensure the absence of duplicates in the augmented dataset, several key mea-
sures were implemented during the data augmentation process. Firstly, unique random
seeds were utilized for each augmentation operation, including cropping, noise injec-
tion, volume adjustment, speed perturbation, and pitch variation. This ensured that the
random variations applied to each audio segment were distinct, reducing the risk of
generating duplicates.

Additionally, meticulous records of augmentation choices were maintained for each
audio sample, encompassing parameters such as crop duration, noise level, volume ad-
justment factor, speed factor, and pitch shift amount. These records facilitated subsequent
checks for similarity between augmented samples.

To further prevent duplicates, a robust hashing mechanism was employed. Unique
hashes were generated for each augmented audio segment based on its content, using
perceptual audio hashing techniques. Prior to adding a new augmented sample to the
dataset, hashes were compared with those of previously generated samples to identify
duplicates or highly similar segments.

In cases where duplicates were detected, a rejection sampling strategy was employed.
Duplicate or overly similar augmented samples were promptly discarded, and the aug-
mentation process was reattempted with different parameters to obtain diverse samples.
Randomization and shuffling of augmentation order and original audio samples were also
employed to introduce additional randomness and minimize the risk of duplicates.

These comprehensive measures were instrumental in significantly reducing the like-
lihood of duplicates in the augmented dataset, ensuring a diverse and unbiased training
dataset for cry sound classification.

As a result of the employed augmentation techniques, the dataset was expanded to
1252 samples. Each class was balanced with 250 samples, except for the hungry class, which
had 252 samples. This balancing approach addressed the class imbalance issue and ensured
the model received equal exposure to each class during training.
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2.3. Feature Extraction
2.3.1. Mel Spectrogram

Mel spectrograms provide a valuable means of representing audio characteristics in
diverse different classification tasks [34–36]. During a baby’s cry, the acoustic properties
of that sound carry information about its physiological and emotional state. The Mel
spectrogram is a visual depiction of the frequency spectrum of an audio signal that is
transformed onto the Mel scale. This scale is designed to simulate the way the human ear
perceives different frequencies. Fundamentally, it serves as a mechanism for representing
the energy composition across distinct frequency ranges, providing both temporal and
spectral characteristics of an auditory stimulus. In the Mel spectrogram, the temporal
aspect is represented by the X-axis, while the Y-axis represents the frequency. The intensity
of color corresponds to the amplitude or power of the frequencies. Typically, the process
involves a sequential execution of steps, beginning with segmenting the audio signal into
short frames and then applying the Fourier Transform to convert the time-domain signal
of each frame into the frequency domain. Subsequently, the Mel scale approximates the
human ear response and is employed to partition the frequency spectrum into various
bands [37]. The Mel spectrogram conversion can be mathematically represented as:

STFT(cry_recording) =
∫

cry_recording(t) · e−2πi f t dt (1)

Mel(STFT(cry_recording)) = log
(

1 +
|S( f )|2
NMELS

)
(2)

where STFT represents the Short-Time Fourier Transform, t is the time variable, f is
the frequency variable, and S( f ) is the STFT magnitude. Mel denotes the Mel filterbank
transformation, and NMELS is the number of Mel filters used. The resulting Mel spectrogram
serves as a more perceptually relevant depiction of sound; samples of cry sounds from the
donate–a–cry dataset mapped to the Mel spectrogram scale are illustrated in Figure 1. The
process of feature extraction using Mel spectrograms entails converting the preprocessed
cry recordings into a more computationally comprehensible format, which enables the use
of machine learning algorithms.

(a) Mel spectrogram of a baby crying due to belly pain (Class 1).

(b) Mel spectrogram of a baby crying from burping (Class 2).
Figure 1. Cont.



Future Internet 2024, 16, 242 6 of 17

(c) Mel spectrogram of a baby crying due to discomfort (Class 3).

(d) Mel spectrogram of a baby crying due to hunger (Class 4).

(e) Mel spectrogram of a baby crying when tired (Class 5).

Figure 1. Mel spectrograms of the five classes included in the donate–a–cry dataset.

2.3.2. CQT Spectrogram

The Constant-Q Transform (CQT) spectrogram is a valuable tool for analyzing baby cry
sounds. It is particularly useful for capturing audio features at different pitch scales [38,39],
which can be essential for distinguishing the nuances in baby cries. The CQT spectrogram
is computed using the following equation:

CQT(cry_recording) = |CQ(x)( f )| =
∣∣∣∣∫ x(t) · e−2πi f t dt

∣∣∣∣ (3)

In the equation, x(t) represents the input audio signal, f is the frequency variable,
and CQ(x)( f ) is the CQT magnitude at frequency f . The CQT is particularly adept
at capturing the varying pitch characteristics present in baby cries, which can convey
important information about the baby’s needs and condition.

Using the CQT spectrogram for baby cry analysis allows for a more detailed and
pitch-sensitive representation of the cries, making it a valuable feature extraction technique
for machine learning algorithms aimed at understanding and classifying baby cries.
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2.4. Classification

For this paper, we experimented with several models (the data augmentation tech-
niques, spectrograms, and models we experimented with are available at https://github.
com/SamirElgehiny/baby-cry-analysis (accessed on 1 June 2024) to develop an effective
cry classification system. By exploring these diverse architectures, we aimed to leverage
the strengths of each model and identify the most effective approach for cry sound analysis.
Each model’s training process involved optimizing model parameters and hyperparame-
ters, such as learning rate, batch size, and regularization techniques, to achieve the best cry
classification performance.

2.4.1. Convolutional Neural Network with Mel Spectrograms (CNN)

We employed a CNN architecture specifically designed for cry sound analysis using
Mel spectrograms [40]. The model consists of several convolutional layers, activation func-
tions, and pooling layers, followed by fully connected layers and a softmax output layer.
The convolutional layers in the model serve as feature extractors, capturing relevant pat-
terns and acoustic features from the Mel spectrograms. The activation functions introduce
non-linearity, enabling the model to learn complex relationships within the cry sounds. The
pooling layers help reduce the spatial dimensions and retain the most salient features. The
output of the convolutional layers is flattened and passed through fully connected layers
to further refine the representations. The final softmax activation function produces the
predicted probabilities for each cry class.

1. Convolutional layers: Three convolutional layers are used with increasing filter sizes
(32, 64, 128). This helps in learning hierarchical features from Mel spectrograms. The
Rectified Linear Unit (ReLU) activation function is applied after each convolutional
layer to introduce non-linearity and enhance feature representation.

2. Pooling layers: Max-pooling layers with a pool size of (2, 2) follow each convolutional
layer. This reduces spatial dimensions and extracts essential features, contributing to
computational efficiency.

3. Flatten layer: Positioned after the convolutional layers, the flatten layer transforms
the spatially structured output into a flat vector. This facilitates the integration of the
model with subsequent dense layers for classification.

4. Dense layers: Two dense layers with 256 and 128 neurons are incorporated for high-
level feature learning and classification. Dropout layers with a rate of 0.5 are in-
troduced after dense layers to prevent overfitting. Dropout randomly deactivates
connections during training, promoting a more robust model.

5. Output layer: The output layer has five neurons that work together with a softmax acti-
vation function. This is because the classification task needs five classes corresponding
to a different baby cry pattern.

The described architecture is designed to process and sort audio signals efficiently by
focusing on obtaining hierarchical features from spectrograms and stopping overfitting
using dropout layers. The overall design aligns with established practices in audio signal
analysis and classification.

2.4.2. Multiple-Input CNN with CQT and Mel Spectrograms (Multi-CNN)

The multiple-input CNN model was designed to take advantage of both Constant-Q
Transform (CQT) and Mel spectrograms for cry sound analysis. The architecture consists
of parallel convolutional neural networks, with each network processing one type of
spectrogram. The CQT network and Mel network are connected at the feature fusion layer,
where the extracted features from both networks are combined. This fusion enables the
model to capture complementary information from both spectrogram types. Each network
consists of several convolutional layers, followed by activation functions and pooling
layers to extract hierarchical features from the input spectrograms. The number of filters,
kernel sizes, and pooling sizes are carefully selected to balance the model’s capacity and

https://github.com/SamirElgehiny/baby-cry-analysis
https://github.com/SamirElgehiny/baby-cry-analysis
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complexity. Batch normalization and dropout layers are also included to regularize the
model and prevent overfitting. The output of the convolutional layers is flattened and fed
into fully connected layers, which gradually reduce the dimensionality and extract more
abstract representations. Finally, a softmax activation function is applied to generate the
class probabilities, indicating the predicted cry class.

1. Convolutional layers for Mel spectrograms: The Mel spectrogram branch consists of three
convolutional layers (32, 64, and 128) with ReLU activation, followed by max-pooling
layers for spatial dimension reduction. The architecture aims to capture hierarchical
features from Mel spectrograms.

2. Convolutional layers for CQT spectrograms: The CQT spectrogram branch mirrors the
structure of the Mel branch, featuring three convolutional layers (32, 64, and 128)
with ReLU activation and max-pooling layers. This design choice ensures a consistent
approach for feature extraction from both types of spectrograms.

3. Merging of branches: The outputs of the Mel and CQT branches are concatenated,
creating a unified feature representation that combines the distinctive information
from both types of spectrograms. This merged tensor serves as input to the subsequent
dense layers.

4. Dense layers for classification: The merged tensor undergoes dense layers with 256 and
128 neurons, each followed by dropout layers with a rate of 0.5. These layers facilitate
high-level feature learning and classification. The softmax activation function in the
output layer ensures the model’s ability to classify baby cries into five distinct classes.

This innovative neural network architecture strategically leverages the complementary
information embedded in Mel and CQT spectrograms. By synergistically combining these
spectrogram types, the model is primed to discern intricate patterns within baby cries,
enhancing its ability to capture nuanced acoustic features. This sophisticated fusion ensures
a more comprehensive representation of infant vocalizations and signifies a pivotal step
towards refining baby cry analysis for advanced well-being monitoring systems.

2.4.3. Vision Transformer (ViT)

The Vision Transformer model, originally proposed for image classification [41,42],
was adapted for cry sound analysis. The architecture comprises a stack of transformer
layers, which consist of self-attention mechanisms and feed-forward neural networks. In
the cry sound analysis context, the input cry spectrograms are reshaped into a sequence of
patches, denoted by:

P ∈ RN×D. (4)

where N = H×W
D and D is the patch size. Each patch pi is then embedded using an

embedding layer, resulting in an embedded patch. The transformer layers enable the
model to attend to different patches and capture the relationships between them. Given
an embedded patch sequence E = (e1, e2, . . . , eN), the self-attention mechanism calculates
the attention scores which are then passed through a feed-forward neural network (FFN)
layer. The transformer layers are stacked to attend to different patches and capture their
relationships. The output of the last transformer layer is passed through a classification
head, typically consisting of one or more fully connected layers and a softmax activation
function, to produce the predicted cry class probabilities.

2.4.4. Vision Transformer with Shifted Patch Tokenization and Locality Self-Attention
(ViT-SPT-LSA)

Building upon the Vision Transformer, we apply modifications to enhance its perfor-
mance for cry sound classification. These modifications include shifted patch tokenization
and locality self-attention following the approach proposed in [43]. Shifted patch tok-
enization involves shifting the patch positions during tokenization, allowing the model to
capture more fine-grained details within the spectrograms. Let P′ be the sequence of shifted
patches and E′ = (e′1, e′2, . . . , e′N) be the embedded sequence of shifted patches. To consider
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shifted patches and capture temporal information, positional encodings are added to the
embedded patches. For the locality self-attention modification, the attention mechanism is
modified to attend to local regions of the cry spectrograms. The attention matrix A ∈ RN×N

is calculated as:

Aij = So f tmax

(
(E′

i · (E′
j)

T)⊙ Maskij
√

E′

)
(5)

The Maskij enforces the local attention constraint by setting non-local positions to
zero, allowing the model to capture local dependencies and patterns within the cry sounds.
The remaining aspects of the architecture and training process for ViT-SPT-LSA generally
follow the same principles as the Vision Transformer discussed in Section 2.4.3.

Figure 2 illustrates the shifted patch tokenization process employed in our modified
Vision Transformer (ViT) model, and Figure 3 demonstrates the architecture of the final
modified model. As illustrated, the original input Mel spectrogram is augmented through
techniques such as horizontal flipping, random rotation, and random zoom. The SPT
component divides augmented images into smaller patches. Each patch represents a portion
of the image and is treated as a token for further processing. These patches are shown as
individual blocks. Next, the Patch Encoder processes these tokenized patches, preparing
them for further transformation within the model. Finally, a series of transformer blocks
are repeated eight times within the model. Each transformer block captures hierarchical
features within the image. These blocks typically consist of components like Multi-Head
Self-Attention, Layer Normalization, Multi-Layer Perceptron (MLP), and Skip Connection
layers. These components collectively enable the model to understand and process the input
image in a hierarchical manner. Within each transformer block, Multi-Head Self-Attention
is a core component. It allows the model to capture dependencies between patches by
assigning different attention weights. It is worth noting that Layer Normalization is applied
before each attention mechanism and MLP, enhancing training stability.

Figure 2. Shifted patch tokenization process [43].
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Figure 3. The architecture of ViT-SPT-LSA.

3. Results

In this work, we conduct a comparative analysis of using CNN and transformer-
based architectures and their ability to classify cry sounds accurately. In this context, we
experimented with the four models mentioned in Section 2.4: CNN, Multiple-input CNN,
Vision Transformer, and Vision Transformer with Shifted Patch Tokenization and Locality Self
Attention modification. We then provided a comparative analysis against the state-of-the-
art studies discussed in Section 1. We now discuss the findings of our experiments by
evaluating each model using performance metrics, including class-wise accuracy, precision,
recall, and F1, in addition to overall accuracy. Cross-validation (5-fold) was applied
during the training process to prevent models from overfitting. For all models evaluated,
the hyperparameters used are defined as follows: The learning rate is set to 0.001, which
controls the step size during gradient descent. The weight decay, a regularization parameter,
is assigned a value of 0.0001 to help prevent overfitting by penalizing large weights. The
batch size, determining the number of samples processed before the model is updated, is
set to 256.

Table 1 summarizes the results obtained from each model across the five different
classes: belly pain, burping, discomfort, hungry, and tired. It also indicates the overall accuracy
of each model. The high accuracy achieved by the four models signifies their potential to
support infant care and improve parent–infant communication. By accurately identifying
the specific reasons behind a baby’s cry, parents and caregivers can promptly address the
infant’s needs and provide appropriate care and comfort.

Overall, ViT-SPT-LSA outperformed the other methods by achieving a relatively
high accuracy across all classes, with particularly notable performance in three classes:
discomfort, hungry, and tired (95.4%) and Class 3 (97.9%). The second best is the Multi-
CNN model which achieved a total of 96.3% with 100% accuracy for Classes 1, 2, and 3.
The CNN and the Vanilla ViT models achieved 95.9% and 94%.

More in-depth analysis shows that ViT-SPT-LSA has a precision of 1 and a recall of
0.98 for both the belly pain and burping classes and an F1 score of 0.99. The F1 scores for
the discomfort, hungry, and tired classes are 0.97, 0.99, and 0.98, respectively, as shown in
Table 2. It is worth noting that the Multi-CNN architecture also achieved a 96.3% accuracy,
outperforming almost all previous research.

To further investigate the effectiveness of the augmentation pipeline, we evaluated
the best performing model, ViT-SPT-LSA, using a minimally augmented version of the
donate–a–cry dataset, which relied solely on random crops of the existing original data.
This new subset comprises 53 instances for burping, 144 for discomfort, 102 for tiredness,
84 for belly pain, and 252 for hunger. Our findings reveal a decrease in performance, as
evidenced by our best model achieving only 72.1% accuracy.

Additionally, the ViT-SPT-LSA model exceeded the accuracy and F1 scores published in
previous research on the same dataset, as shown in Table 3. We attribute such performance
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to the effectiveness of both the classification and feature extraction phases. Not only
is the Mel spectrogram feature extraction simple to compute and interpret, but it may
also be more advantageous than MFCCs for cry signal processing since it can record
complicated frequency variations and maintain the complete frequency spectrum. This is
crucial for examining acoustic cues in infant cries. Secondly, Mel spectrograms provide
a comprehensive visual representation of the signal’s frequency content. This allows the
ViT’s self-attention mechanism to efficiently capture long-range dependencies within the
spectrogram images.

Table 1. The accuracy of 5 classes and their overall accuracy for the four models.

CNN Multi-CNN ViT ViT-SPT-LSA

Class 1—belly pain 96% 100% 84% 97.8%
Class 2—burping 100% 100% 100% 95.4%
Class 3—discomfort 90% 87.5% 93.7% 97.9%
Class 4—hungry 97% 94% 97.4% 100%
Class 5—tired 100% 100% 83.3% 100%
Overall 95.9% 96.3% 94% 98.33%

Table 2. Classification report for five classes for ViT-SPT-LSA.

Class Precision Recall F1 Score Support

Class 1—belly pain 1.00 0.98 0.99 47
Class 2—burping 1.00 0.98 0.99 44
Class 3—discomfort 0.98 0.96 0.97 49
Class 4—hungry 0.98 1.00 0.99 51
Class 5—tired 0.96 1.00 0.98 48

Table 3. Comparison with state-of-the-art models on donate–a–cry dataset.

Accuracy F1 Feature Classifier # of
Score Classes

Sharma et al. (2019) [23] 81.7% 0.93 Audio features GMM 5
Jiang et al. (2021) [24] - 0.93 SAI modeling GMM-UBM 4
Cha and Bae (2022) [25] 85.59% - STFT DNN 4
Kulkarni et al. (2021) [26] 84% 0.80 GTCC Random Forest 4
Ozseven (2022) [27] 95.2% 0.94 Scalogram ResNet-18 5
ViT-SPT-LSA 98.33% 0.98 Mel spectrogram ViT 5

4. Discussion

The findings agree with our assumptions and the previous findings of other re-
search [43] that the modified architecture for the ViT model allows a more accurate pattern
recognition for such a relatively modest-size dataset like donate–a–cry, even after applying
the augmentation techniques. As reported in the results, the original Vision Transformer
architecture performed worse than both models based on convolutional neural networks
when applied to donate–a–cry datasets. Employing shift patch tokenization (SPT) and
locality self-attention (LSA) techniques significantly enhanced the performance of ViT. SPT
effectively incorporates spatial information into visual tokens through multiple transfor-
mations, while the LSA mechanism increases the local attention through softmax with
learnable parameters. These changes allowed the model to capture finer-grained details
within the spectrograms and focus on local dependencies. They separately augment the
locality’s inductive bias of ViTs to acquire knowledge from limited-scale datasets without
any prior training.
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The confusion matrix in Figure 4 and Table 2 illustrates the performance of model
ViT-SPT-LSA in classifying cry sounds across different classes during the last fold. Each
row represents the actual cry class, while each column represents the predicted cry class.
The numbers in the matrix indicate the count of cry instances classified into each class.
It is important to note that while the models demonstrated high accuracy, there may
be limitations and challenges associated with certain classes. The ViT-SPT-LSA model
struggles with the recall of the discomfort class with a recall value of 0.96, which decreases
the accuracy of the specific class compared to the other and the rest of the models in
the same class. On the other hand, the model exhibits robust performance, particularly
excelling in the belly pain and burping classes with strong precision, recall, and F1 scores
ranging from 0.98 to 1.

Figure 4. Confusion matrix for the 5th fold.

Additionally, Figures 5 and 6 provide insights into the performance, learning progress,
and generalization ability of model ViT-SPT-LSA in accurately classifying cry sounds.
Figure 5 displays the training and testing accuracy curves for model ViT-SPT-LSA during
the training process. The x-axis represents the number of training iterations or epochs, while
the y-axis represents the accuracy values. The curve illustrates the accuracy improvement
over the training iterations and the model’s ability to generalize well to unseen test data.
Furthermore, it depicts the training and testing loss curves for model ViT-SPT-LSA during
the training process. The x-axis represents the number of training iterations or epochs,
while the y-axis represents the loss values. The curve demonstrates the decrease in loss over
the training iterations, indicating the model’s learning progress and its ability to minimize
errors during training.

We further investigated the effectiveness of our augmentation pipeline by conducting
an experiment on a reduced dataset of only 635 samples. This subset results from solely
applying non-overlapping random cropping to the original data. In this subset, we pre-
served the original class imbalance present in the dataset, ensuring that the distribution
of instances among the classes remained the same as in the original data to evaluate the
model’s performance when certain classes are underrepresented. Table 4 presents the
performance of the enhanced ViT model across all classes. As seen in Table 4, we find a
high recall but low precision in instances of belly pain, burping, discomfort, and hunger.
This indicates that the model is good at identifying positive instances but has a high rate of
false positives. In this experiment, the model struggles significantly with the tired class
as it has both low precision (0.17) and low recall (0.43), which indicates that the model
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often misclassifies instances of this class. On the other hand, the burping class shows the
best overall performance. It has the highest F1 score among the classes, reflecting a good
balance between precision and recall.

Table 4. Classification report for five classes for ViT-SPT-LSA on donate–a–cry dataset without
augmentations.

Class Accuracy Precision Recall F1 Score

Class 1—belly pain 0.78 0.37 1.0 0.54
Class 2—burping 0.92 0.5 0.98 0.67
Class 3—discomfort 0.56 0.33 0.96 0.50
Class 4—hungry 0.50 0.44 0.94 0.60
Class 5—tired 0.57 0.17 0.43 0.25

Figure 5. Training and testing accuracy.

Figure 6. Training and testing loss.
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5. Threats to Validity

In this section, we discuss potential threats to the validity of our research findings and
the possible measures we took to reduce risks, whenever applicable. One threat to validity
is sampling bias; our study used the donate–a–cry Corpus [19] as the primary dataset for
cry sound analysis. While it provides a crowd-sourced collection of cry recordings, it may
only partially represent the diversity of cry sounds encountered in real-world scenarios.
Sampling bias in the dataset could impact the generalizability of the used models. In this
context, we plan to experiment with other cry datasets mentioned in Section 1.

A key challenge in our study was using a limited crowd-sourced cry sound dataset.
However, we systematically mitigated this limitation through data cleaning, augmentation,
and robust preprocessing. These strategies allowed us to harness the full potential of
our dataset, resulting in reliable and meaningful cry sound classification models. Despite
the dataset’s constraints, our study’s findings are promising, providing valuable insights
into the ability of transformer architecture to classify cry sounds. When generalizing the
findings, it is important to acknowledge these limitations, and further research with larger
datasets could improve the accuracy of our models and confirm our findings.

There is a threat to validity since the experiments performed for cry classification in
previously published research on the donate–a–cry dataset do not use the original data
directly. Therefore, the results of different research projects related to cry classification
using the donate–a–cry dataset cannot be generalized. Various research works attempt
to apply different data augmentation techniques to increase the number of samples to
enhance prediction in the donate–a–cry dataset [19]. In Sharma et al.’s study [23], for the
training process, the authors included all data from the donate–a–cry dataset [19], and
an additional 150 baby crying audio samples were recorded and labeled for fine-tuning
and testing purposes. Further, various versions of the donate–a–cry dataset exist due to
the different extraction methods used by different authors. For example, for his analysis,
Ozseven [27] selected only recordings of infants aged between 0 and 6 months free from
environmental noise. Each of these recordings was segmented into one-second intervals
with a 50% overlap. This process yielded 1987 samples and then was divided into training
and testing sets. These versions are independently compiled; we contacted the original
creators to verify their availability but, unfortunately, had no luck. To address these
constraints and ensure research reproducibility, we have made our code publicly available
(https://github.com/SamirElgehiny/baby-cry-analysis (accessed on 1 June 2024)). This
includes steps for data cleaning, augmentation, and the generation of the 1252 samples
utilized in our study, enabling others to reproduce our experiments and results.

Additionally, each cry dataset contains different types of cry classes. Focusing on the
donate–a–cry dataset [19], some of the research in the literature uses only a subset of four
cry classes from the dataset. In comparison, others use the five main cry classes defined in
the dataset, as summarized in Table 3.

6. Conclusions and Future Plans

By integrating IoT-enabled sensors and devices with advanced audio processing
algorithms, healthcare providers can continuously monitor the acoustic environment of
an infant. These sensors capture cry sounds, which are then analyzed using machine
learning models to detect patterns and identify potential distress signals. This work aimed
to distinguish between different types of generated infant cry sounds and determine the
underlying causes of each cry. To this end, we proposed a novel cry classification approach.
We carried out a study on cry sound analysis using various models and data preprocessing
methods. Our auditing process involved removing unnecessary audio clips from the cry
recordings, such that the dataset only included cry sounds essential to our categorization
objective. By employing augmentation techniques, we added more diversity in time, noise,
volume, speed, pitch, and other aspects of the dataset. Our classification algorithms are
well-founded, mainly due to these preprocessing steps that effectively tackle the problems
of insufficient data and class imbalance.

https://github.com/SamirElgehiny/baby-cry-analysis
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Four approaches were implemented, each with its own architecture and features.
Our findings highlighted each method’s advantages and disadvantages and the accuracy
range with which they could classify cry sounds. In contrast to the CNN, Multi-CNN,
and ViT methods, our proposed method (ViT-SPT-LSA), Vanilla Vision Transformer with
enhancements, achieved the most outstanding overall accuracy of 98.33%. These results
reveal valuable insights into the various classification tasks for which transformer-based
systems can be used.

Our plans involve testing the models on various datasets to address sampling bias and
offer more insights into the behavior of the models. Examining the use of transfer learning
strategies, such as pre-trained models on sizable audio datasets, could promote model
convergence and classification performance and be another enhancement in the future.
Combining multi-modal data for cry categorization could be the subject of additional
research. Apart from audio, photos that depict babies’ facial expressions throughout the
crying phase can be supplied to classification models to enhance their performance and
accuracy even more.
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