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Abstract: For a communication control system in a disaster area where drones (also called unmanned
aerial vehicles (UAVs)) are used as aerial base stations (ABSs), the reliability of communication is
a key challenge for drones to provide emergency communication services. However, the effective
configuration of UAVs remains a major challenge due to limitations in their communication range and
energy capacity. In addition, the relatively high cost of drones and the issue of mutual communication
interference make it impractical to deploy an unlimited number of drones in a given area. To
maximize the communication services provided by a limited number of drones to the ground user
equipment (UE) within a certain time frame while minimizing the drone energy consumption, we
propose a multi-agent proximal policy optimization (MAPPO) algorithm. Considering the dynamic
nature of the environment, we analyze diverse observation data structures and design novel objective
functions to enhance the drone performance. We find that, when drone energy consumption is
used as a penalty term in the objective function, the drones—acting as agents—can identify the
optimal trajectory that maximizes the UE coverage while minimizing the energy consumption. At
the same time, the experimental results reveal that, without considering the machine computing
power required for training and convergence time, the proposed key algorithm demonstrates better
performance in communication coverage and energy saving as compared with other methods. The
average coverage performance is 10–45% higher than that of the other three methods, and it can save
up to 3% more energy.

Keywords: drones; multi-agent deep reinforcement learning (MADRL); energy optimization;
emergency communications

1. Introduction

In the wake of natural disasters—such as earthquakes, hurricanes, and floods—the con-
ventional communication infrastructure is often severely damaged or completely destroyed.
This disruption impedes rescue operations, coordination efforts, and the dissemination
of critical information, thereby exacerbating a crisis. Ensuring reliable communication in
such scenarios is critical for effective disaster response and recovery. Consequently, there
is a pressing need for innovative solutions that can swiftly restore the communication
services in the affected areas during a natural disaster [1]. Unmanned aerial vehicles
(UAVs), commonly known as drones, have emerged as a versatile tool in various domains,
including disaster management [2,3]. Drones have taken the market by storm, with sales
expected to grow to USD 4.28 billion by 2025, which is three times the amount in 2018 [4].
Their ability to operate independently of the ground infrastructure and their rapid de-
ployment ability make them ideal candidates for establishing emergency communication
networks [5]. By functioning as relay stations, UAVs can create temporary communication
links, extending the coverage to areas where the infrastructure is compromised. However,
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the efficient deployment and operation of UAVs in disaster scenarios present significant
challenges. The dynamic nature of the environment, varying user densities, and the limited
battery life of drones necessitate a strategic approach to their deployment. Optimizing the
flight paths of drones to maximize user coverage while minimizing energy consumption is
a complex problem that requires advanced computational techniques [6].

This paper proposes a novel solution to this problem by employing deep reinforcement
learning (DRL) algorithms to control the movement trajectories of drones. DRL, a subset
of machine learning, is well-suited for problems involving sequential decision-making
under uncertainty [7]. By training drones to learn the optimal strategy, our approach
ensures that they can adapt to real-time changes in the environment and user equipment
(UE) distribution, taking into account the energy consumption of the drones. Based on
this, it can be said that drones have the capability of providing efficient and reliable
communication services.

The primary contributions of this research are described below.

• To address drone-assisted emergency communications in disaster scenarios, we first
modeled the movement of rescue workers in post-disaster situations. Then, based on
this model, we developed a DRL-based algorithm specifically for the service of drones
in disaster scenarios.

• During the communication between drones and UEs, we used a novel signal to
interference and noise ratio (SINR) calculation method, taking into account the com-
munication interference generated between the drones. We set and analyzed the
communication threshold to ensure QoS and used this to calculate the coverage of
drones to UEs.

• We carefully designed the reward function and considered both coverage and energy
consumption terms to ensure that the system provides motivating reward values.

• We conducted extensive simulations to evaluate the performance of our approach,
demonstrating significant improvements in user coverage and energy efficiency com-
pared to the conventional methods.

The remainder of this paper is organized in the following manner: Section 2 re-
views the related work in the field of UAV-based communication and reinforcement
learning applications. Section 3 details the system model and the problem formulation.
Section 4 illustrates the proposed DRL algorithm, training techniques, and design of the
reward function. Section 5 presents the simulation setup, results, and a discussion of the
findings. Finally, Section 6 concludes the paper and outlines future research directions.

2. Related Work

The use of UAVs in emergency communication networks has received significant
attention in recent years [8]. Numerous studies have explored various aspects of deploying
UAVs for disaster response, including optimal placement, trajectory planning, and energy
efficiency [9]. This section reviews the related work in the areas of UAV-based commu-
nication systems, trajectory optimization, energy management, and the application of
reinforcement learning in UAV control.

UAVs have been extensively studied for their potential to establish temporary com-
munication networks in post-disaster areas. Sharvari et al. (2023) propose the multi-hop
opportunistic 3D routing (MO3DR) algorithm to address post-disaster routing challenges
such as coverage requirements, inter-UAV collision avoidance, and reliable multi-hop
routing without trajectory planning. Their simulations validate that maintaining the UAVs
within a threshold inter-UAV distance effectively meets the coverage and collision con-
straints and thus maximizes the expected progress of data toward the terrestrial base
station (TBS) [10]. Zhang et al. (2023) propose an air–ground cooperation architecture
based on an ad hoc UAV network to address the challenges of damaged ground servers in
disaster scenarios. They define system cost as a weighted sum of task delay and energy
consumption and propose a joint optimization algorithm that iteratively solves the task
scheduling and UAV deployment sub-problems. Their simulation results demonstrate
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that the proposed algorithm significantly reduces task delay and energy consumption
while achieving a good trade-off between these metrics for diverse tasks [11]. These studies
highlight the importance of UAVs in maintaining communication services when the ground
infrastructure is unavailable or damaged.

Trajectory optimization is a critical aspect of UAV deployment and directly impacts
the efficiency and effectiveness of the communication network. Several approaches have
been proposed to address this challenge. For example, Pan et al. (2023) [12] address the
trajectory planning problem in their work on joint power and 3D trajectory optimization
for UAV-enabled wireless powered communication networks (WPCNs) in the presence of
obstacles. They decompose the problem into two sub-problems: power allocation and 3D
trajectory optimization. The authors propose an improved non-dominated sorting genetic
algorithm-II with a K-means initialization operator and variable dimension mechanism
(NSGA-II-KV) for power allocation as well as an improved particle swarm optimization
(PSO-NGDP) for trajectory optimization. Their approach effectively increases the number
of covered wireless devices, enhances time efficiency, and reduces UAV flight distance,
thereby demonstrating significant improvements in the energy utilization efficiency in
complex environments [13]. Similarly, Zhang et al. [13] introduce a heuristic crossing search-
and-rescue optimization algorithm (HC-SAR) for UAV path planning, which integrates a
heuristic crossover strategy with a basic SAR algorithm to improve convergence speed and
maintain population diversity. The HC-SAR algorithm demonstrates high performance in
both two-dimensional and three-dimensional environments, significantly outperforming
the traditional algorithms, such as differential evolution (DE) and ant lion optimizer (ALO),
in terms of path length and fuel efficiency [14].

The application of DRL in UAV trajectory optimization is a rapidly growing field.
Na et al. (2023) [11] propose an improved PSO algorithm for the energy-efficient path plan-
ning of UAVs in mountainous terrain. By integrating a deep deterministic policy gradient
(DDPG) model for adaptive parameter tuning, the algorithm significantly enhances the
global search capability and avoids local optima. The simulation results demonstrate that
this approach effectively reduces the nonessential energy consumption and improves the
UAV mission efficiency in complex environments [12]. Li et al. (2023) [14] address the
problem of computation and communication uncertainties in multi-UAV-assisted mobile
edge computing (MEC) networks. This paper proposes a robust design to minimize the
total weighted energy consumption by jointly optimizing the UAV trajectory, task partition,
and resource allocation using a multi-agent proximal policy optimization (MAPPO) with a
Beta distribution framework. The numerical results reveal the effectiveness and robustness
of the proposed algorithm in minimizing the energy consumption under various uncertain-
ties [15]. These studies reveal that DRL algorithms can adapt to changing environmental
conditions and complex problems, thus making them well-suited for disaster scenarios.

Optimizing energy consumption in UAV networks is critical for prolonging the op-
eration time and enhancing the overall system efficiency. Sun et al. (2023) [15] address
the challenge of maximizing the energy efficiency in a wireless power transfer (WPT)-
enabled UAV-assisted emergency communication system. The UAV functions as a base
station, performing both communication and wireless charging tasks. The authors pro-
pose a low-complexity alternating iterative optimization algorithm that jointly optimizes
the UAV trajectory, transmit power, WPT power, and user bandwidth. Their simulations
demonstrate that this approach effectively balances the system throughput and UAV energy
consumption, significantly improving the energy efficiency compared to the benchmark
schemes [16]. Ao et al. (2023) [16] propose an innovative approach for energy-efficient
multi-UAV cooperative trajectory optimization. Their multi-agent deep reinforcement
learning (MADRL)-based algorithm, called double-stream attention multi-agent actor–
critic (DSAAC), significantly improves the communication efficiency and energy savings
by leveraging a hierarchical multihead attention encoder and a double data stream network
structure in the actor network. The simulation results reveal a notable reduction in energy
consumption and an increase in system robustness [17].
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The existing body of research emphasizes the potential of UAVs in emergency com-
munication networks and highlights the challenges associated with their deployment.
Although the traditional optimization methods have made significant contributions, the ad-
vent of reinforcement learning, particularly DRL, offers promising new avenues for research.
Our work builds on these foundations, using DRL to develop a robust and adaptive solu-
tion to optimize the trajectory of UAVs in disaster scenarios. By addressing the limitations
of previous approaches, we aim to provide a comprehensive framework that enhances both
coverage and energy efficiency, ultimately improving the resilience and effectiveness of
emergency communication networks.

3. System Model and Problem Formulation
3.1. Communication Scenario

As depicted in Figure 1, we consider a rectangular disaster area with line-of-sight (LoS)
characteristics and damaged communication infrastructure. In this area, a set of drones
U—u = 1, 2, . . . , U—serves as mobile base stations to provide services for ground UEs.
We use (xu, yu, H) to represent the position of the drone, u, where H represents the height
of the drone. This article assumes that all drones fly on a horizontal plane at a constant
height from the ground. Each drone is equipped with a fixed-capacity lithium battery and
can only provide service for a limited time. When a drone’s energy falls below a certain
threshold, it will seamlessly switch with a backup drone. We also assume that each drone
has a high-capacity fronthaul link, such as a millimeter-wave link, to a ground base station
equipped with an agent central unit. This central processing agent receives the drones’
observations of the dynamic environment and their own status information. It then stably
learns the optimal trajectory strategy to minimize energy consumption and manages the
cooperation among the deployed drones. As illustrated in Figure 2, we consider a time
period divided into 2T time slots. At the beginning of each time slot, the drone first moves
to a new position, with the duration of this time slot being uncertain. In the next time slot,
the drone hovers and provides communication services for a duration of ∆t.

Figure 1. Drone-assisted communication region.

Figure 2. Drone-assisted communication region.

In this study, we consider a fixed number of rescuers, N—n = 1, 2, . . . , N—beginning
from different rescue centers to conduct detailed searches of specified regions. The mission
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of drones is to cooperate within a specified time period to provide the maximum possible
communication coverage to these rescuers. We assume that the drone can communicate
simultaneously with multiple UEs within its coverage area and perform interference-
free communication by allocating appropriate orthogonal resources. In this post-disaster
scenario, our subsequent analysis relies on the following basic assumptions:

• Each drone is randomly distributed in the certain region at the initial time. When a
drone is almost exhausted, it retains sufficient energy to return to the charging station
and then seamlessly switches with a backup drone. For simplicity, we keep the drone
numbers the same before and after the switch. If a drone fails, we ignore the arrival
time of the backup drone and also assume a seamless switch by default.

• Whether each drone can provide services to a particular UE depends on the number of
UEs within its coverage. Additionally, each UE covered in the scenario is guaranteed
a specific quality of service (QoS).

• The energy consumption of drones is mainly determined by flight and hovering. In this
scenario, the energy consumption for communication is small and, thus, ignored [18].

3.2. User Movement Model

In this article, rescue workers are randomly distributed in different locations in various
rescue centers. Their goal is to conduct a blanket search of the designated area. We assume
that the rescuers’ movement follows a Gaussian distribution with mean µ and variance σ2,
and that they are constantly in action throughout the period. We use (xn, yn, h) to represent
the position coordinates of the UE n, where h represents the height of the UE. We assume
that the height of all the UEs from the ground is h.

3.3. Channel Model

We calculate the mean path loss as the propagation loss of the wireless signal according
to [19]. Path loss is divided into free space path loss and additional loss [20]. Here, we only
consider the LoS situation between the drone and the UE:

PL = 20log(
4π fcd

c
) + η, (1)

where fc indicates carrier frequency, d represents the Euclidean distance between drone
and UE, c is the speed of light, and η denotes the mean additional loss for LoS.

Then, the received signal power Pr for UE n from drone u can be formulated as

Pr
nu = Pt − PL, (2)

where Pt is the total transmit power from drones.
Thus, the signal to interference and noise ratio, SRnu, for a drone–UE pair can be

formulated as
SRnu =

Pr

PN + ∑U
i=1,i ̸=u Pr

ni
, (3)

where PN represents the additive white Gaussian noise power.
In practice, if the SRt

nu served by drone u in time slot t is greater than the threshold
SRth and the number of UEs served by the drone does not exceed the upper limit, the UE
n is considered to be covered by the drone u with acceptable QoS. If the number of users
served by the drone u has reached the upper limit or the QoS is lower than the threshold,
the next closest drone will be tried for use. If all drones cannot provide services, the UE is
considered disconnected in time slot t.

3.4. The Drone Energy Consumption Model

We calculate the energy consumption of the drone during horizontal flight, lifting,
and levitation, with the energy consumption during levitation being related to wind
speed. The power consumed by the drone when flying horizontally with speed v can be
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calculated in three parts: the power required to overcome the drag of the rotor blade profile,
the fuselage that hinders the forward motion of the aircraft, and the power required to lift
the payload [17]. Adding these three terms together, we obtain

Ph(v) = NRPb(1 +
3v2

v2
tip

) +
1
2

CD A f ρ(H)v3 + W(

√
W2

4N2
Rρ2(H)A2

r
+

v4

4
− v2

2
)

1
2 , (4)

where W is the weight of the drone, and NR and vtip are the number of drone rotors and
the tip speed of the rotor, respectively. CD is the drag coefficient; A f andAr are the fuselage
area and the rotor disc area. Pb = ∆

8 ρ(H)sArv3
tip, ∆ represents the profile drag coefficient, ρ

is the air density function, and ρ(H) = (1−−2.2558 · 10−5H)4.2577.
The drone power consumed in a vertical climb with speed vc is

Pv(vc) =
W
2
(vc +

√
v2

c +
2W

NRρ(H)Ar
) + NRPb. (5)

When hovering, a horizontal speed, vhov, is needed to counteract the wind speed.
The hovering power consumption is provided as Ph(vhov), which is in accordance with
Equation (4).

3.5. The MDP Model

In this study, our objective is to control the trajectories of drones so that they provide
maximum coverage for the UEs and minimize the consumption of energy from the drones.
The drones must dynamically adjust their positions based on the distribution of the rescuers
and the environmental conditions. The drone makes a decision in each time slot, and the
decision in time slot t only depends on the scenario information at time t− 1. This satisfies
the Markov property, and the information observed by each drone is local; thus, we
can model the problem as a partially observable Markov decision process (POMDP) [21].
The POMDP can be described as a tuple < U ,S ,O,A, P, π, R, γ >; here, U = 1, 2, . . . , U, S ,
O = o1, . . . , oU , and A = A1 × . . .×AU are the set of corresponding drone agents, global
state, the set of observations, and joint action, respectively. P represents the transition
function, and γ ∈ [0, 1) is the discount factor. At each time step, agent u receives observation
ou and provides action au ∈ Au. The details of the fundamental elements of our problem
are provided below.

• Agents: The agents correspond to the drones. Each agent has an actor network, which
determines the agent’s action based on the input observation at each time step.

• Observations: The local observation information of each drone includes the position
coordinates of the drone and the UEs it serves, the current energy level of the drone,
and the system coverage value.

• States: There are many different input information modes to choose from [22]. In our
study, the state fed into the algorithm consists of the local observations of all agents,
which are combined into a global state representation.

• Actions: The action space of the drones is continuous, and this allows each agent
to take actions in any direction and at any distance. The action of each agent is
represented as a two-dimensional vector, (∆x, ∆y), which is determined at each time
step by the actor network.

• Reward: The algorithm receives states, actions, and outputs rewards. Our study
implements reward sharing, which implies that the total reward of all drones is
used as the reward for each drone. The specific method for calculating rewards is
introduced later.

• Policy π: The policy π determines the actions to be taken by the drones based on the
current state, aiming to maximize the cumulative reward over time.
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4. Solutions

The objective of our study is to maximize the coverage of users in a post-disaster area
while minimizing the energy consumption of UAVs. We consider a set of UAVs operat-
ing as aerial base stations that provide communication services. To ensure cooperation
among these drones, we present the methodology for using multi-agent proximal policy
optimization (MAPPO) [23] to control the movement trajectories of drones for emergency
communication services in disaster scenarios. Next, we describe the MAPPO algorithm,
the reward function, and the implementation details of our approach.

4.1. Algorithm Structure

MAPPO is an extension of proximal policy optimization (PPO) [22] designed for multi-
agent environments. It optimizes the policies of multiple agents (drones in our case) in
a centralized manner while enabling decentralized execution. The following are the key
components of the MAPPO algorithm:

• Centralized critic: A single critic evaluates the joint actions of all agents, thereby
providing a more stable learning process.

• Decentralized actors: Each UAV has its own actor network, making decisions based
on local observations.

• Clipped objective: Similar to PPO, MAPPO uses a clipped surrogate objective to
ensure stable policy updates, thus preventing large deviations from the current policy.
The MAPPO optimization objective is provided by

LCLIP(θ) = Et
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (6)

where rt(θ) is the probability ratio between the new and old policies, Ât is the advan-
tage estimate, and ϵ is a hyperparameter that controls the clipping range.

Algorithm 1 outlines an MAPPO-based MARL algorithm designed for post-disaster
drone–UE communication scenarios. The MAPPO algorithm is implemented using a
centralized training approach with decentralized execution. The training process involves
simulating multiple episodes, where the UAVs learn to optimize their trajectories through
interaction with the environment.

Algorithm 1 MAPPO-based drones trajectory algorithm

1: Orthogonally initialize actor networks πu(θu) for each drone u.
2: Initialize a shared critic network V(ϕ).
3: Initialize replay buffer B.
4: Set hyperparameters: learning rate α, γ, clip range ϵ, batch size, replay buffer size,

update interval.
5: for episode = 1, 2, . . . do
6: for t = 1 to update interval do
7: Obtain current states st = {ou,t} for all drones.
8: for each drone u do
9: Sample action au,t from πu(ou,t|θu).

10: end for
11: Execute actions au,t and observe rewards rt and next states st+1.
12: Store experiences (st, {au,t}, rt, st+1) in replay buffer B.
13: if episode is done then
14: Reset environment.
15: end if
16: end for
17: if size of B ≥ replay_buffer_size then
18: for each update step do
19: Sample mini-batch of experiences from B.
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Algorithm 1 Cont.

20: Compute advantage estimates and targets using V(ϕ).
21: for each mini-batch do
22: Compute critic loss: LV = (targets−V(s))2.
23: Update critic network: ϕ← ϕ− α · ∇ϕLV .
24: end for
25: for each drone u do
26: Compute ratio: rt(θu) = exp(log πu(au,t|su,t)− log πold

u (au,t|su,t)).
27: Compute clipped objective: LCLIP = min(rt(θu) · At, clip(rt(θu), 1− ϵ, 1 + ϵ) ·

At).
28: Compute actor loss: Lπ = −E[LCLIP].
29: Update actor network: θu ← θu − α · ∇θu Lπ .
30: end for
31: end for
32: Clear replay buffer B.
33: end if
34: end for

4.2. Training Process

Training deep reinforcement learning models, particularly in a multi-agent setting like
MAPPO, can be computationally intensive and time-consuming. To accelerate the training
process and improve the efficiency of learning, we employ several techniques:

• Input normalization: Normalization ensures that all features contribute equally to the
learning process and prevents issues related to varying scales of input data. By nor-
malizing the input data, we ensure that our MAPPO-based UAV control system
operates on a stable and consistent input space, thereby leading to more efficient and
effective learning.

• Experience replay: Experience replay helps in breaking the correlation between consec-
utive training samples, which can lead to more stable learning. In our implementation,
we use a shared replay buffer in which all UAVs store their experiences. During train-
ing, mini-batches of experiences are randomly sampled from this buffer to update the
network weights, which ensures that the UAVs learn from a diverse set of experiences.
After each training session, the replay buffer is cleared to collect new information
and retrain.

• Parameter sharing: Parameter sharing across UAVs can significantly reduce the num-
ber of parameters to be learned and thus enhance the learning process. In our approach,
we share the parameters of the actor networks among all UAVs. This not only ac-
celerates training but also ensures that the UAVs learn a coordinated strategy for
maximizing coverage and minimizing energy consumption.

• Parallel training: To further speed up training, we utilize parallel training by running
multiple simulations concurrently. Each simulation runs on a separate environment
instance, which enables the UAVs to collect more experience in less time. The experi-
ences from all parallel simulations are aggregated and used for updating the policy
and value networks.

4.3. Reward Function

To meet our goals, we design a reward function that is strongly correlated with the
system coverage and energy consumption of the drones. If a UE is covered by drone u
in time slot t, and the number of UEs served by the drone does not reach the upper limit,
the coverage factor Ct

n is 1—that is,

Ct
n =

{
1, SRnu ≤ SRth

0, otherwise.
(7)
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Therefore, the total number of users served in the time slot t is

Ct =
N

∑
n=1

Ct
n. (8)

According to Equations (4) and (5), the energy consumed by drone u between time
slot t can be calculated as

Et = Pv(vc)
Hu

as
vc

+ Ph(vh)
du

vh
+ Ph(vhov)∆t, (9)

where Hu
as and du imply ascending or descending flying distance and horizontal flying

distance of drone u.
The reward function that we designed aims to balance the trade-off between maximiz-

ing user coverage and minimizing energy consumption. According to Equations (8) and (9),
it is expressed as

rt = Ct − ξ · Et, (10)

where Ct is the user coverage at time step t, Et is the energy consumption of all drones in
time slot t, and ξ is the weighting factor.

5. Simulation Results

To evaluate the performance of our MAPPO-based UAV control system, we conduct ex-
tensive simulations in a realistic disaster scenario. This section details the simulation setup,
the parameters used, the evaluation metrics, and the results obtained from our experiments.

5.1. Simulation Setup

The simulation environment is designed to mimic a typical post-disaster area with the
following characteristics:

• Area: A region measuring 3 km × 3 km is used to simulate the disaster area.
• UE distribution: As illustrated in Figure 3, the rescuers are randomly distributed

among 10 rescue centers in the area; each group of rescuers is assigned a part of the
area and each rescue center is assigned the same number of rescuers to conduct an
undifferentiated manual search of the disaster scene.

• Dynamic conditions: The locations of rescuers and communication demands change
over time to simulate the dynamic nature of real-world disaster scenarios.

Figure 3. Rescue workers’ search route map.
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We deploy a different number of drones in the simulation. The drones are modeled
with quad-copter dynamics, including constraints on speed (10 m/s), altitude (16 m),
and maneuverability. The energy consumption of UAVs is calculated based on their speed,
distance traveled, and hovering activities. Each drone–UE connection has a signal strength
threshold within which it can provide services to its users. Using path loss exponential
modeling, it is revealed that the communication service quality degrades with the distance
from the UAV. Additionally, the interference between different drones to UEs must be
considered. The key parameters used in the simulations are illustrated in Table 1. To reduce
the experimental time, we open 12 parallel environments to simultaneously collect data.
After each data collection episode, the algorithm runs 15 training epochs to fully utilize the
data. The data size for our small batch training is 512.

Table 1. Numerical parameters.

Parameters Values

Region 3 km × 3 km
Number of rescue centers 10

Drone hight, H 16 m
Drone number, U 3, 4, 5, 6

Moving range of a drone at one time [0, 300 m]
Upper limit of served UE number for each drone 40

UE height, h 1.5 m
Number of UEs, N 200

Mean additional loss, η 1 dB
Received signal power, Pt −3 dBW

Carrier frequency, fc 1 GHz
SRlow

th 0 dB
SRhigh

th 5 dB
Weight of drone, W 23.84 Newton
Rotor number, NR 4

Horizontal flying speed of drone, vh 10 m/s
Rotor tip speed, vtip 102 m/s

Fuselage area, A f 0.038 m2

Drag coefficient, CD 0.9
Rotor disc area, Ar 0.06 m2

Profile drag coefficient, ∆ 0.002
Rotor solidity 0.05

Hovering time slot ∆t 60 s
Weighting factor of reward function ξ 0.1

Total number of episodes 800
Episode length 60 min

Number of parallel envs for training rollouts 12
Number of network layers 2

Dimension of hidden layers 512
Activation function ReLU

Learning rate 3× 10−6

Critic learning rate 5× 10−4

Number of PPO epochs 15
PPO clip parameter 0.2
Number of batches 512

Entropy term coefficient 0.01
Discount factor 0.99

GAE λ parameter 0.95
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To evaluate the performance of our approach, we use the following metrics:

• Coverage Ratio: The total number of users covered by the UAVs at each time step.
• Energy Efficiency: The proportion of energy consumed by all the UAVs over the

simulation period.
• Reward: The cumulative reward obtained, reflecting the balance between coverage

and energy consumption.

To the best of our knowledge, there is no benchmark for the related research thus
far. We compare our method with three other different deployment methods proposed
in [24]. We redesign the details of the drone configuration in these methods according to
our specific scenarios. We believe that these methods are more likely to produce intuitive
and convincing results compared to ours, both in terms of whether the drone is moving
and in the specific styles of the drone’s movements. The comparison results are presented
in Section 5.5 below. In addition, it is worth mentioning that each comparison method is
derived from an average of 100 running results.

5.2. Super-Parameter and Convergence Analysis

We first analyze the impact of the number of hidden layers in the algorithm on training.
Considering the complexity of our problem, we analyze the training performance with
two fully connected layers and three fully connected layers, respectively. Additionally,
the following are the other settings in the experiment: the number of drones is four, and a
high signal to inference and noise ratio is selected. As depicted in Figure 4, when the
number of hidden layers is three, the network can initially learn and capture more features
and complex relationships and, thus, lead to faster reward growth and quicker convergence.
However, as the number of training episodes increases, the network with two hidden layers,
despite converging slower, achieves better training results in the long run. Therefore, in this
study, we set the number of network layers at two for the subsequent experiments.
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Figure 4. Impact of the number of hidden layers.

Here, we study the convergence performance of the proposed algorithm. The conver-
gence conditions of training for different numbers of UAVs are depicted in Figure 5. It is
evident from the figure that, at the beginning of training, the initial cumulative reward
is relatively low because the drone has not yet learned the appropriate trajectory in the
dynamic environment to cover the UEs. However, over time, the cumulative reward rapidly
increases as the drone continues to learn. In addition, due to the nonstationary nature of
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the environment, the rewards fluctuate around the average value. However, as training
proceeds, the trend of cumulative rewards continues to increase until convergence.
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(a) Drone number: 3
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(b) Drone number: 4
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(c) Drone number: 5
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(d) Drone number: 6

Figure 5. Convergence conditions over time.

5.3. Analysis of the Communication QoS Threshold SRth

We want to balance the relationship between communication coverage and commu-
nication QoS. To this end, we select two signal to interference and noise ratio thresholds,
SRlow

th = 0 and SRhigh
th = 5. The numerical results of these two thresholds in different

environments are depicted in Figure 6. As the number of drones increases, the number of
UEs that can meet the high SR threshold decreases. When the number of drones reaches
five or six, the number of UEs that meet the high QoS service reduces to zero. However,
for low SR threshold requirements, each drone can serve the maximum number of users
it is capable of serving. In the scenarios tested with different numbers of drones, all the
drones are able to meet the low QoS threshold requirements of the UEs. Therefore, in the
subsequent experiments, we select a low SR threshold parameter by default.
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Figure 6. Impact of signal to interference and noise ratio thresholds.

5.4. Analysis of Different Drone Numbers

We test the performance of different numbers of drones in dynamic scenarios. As ev-
ident from Figure 7a, when the number of drones reaches five, the drone network can
achieve full coverage of the UEs in the scene. However, when the number of drones is six,
the system coverage is reduced due to communication interference between the drones,
thereby resulting in a corresponding reduction in reward, as depicted in Figure 7b. It is also
worth noting that, as the number of drones increases, the average energy consumption of
the entire scene rises sharply. Figure 7c takes the energy consumption of the system when
the number of drones is three as the benchmark and compares it to the energy consumption
when testing other numbers of drones. Obviously, when the number of drones doubles to
six, the energy consumed by the drone system also doubles. In conclusion, the number of
drones that achieve the maximum cost-effectiveness for our system is five.
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Figure 7. Cont.
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Figure 7. Performance of different drone numbers.

5.5. Performance Comparisons with Other Methods

General planning or optimization methods are typically designed to address static
problems and are not inherently suited for dynamic scenarios. Our problem, however, is
dynamic and represents a multi-agent Markov decision process (MDP) that requires contin-
uous real-time decision-making. This complexity is further compounded by the extensive
state and action spaces involved. The traditional optimization algorithms generally fail to
manage this complexity effectively. Consequently, we cannot demonstrate the efficacy of
our method by comparing it with traditional optimization algorithms. To evaluate the ad-
vantage of drone mobility in communication and the effectiveness of our mobility method,
we conduct comparisons with three other drone configuration methods: (1) suspended in a
fixed position (see Figure 8a)—drones hover at a fixed distance in the middle of the area;
(2) move randomly (see Figure 8b)—the drones move randomly within the area, with the
maximum moving distance in each movement interval not exceeding 300 m; and (3) move
at a constant speed (see Figure 8c)—throughout the entire period, the drone follows the
same search route as the rescuers, moving at a constant speed from one side of the area to
the other. In addition, in all these comparative experiments, the disaster scenarios used are
identical to the environment used in our method.

As evident in Figure 9, with an increase in the number of drones providing services,
the average coverage of all the methods increases until the number of drones reaches five.
When the number of drones in the system is six, the number of serviced UEs decreases due
to communication interference between the drones. However, it is evident that the proposed
algorithm consistently outperforms the other methods in each case. In particular, when
the number of drones is four, our method achieves approximately 45% higher coverage
of UEs than the constant deployment method. In general, our method achieves superior
performance, with an average of 10–45% higher coverage than the other methods.
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(a) Fixed deployment (b) Random deployment

(c) Moving with a constant velocity

Figure 8. Different drone deployment methods.
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Figure 9. Performance analysis of different methods.

5.6. Reward Function Analysis

Finally, we analyze our designed reward function. As indicated in Equation (10),
the reward function consists of two parts: system coverage and a drone energy consump-
tion penalty. To demonstrate the impact of the energy penalty term on the system, we
simulate the reward function both with and without the energy consumption penalty term.
The simulation results are shown in Figure 10.

The simulation results highlight the effectiveness of our MAPPO-based UAV control
system in providing robust and energy-efficient communication services in disaster scenar-
ios. Obviously, although Figure 10b reveals that the coverage performance obtained using
the two reward functions is comparable, Figure 10a indicates that the network trained
using the reward function with an energy consumption penalty can save approximately 3%
energy. Thus, significant improvements in energy efficiency demonstrate the potential of
our approach to improve disaster response efforts.
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Figure 10. Impact of energy consumption penalty.

6. Conclusions

In this study, we proposed a DRL-based approach to optimize the trajectories of
UAVs in disaster scenarios to provide efficient and reliable emergency communication
services. Our primary objective was to maximize the user coverage while minimizing
the energy consumption of the drones. The MAPPO algorithm demonstrated robust
performance in serving the rescuers in complex and dynamic post-disaster areas. Our
extensive simulations validated the efficacy of the reward function designed and the
MAPPO algorithm. The proposed method consistently outperformed other deployment
strategies in terms of user coverage and energy efficiency. Specifically, without considering
the convergence speed of the algorithm, our approach achieved an average of 10–45% higher
coverage compared to the fixed-, random-, and constant-velocity deployment methods.
Moreover, the consideration of an energy consumption penalty in the reward function
significantly improved the energy efficiency, saving approximately 3% more energy while
maintaining comparable coverage performance.

The results highlight the potential of using DRL for UAV trajectory optimization
in emergency communication networks. Using the adaptive learning capabilities of the
MAPPO algorithm, UAVs can dynamically adjust their positions and strategies to meet the
changing demands of the environment and UE distribution, thus enhancing the resilience
and effectiveness of disaster response efforts. Future research directions could include
exploring the integration of more advanced artificial intelligence techniques to further
improve the decision-making capabilities of UAVs. Furthermore, investigating the impact
of different types of environmental uncertainties, such as varying weather conditions and
unpredictable obstacles, and user mobility patterns on the performance of the proposed
algorithm could provide deeper insights into optimizing UAV-assisted communication
networks. In addition, real-world field tests are necessary to verify the practical applicabil-
ity and scalability of the proposed solutions in actual disaster scenarios. While the study
demonstrates the potential of DRL for UAV trajectory optimization, it does have some limi-
tations. For example, the simulation environment may not fully capture the complexities of
real-world scenarios. Additionally, the algorithm performance could be affected by factors
such as computational constraints and the need for real-time decision-making. Future
research should focus on addressing these limitations by (1) enhancing the simulation envi-
ronment to include more realistic scenarios; (2) investigating the algorithm’s performance
under computational constraints; (3) developing methods for real-time decision-making;
and (4) conducting extensive real-world field tests to validate the proposed solutions.
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By addressing these limitations, future studies can further refine and improve the practical
applicability of DRL in UAV-assisted emergency communication networks.
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