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Abstract: The diffusion of Multimodal Large Language Models (MLLMs) has opened new research
directions in the context of video content understanding and classification. Emotion recognition
from videos aims to automatically detect human emotions such as anxiety and fear. It requires
deeply elaborating multiple data modalities, including acoustic and visual streams. State-of-the-art
approaches leverage transformer-based architectures to combine multimodal sources. However, the
impressive performance of MLLMs in content retrieval and generation offers new opportunities
to extend the capabilities of existing emotion recognizers. This paper explores the performance of
MLLMs in the emotion recognition task in a zero-shot learning setting. Furthermore, it presents
a state-of-the-art architecture extension based on MLLM content reformulation. The performance
achieved on the Hume-Reaction benchmark shows that MLLMs are still unable to outperform the
state-of-the-art average performance but, notably, are more effective than traditional transformers in
recognizing emotions with an intensity that deviates from the average of the samples.

Keywords: video–language large language models; emotion recognition; emotional reaction intensity
estimation; multimodal learning

1. Introduction

Thanks to its ever-increasing diffusion, video content is gradually replacing traditional
textual and image web sources. Video-sharing platforms like YouTube, TikTok, and Twitch
have attracted millions of social users [1]. Every day, they process millions of videos,
thus requiring automated solutions for efficient and effective content classification, anno-
tation, and retrieval. Recognizing human emotions in videos is particularly relevant to
content-sharing platforms as it enables smart applications and services such as healthcare
monitoring [2], AI chatbots [3], and engagement and gaming [4].

This work studies the problem of emotional reaction intensity (ERI) estimation from
video sources in which the simple processing of facial expressions is not sufficient to detect
the correct emotional reaction, e.g., adoration, amusement, anxiety, disgust, empathic
pain, fear, and surprise. Rather than proposing ad hoc image processing techniques for
emotion recognition, our purpose is to explore the capabilities of state-of-the-art multimodal
learning systems that effectively combine visual and acoustic sources. To this end, this study
analyzes a video benchmark collection released by the organizers of the MuSe-Reaction
challenge [5]. Videos in the collection show people’s reactions captured by a front-facing
camera. Human reactions can be detected and evaluated by processing both a subject’s face
and voice.

State-of-the-art approaches rely on transformer architectures [6] that jointly process the
visual and audio streams. They adopt either modality-specific [7,8] or cross-modal [9] fusion
techniques to combine the separate inputs and then perform vision–language classification
on top of the encoded inputs.

In parallel, the progress of Large Language Models has allowed the evolution of
traditional text-only Large Language Models (LLMs) towards the combined processing of
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multiple modalities. Recent LLMs such as GPT-4 [10], LLaVA [11], Video-LLaVa [12], and
LaViLa [13] support visual content as part of the LLM prompts or responses beyond plain
text. However, their performance on emotion recognition tasks is still largely unexplored.

This paper studies the application of Multimodal Large Language Models (MLLMs)
to estimate the emotional reactions in videos. It explores three alternative strategies. The
first one directly applies recently proposed video–language LLMs (Video-LLaVa [12]) to
estimate emotional reactions from video clips. We cast the problem of ERI estimation to
a multi-regression task in which the MLLM predicts the corresponding level of intensity
of each emotion. The second strategy applies probing [14] on top of MLLM embeddings.
Finally, the third strategy integrates MLLM features into ViPER [9], a state-of-the-art
multimodal architecture for video emotion recognition.

The results achieved on the Hume-Reaction benchmark [5] give interesting insights
into the performance comparison between MLLMs and traditional transformers. Despite
their promising performance, MLLMs in a zero-shot setting are still incapable of achieving
a higher correlation score on the analyzed video clips. The combination of MLLMs with
transformer-based architectures turns out to be marginally beneficial in the average perfor-
mance metrics. However, a deeper analysis of the per-class results highlights the higher
capability of MLLM-based approaches to correctly estimate emotional reaction intensities
that deviate from the average of the entire collection. Importantly, their higher effectiveness
in predicting atypical emotion intensities could be particularly helpful in situations in
which fine-tuning ad hoc models is unfeasible due to a lack of training data or limited
computational resources.

The remainder of this paper is organized as follows. Section 2 overviews the existing
video–language LLMs and transformer-based architectures for ERI estimation from videos.
Section 3 introduces the task and the benchmark dataset. Section 4 describes the LLM-
based methods. Section 5 presents the experimental results achieved on benchmark data.
Finally, Sections 6 and 7 summarize the main findings, draw conclusions, highlight the
main limitations of the proposed method, and discuss the future research extensions of the
present work.

2. Related Works
2.1. Emotion Recognition

Emotion recognition encompasses a variety of related tasks that differ in the modal-
ity involved in the input data, e.g., facial expression recognition (FER), speech emotion
recognition (SER) and textual emotion recognition (TER) [15].

Recently, the interest of the research community has mainly focused on recognizing
emotions from multimodal sources such as videos [16–18]. Here, the key challenge is
properly extracting and combining features from the input video since the discriminating
information conveying the emotion is often cross-modal. However, a unified solution
that has proved to outperform all existing approaches in unimodality, bimodality, and
multimodality scenarios is still missing [19]. This work focuses on a particular emotion
recognition subtask, i.e., emotional reaction intensity estimation [20].

2.2. Emotional Reaction Intensity Estimation

The MuSe 2022 (Multimodal Sentiment Analysis Challenge) research challenge [5] first
employs Hume-Reaction, a benchmark for ERI estimation from videos. The task organizers
invite researchers to explore the complementary role of multimodal information in the
emotion recognition task. The same video corpus has been used in further competitions,
such as the ABAW 2023 (Affective Behavior Analysis in the Wild) research challenge [21].
Task participants mainly adopt transformer-based architectures [6] and focus on facial
details to address the issue. The main limitation of transformer-based models is the need
for large-scale training data that are, unfortunately, not always available in several domains
and scenarios. Some research efforts have been devoted to exploiting modality fusion
layers [7,8], each one relying on visual [22] and audio [23] encoders. Adopting separate
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per-modality encoders limits the potential of attention-based classifiers as they neglect
cross-modality interactions.

The authors of [20] propose a dual-branch network that processes both visual and
acoustic information, employing spatial (for vision only) and temporal (for both modalities)
transformer-based encoders. They also propose a modality dropout fusion layer to combine
modalities, proving its effectiveness with respect to simple concatenation. The approach
described in [24] is based on the PosterV2-ViT model, a transformer-based architecture
designed to extract features from the Hume-Reaction dataset. The authors also combine
these visual features with the precomputed DeepSpectrum audio features to further im-
prove the performance. In [9], the authors propose ViPER, a multimodal architecture
designed to combine features from an arbitrary number of sources. All the information
is extracted at the frame level and concatenated across modalities before feeding a Per-
ceiver model, a transformer-based modality-agnostic architecture [25]. Beyond visual and
acoustic features, it includes Facial Action Units and textual features to enhance the results.
Particularly, textual features are obtained using the CLIP [26] model to align video frames
with pre-defined templates.

Unlike ViPER [9], this work focuses on exploring the capabilities of visual and video
LLMs in video emotion recognition. It proposes both a probing network tailoring LLMs to
the emotion recognition task and an extension of the state-of-the-art ViPER [9] architecture
integrating LLMs to generate textual video- and frame-level textual descriptions.

2.3. Multimodal LLMs

The rapid expansion of online multimodal sources, such as multimedia documents,
videos and audio signals, has prompted the evolution of traditional text-only Large Lan-
guage Models (LLMs) towards the combined processing of multiple modalities. Table 1
summarizes the main characteristics of state-of-the-art Multimodal LLMs. To the best of
our knowledge, none of the existing models have already been used to address the task of
emotion recognition from videos.

Table 1. Classification of state-of-the-art Multimodal LLMs.

Type Name Year Size Open Architectural Details Downstream Task Pre-Train

Vision–
Language

LLaVA [11] 2023
7B,
13B,
34B

Yes

CLIP [26] extracts visual features,
which are projected in the word
embedding space before feeding the
LLM (decoder only) with both visual
and textual tokens

Visual Question Answering
(in terms of conversation
detail, description, complex
reasoning)

QA pairs created using
ChatGPT and GPT-4 on
top of COCO images [27]

Open-Flamingo [28] 2023
3B,
4B,
9B

Yes

CLIP [26] extracts visual features;
text with interleaved images is
passed to the LLM to generate the
response

Visual Question Answering
LAION-2B [29],
Multimodal C4,
ChatGPT-generated data

GPT-4 [10] 2023 >70B No N/A N/A N/A

Mini-GPT-4 [30] 2023 7B,
13B Yes

ViT [22] backbone plus a
Q-Former [31] to extract visual
features, used to feed Vicuna model
together with textual tokens.
Two-stage training: (i) general
training to acquire visual knowledge,
(ii) high-quality training using a
designed conversational template

Visual Question Answering,
image captioning, meme
interpretation, receipt
generation, advertisement
creation, and poem
composition

SBU [32], LAION [33]

BLIP-2 [34] 2023 3B,
7B Yes

Q-Former [31] + LLM trained with
image–text contrastive learning,
Image-grounded Text Generation
and image–text matching

Visual Question Answering,
image captioning,
image–text retrieval

COCO [27], Visual
Genome [35], CC3M [36],
CC12M [37], SBU [32],
LAION400M [33]

Fuyu [38] 2023 8B Yes

Image patches are instead linearly
projected into the first layer of the
transformer; there is no image
encoder

Visual Question Answering,
image captioning N/A
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Table 1. Cont.

Type Name Year Size Open Architectural Details Downstream Task Pre-Train

Video–
Language

Video-LLaVA [12] 2023 7B Yes United visual representation (video +
images) before feeding the LLM

Image Question Answering,
video understanding

LAION-CC-SBU,
Valley [39], WebVid [40]

Merlin [41] 2023 7B No
Specifically trained to causally model
the trajectories interleaved with
multi-frame images

Future reasoning, identity
association ability, Visual
Question Answering

A lot of datasets
(captioning + detection +
tracking)

VTimeLLM [42] 2023 7B,
13B Yes

CLIP [26] as visual encoder to feed
the LLM, which is trained to be
aware of temporal boundaries in
videos

Temporal Video Grounding,
Video Captioning

ActivityNet
Captions [43],
CharadesSTA [44]

Video-ChatGPT [45] 2023 7B Yes

CLIP [26] used to extract frame
representations, combined to obtain
temporal and spatial video
representation, used to feed the LLM

Video-based Generative
Performance
Benchmarking,
Question–Answer
Evaluation

Automatically generated
data enriched by human
annotators

Audio–
Visual

Audio–Visual
LLM [46] 2023 7B,

13B Yes
CLIP [26] and CLAP to extract visual
and audio features, respectively,
projected into the LLM hidden space

Video-QA,
Audio–Visual-QA, audio
captioning

custom dataset, part of
the LLaVA dataset, part
of Valley dataset

Macaw-LLM [47] 2023 7B Yes

Unimodal feature extraction,
alignment module to align each
modality feature before feeding the
LLM

Image/video
understanding,
visual-and-audio question
answering

COCO [27],
Charades [48],
AVSD [49]

This work classifies the proposed solutions according to the type of supported inputs
as follows:

• Vision–language LLMs, which handle combinations of images and text;
• Video–language LLMs, which are capable of automatically recognizing and interpret-

ing video content as a stream of visual and textual sources;
• Audio–visual LLMs, which combine acoustic and visual information together.

To encode multimodal content, the most established approaches envisage the use
of pre-trained vision models to extract textual information from videos and then format
them as prompts for LLMs to generate responses, or the combination of LLMs with pre-
training or fine-tuning strategies of vision/acoustic/time series models to create a unified
representation. Most recent studies mainly focus on the latter approach.

State-of-the-art vision–language LLMs (e.g., [11,28]) leverage constrastive pre-training
on image–text pairs to capture cross-modality relations. They are trained to align associated
images and text together in a unified embedding space and are then fined-tuned for the
Visual Question Answering task. Given an image, the LLM can be instructed in natural
language to predict the most relevant text snippets conditioned to both downstream task
and visual content.

Video–language LLMs adopt the following pre-training approaches to interpret video
content [50]:

• Frame-based methods, which handle each video frame independently using various
visual encoders and image resolutions;

• Temporal encoders, which treat videos as cohesive entities, emphasizing the temporal
elements of the content [51].

Commonly, video–language models are not fine-tuned for a specific given task but are
rather used in a zero-shot setting. Unlike Merlin [41] and VTimeLLM [42], Video-LLaVA [12]
handles both videos and images as input, generating a unified video–text–image representation.

Similar to vision–language models, audio–visual LLMs align and combine different
modalities, including the audio stream, to understand video and answer spoken questions.

3. Task and Dataset Description

The task of this study is the recognition of emotional reactions in videos. For this
research, the Hume-Reaction dataset, a large-scale, multimodal dataset designed explicitly
for the Emotional Reactions Sub-Challenge (MuSe-Reaction) [5], was employed. The
dataset is notable for its extensive collection of naturalistic emotional reactions. The dataset
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annotations correspond to the intensity scores (ranging from 0 to 1) of several emotions.
Thus, the problem can be formulated as a multi-regression problem, where the goal is to
predict the intensity scores of each involved emotion.

These scores are self-annotated by video subjects, and they relate to seven differ-
ent emotions: Adoration, Amusement, Anxiety, Disgust, Empathic Pain, Fear, and Surprise.
This set of emotions may differ from previously predefined sets of basic emotions, e.g., the
Paul Ekman categorization [52], because they were specifically designed by the dataset au-
thors to better represent the reactions elicited by the video subjects in the dataset. However, the
approaches presented in this work can be straightforwardly extended to other emotion types.

The Hume-Reaction dataset is notable for its extensive collection of naturalistic emo-
tional reactions. It comprises recordings from 2222 subjects, amounting to over 70 h of
data. It also includes audio and video recordings, capturing the subjects’ vocal and facial
reactions while reacting to an unknown short video clip. All data samples were gathered in
an uncontrolled environment, with subjects recording their responses in diverse at-home
settings. These settings introduce a variety of noise conditions, making the dataset robust
for real-world applications. After viewing each trigger video clip, each recorded subject
reported the emotions they experienced and rated the intensity of each emotion. These
self-reported data serve as the ground truth for training and evaluating emotion recognition
models. For each selected emotion, subjects rated the intensity on a scale from 0 to 1.

The dataset is divided into three different splits:

• A training set made of 15,806 samples from 1334 different human subjects, for a total
of 51 h of video recordings. This split was employed in our experimentation to train
our models.

• A development set made of 4657 samples from 444 different human subjects, for a total
of almost 15 h of video recordings. This split was employed in our experimentation to
evaluate the proposed approaches.

• A private test set made of 4604 samples from 444 different human subjects, for a total
of almost 15 h of video recordings. Labels of this split are not publicly available. Thus,
this split was not used in this research.

A detailed analysis of the dataset’s actual scores reveals that the dataset covers the
entire spectrum of intensity for each emotion, from 0 to 1. However, there are substantial
differences in the average value of the scores for each emotion. Table 2 reports each
emotion’s average ground truth score. This variability in average scores reflects the diverse
emotional expressions and intensities captured in the dataset, adding an additional layer of
complexity to the prediction task.

Additionally, Figure 1 shows the probability density functions of all emotion scores
annotated in the dataset generated by a Gaussian Kernel Density Estimation. They all
exhibit a bimodal distribution, featuring significant peaks around zero and one, indicating
distinct clusters of low and high intensities within the dataset. In detail, all emotions show a
higher peak of around 0, except for amusement and surprises, which have a higher density
of around 1.

Table 2. Ground truth average scores (± standard deviation) for each emotion.

Emotion Average Scores ± Std

Adoration 0.3218 ± 0.3612
Amusement 0.6204 ± 0.3669
Anxiety 0.3431 ± 0.3245
Disgust 0.2432 ± 0.2866
Empathic Pain 0.2152 ± 0.3032
Fear 0.2824 ± 0.3363
Surprise 0.5307 ± 0.3219
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Figure 1. Probability density function of all emotions in the dataset generated by a Gaussian Kernel
Density Estimation.

4. Methods

Our methodology involves three main approaches: (1) Video-LLaVAquerying, i.e., direct
querying of Video-LLaVA [12] to obtain the emotional reaction intensities (see Section 4.1);
(2) Video-LLaVAprompting, i.e., probing with fine-tuning on the embeddings produced by
Video-LLaVA [12] (see Section 4.2); and (3) VIPER-VATF [9], i.e., integration of textual
features extracted from generated video descriptions into a state-of-the-art transformer-
based architecture (see Section 4.3).

4.1. Direct Querying of MLLM

The current study uses Video-LLaVA [12], a state-of-the-art Large Language Model
for video understanding, to query the emotion scores directly. The model is prompted with
a specific question to assess the intensity of each of the seven emotions in the video. The
prompt was carefully designed to elicit detailed responses about the emotional content of
the videos:

"Can you assign a score between 0 and 1 to each of these emotions based on
what is expressed by the subject in the video: adoration, amusement,

anxiety, disgust, emphatic pain, fear and surprise?"

4.2. Probing Network

Multimodal LLMs are complex systems with many parameters, making them chal-
lenging to train from scratch. One effective strategy to leverage their capabilities without
extensive retraining is the use of probing networks. Probing involves fine-tuning a small
set of additional parameters, typically linear layers, to adapt the model for a specific task.
This approach is computationally efficient and allows us to extract useful information from
the pre-trained embeddings of the LLM.

In our experiment, a probing strategy has been applied to Video-LLaVA [12] by fine-
tuning a small regressor on the model’s embeddings. Figure 2 schematizes this approach.
First, Video-LLaVA is used to process the entire video sequence. The Video-LLaVA [12]
encoder was frozen throughout the process to preserve the pre-trained general knowledge
while limiting the computational time and resources needed. Moreover, since this MLLM
does not employ any special token to represent the input sequence, average pooling is
applied to all output tokens to obtain a final video representation. The probing network
comprises two linear layers with an activation function between them. The final layer of
the probing network ends with a neuron for each emotion, to which a sigmoid function
is applied to obtain a score between 0 and 1 for each one. Finally, this probing network is
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trained as a regressor to predict the emotion scores based on the embeddings provided by
Video-LLaVA [12].

Additionally, we employ two different prompts during the embedding extraction
phase to examine their impact on the performance of the probing network. The first prompt
is more generic and asks for a simple video description:

"Describe the video."

The latter prompt is more specific and asks to focus on the emotions:

"Describe the reaction of the subject in the video."

Video-LLaVA

Probing Network

Average Pooling

Video Prompt

= finetuned

= frozen

Sigmoid

Activation Function

Linear layer

Linear layer

Figure 2. Sketch of the probing pipeline. Video-LLaVA produces meaningful video embeddings
through token average pooling, to which a probing network is applied to predict emotion scores. The
circle on the right side focuses on the internal structure of the probing network.

4.3. Integrating MLLM-Generated Description Features into a Transformer-Based Architecture

This approach generates textual descriptions of the videos using Video-LLaVA [12]
with the same prompts employed in the probing strategy. These descriptions are then
used to extract textual features, which were integrated into a state-of-the-art multimodal
architecture that combines visual, acoustic, and textual information.

Figure 3 shows how textual features from Video-LLaVa [12] are integrated. First, it
generates detailed textual descriptions for each video. These descriptions aim to capture the
emotional nuances expressed by the subjects in the videos. Then, a text embedding model,
i.e., RoBERTa, extracts meaningful textual features from the generated descriptions. These
embeddings capture semantic information relevant to the emotions. Subsequently, the
extracted textual features are integrated into an existing multimodal framework, namely
ViPER [9], whose architecture is specifically designed to leverage visual, acoustic, and tex-
tual features to address the video emotion recognition task. This integration is achieved by
replacing the textual embeddings produced by ViPER [9] with those extracted from Video-
LLaVA-generated texts. Notably, Video-LLaVA [12] creates a single textual description for
the entire video, whereas ViPER [9] exploits frame-level representations. To inject the new
textual embeddings into the existing ViPER [9] framework, the new textual embedding is
replicated to enrich each ViPER [9] multimodal token.

We also explore an alternative approach where, instead of using Video-LLaVA [12] to
describe the entire video, LLaVA [11] is used to describe individual video frames separately.
The aim is to enrich each multimodal token with a different textual embedding tailored
to the specific frame rather than replicating the same embedding across all tokens. This
method provides us with a more granular alignment of textual and visual information,
potentially enhancing the model’s ability to capture frame-specific emotional nuances. A
sketch of this approach is depicted in Figure 4.
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Figure 3. Integration of Video-LLaVA [12] textual features into the state-of-the-art ViPER [9] architecture.
First, the entire video is passed as input to the Video-LLaVA [12] model. This MLLM produces a unique
description that is encoded and concatenated to each input token of the Perceiver module of ViPER [9].
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Figure 4. Integration of LLaVA textual features into the state-of-the-art ViPER [9] architecture. The
video is sampled to extract 32 equally spaced frames, used to feed the LLaVA model. Then, it produces
a different description for each frame. Finally, these descriptions are encoded and concatenated to the
corresponding input token of the Perceiver module of ViPER [9].
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5. Experimental Results

This section describes the empirical evaluation of the proposed approaches for emotion
recognition. We performed quantitative (Section 5.2) and qualitative (Section 5.3) analyses
to assess the impact of LLMs.

5.1. Experimental Setup

The experiments were executed on a machine equipped with an 18-core Intel Core
i9-10980XE processor, an Nvidia A6000 GPU, and 128 GB of RAM. We chose n = 32
equidistant frames from each video, including the first and last frames. Both LLaVA and
Video-LLaVA were used with default settings to perform inference. The probing network
and the Perceiver module of ViPER [9] were fine-tuned for using the AdamW optimizer
and the Mean Squared Error (MSE) as loss function. The probing network was trained for
a maximum of 50 epochs using a learning rate equal to 10−4, while the Perceiver module
was fine-tuned for a maximum of 20 epochs using a learning rate equal to 10−5.

5.2. Quantitative Results

Table 3 presents the performance of the proposed approaches for video emotion recog-
nition, evaluated using the mean Pearson correlation [53] among all involved emotions.
The first half of the table reports the dataset author’s baselines and original ViPER [9]
results. The second half shows our querying, probing, and integration results exploiting
video and visual LLMs.

The proposed methods involving Video-LLaVA [12] and LLaVA [11] show varying
levels of effectiveness:

• Querying Video-LLaVA: Directly querying Video-LLaVA [12] for emotion scores
resulted in a mean Pearson correlation of 0.0937, which is lower than all baselines,
indicating limited effectiveness for this approach. Additionally, it was observed that
the generated text often used the same exact score value or a limited range of values
for some emotions, e.g., the score 0.4 appears 2444 times out of 4657 in the Anxiety
predictions. This suggests that text generation in a zero-shot fashion may be unsuitable
for regression tasks, as it lacks the precision required for accurate scoring across a
continuous range.

• Probing Video-LLaVA: Fine-tuning with probing strategies showed improvements,
with mean Pearson correlations of 0.2333 for Prompt 1 and 0.2351 for Prompt 2.
Although these scores did not surpass the baselines, they highlighted the potential of
probing strategies. Additionally, this result indicates that the prompts used, whether
general or specific for emotion recognition, do not greatly impact the performance.
We also studied the impact of the employed activation function within the probing
network. Table 4 reports the results obtained using seven different activation functions
while adopting Prompt 2. Noteworthy is that the variation in performance as the
activation function varied was very limited, i.e., from 0.2315 to 0.2353. However, the
ReLU-based functions achieved a slightly superior result.

• Integrating Video-LLaVA textual features: Integrating Video-LLaVA-generated textual
features into the ViPER-VATF [9] framework showed competitive performance, with
mean Pearson correlations of 0.3004 for the general prompt and 0.3011 for the specific
prompt, closely matching the performance of the original ViPER-VATF [9]. If the results
are broken down by observing each emotion separately, these approaches surpassed
the classical ViPER-VATF [9] for specific emotions. Specifically, using Prompt 1 yielded
better performance for Anxiety and Empathic Pain, while Prompt 2 performed better
on Adoration, Anxiety, and Surprise. On the other hand, the CLIP-based approach
achieved the highest results in Amusement, Disgust, and Fear. Table 5 reports the
breakdown results. Furthermore, we compared the impact that textual, acoustic and
FAUs features had when combined with visual ones. The results are reported in Table 6.
It is important to note that the textual features extracted from Video-LLaVA [12],
although we did not have a contribution at the level of the FAU features, always
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brought a benefit when injected into the model; this is in contrast to the acoustic ones,
which occasionally did not improve or even worsened the performance of the model.

• Integrating LLaVA textual features: Using LLaVA [11] to describe video frames sepa-
rately and integrating these frame-specific textual features into the ViPER-VATF [9]
framework resulted in a mean Pearson correlation of 0.2895, indicating the viability of
this alternative approach. However, integrating Video-LLaVA [12] textual was still
better (up to 0.3011 vs. 0.2895).

Table 3. Mean Pearson correlations achieved by proposed methods. The higher result is highlighted
in boldface.

Model Mean Pearson
Correlation

BaselineFAU 0.2840
BaselineVGGFace2 0.2488
ViPER-V 0.2712
ViPER-VATFCLIP 0.3025

Video-LLaVAquerying 0.0937
Video-LLaVAprobing1

0.2333
Video-LLaVAprobing2 0.2351
ViPER-VATFVideo−LLaVA1

0.3004
ViPER-VATFVideo−LLaVA2 0.3011
ViPER-VATFLLaVA 0.2895

Table 4. Activation function impact in the probing network. Higher result is highlighted in boldface.

Activation
Function

Mean Pearson
Correlation

Linear 0.2338
ReLU 0.2351

Leaky ReLU 0.2353
Tanh 0.2332

Sigmoid 0.2343
GELU 0.2315
ELU 0.2326

Table 5. Single-emotion Pearson correlation depending on the textual features employed in the
ViPER-VATF [9] approach. The higher result, separately for each emotion, is highlighted in boldface.

Textual
Features

Mean Pearson Correlation
Adoration Amusement Anxiety Disgust Empathic Pain Fear Surprise Average

CLIP 0.2575 0.3651 0.3294 0.2755 0.2824 0.3190 0.2890 0.3025
Video-LLaVA1 0.2575 0.3646 0.3303 0.2632 0.2886 0.3122 0.2865 0.3004
Video-LLaVA2 0.2624 0.3631 0.3297 0.2708 0.2763 0.3155 0.2918 0.3011

Table 6. Ablation study on different modalities.

Image Audio Text FAU Mean Pearson Correlation

✓ - - - 0.2712
✓ ✓ - - 0.2748
✓ - ✓ - 0.2758
✓ - - ✓ 0.2978
✓ ✓ ✓ - 0.2758
✓ - ✓ ✓ 0.3011
✓ ✓ - ✓ 0.2924
✓ ✓ ✓ ✓ 0.3011
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5.3. Qualitative Analysis

To better understand the performance differences between the ViPER [9] models based
on CLIP and those based on Video-LLaVA [12], we conducted a qualitative analysis by
discretizing the predictions and ground truth (GT) into bins of 0.1 range. This was done
separately for each emotion. The confusion matrices reveal how often predictions fell
within certain ranges of the true emotion scores. Examining these matrices allows us to
observe prediction patterns and identify areas where each approach excelled or fell short.

A key observation from the confusion matrices is the range of prediction values:

• ViPER-VATFCLIP: The predictions are more concentrated near the GT average value.
This indicates that the CLIP-based solution is more focused on predicting scores that
are close to the average GT value. It suggests a tendency to overfit on the average
value, making it more accurate for samples whose scores are near the mean.

• ViPER-VATFVideo−LLaVA: The predictions cover a wider range of values. This means
that the LLM-based solution is better at predicting scores that can be considered
outliers with respect to the average value. These outliers include cases where an
emotion is particularly evident or notably missing.

Figures 5 and 6 show the confusion matrices obtained using the original ViPER-
VATF [9] architecture for the Adoration and Empathic Pain emotions, respectively. Notably,
the predictions focus in the range [0.2, 0.5] for Adoration and [0.1, 0.4] for Empathic Pain,
with just a few predictions in the adjacent bins. Figures 7 and 8 show the confusion matrices
obtained by integrating the textual features from Video-LLaVA [12] into the ViPER-VATF [9]
architecture for the same emotions. It can be observed that the majority of predictions fall
in a range of values wider with respect to the previous case, i.e., [0.1, 0.6] for Adoration and
[0.0, 0.5] for Empathic Pain.

Figure 5. ViPER-VATF [9] based on CLIP [26] textual features prediction for the Adoration emotion.
The average prediction is 0.3737 ± 0.0867, with a minimum prediction score of 0 and a maximum
of 0.5500.
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Figure 6. ViPER-VATF [9] based on CLIP [26] textual features prediction for the Empathic Pain
emotion. The average prediction is 0.2088 ± 0.0669, with a minimum prediction score of 0.0812 and a
maximum of 0.5513.

Figure 7. ViPER-VATF [9] based on Video-LLaVA [12] textual features prediction for the Adoration
emotion. The average prediction is 0.3465 ± 0.1387, with a minimum score of 0 and maximum score
of 0.6289.
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Figure 8. ViPER-VATF [9] based on Video-LLaVA [12] textual features prediction for the Empathic
Pain emotion. The average prediction is 0.2372 ± 0.1099, with a minimum score of 0.0369 and a
maximum score of 0.5848.

The wider range of predictions in the Video-LlaVA-based approach suggests its superior
ability to detect and accurately score emotions that deviate significantly from the mean. This
capability is particularly valuable in scenarios where certain emotions are either strongly
expressed or barely present, which is often critical for nuanced emotional understanding.

In summary, while the CLIP-based solution shows robustness in predicting common
emotional expressions, the LLM-based solution offers a more comprehensive approach
capable of recognizing and scoring a wider variety of emotional intensities, including
extreme cases. This qualitative analysis underscores the potential for combining both
approaches to achieve a more balanced and accurate emotion recognition system.

6. Discussion

Current research in the field of emotion recognition has largely explored the use of
transformers. However, training such models requires a large set of high-quality annotated
examples and is potentially costly. This work explores the parallel direction of using pre-
trained Multimodal Large Language Models. Due to the specificity of the ERI estimation
task, the capabilities of Multimodal LLMs in a zero-shot setting are questionable. Our
results show that querying Video-LLaVA [12] directly for emotion scores resulted in a mean
Pearson correlation of 0.0937, lower than all baselines, indicating limited effectiveness for
this approach. However, fine-tuning with probing strategies showed improvements, with
mean Pearson correlations of 0.2333 for Prompt 1 and 0.2351 for Prompt 2, highlighting the
potential of probing strategies despite not surpassing baselines. Additionally, integrating
Video-LLaVA-generated textual features into the ViPER-VATF [9] framework showed
competitive performance, with mean Pearson correlations of 0.3004 for the general prompt
and 0.3011 for the specific prompt, closely matching the performance of the original ViPER-
VATF [9] (0.3011 vs. 0.2895).

6.1. Multimodal LLM vs. Transformers

A strategy based on Multimodal LLMs has several advantages with respect to tradi-
tional techniques such as ViPER [9], which typically utilizes the CLIP model to align video
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frames with predefined textual templates. Our approach replaces the CLIP model with the
Video LLM, obviating the need to pre-define textual templates to match frames. Moreover,
this method enhances the system’s extensibility, as the inclusion of new emotions in the
recognition task is automatically handled by Video-LLaVA [12], eliminating the need for
additional template redefinitions. This flexibility simplifies adapting the model to recognize
new emotions, improving its scalability and applicability to a broader range of emotional
contexts. Additionally, the integration of Video-LLaVA [12] textual features surpassed
the classical ViPER-VATF [9] for specific emotions such as Anxiety and Empathic Pain,
indicating a robust performance for extreme emotion cases without any ad hoc model
fine-tuning.

6.2. Application Scenarios

These preliminary results support the application of video–language LLMs in a variety
of real-life application contexts, including item recommendations on multimedia platforms,
sentiment analysis in the financial domain, healthcare monitoring, and engagement analysis
for learning analytics applications.

6.3. Limitations

The main limitations of the present work are (1) the limited adaptability of existing
MLLMs such as Video-LlaVa [12], which, for example, hinder the application of in-context
learning strategies; (2) the sensitivity of the proposed approach to the presence of bias
and to data overfitting; and (3) the limited accountability and interpretability of the pro-
posed solutions.

7. Conclusions and Future Works

The empirical results shown in this study confirm the potential of MLLMs in address-
ing complex video understanding. Pre-trained Multimodal LLMs allow us to achieve
interesting performance in detecting a broader range of reaction scores despite leaving
room for improvements. Specifically, integrating Video-LLaVA [12] textual features into
the ViPER-VATF [9] framework resulted in a mean Pearson correlation of up to 0.3011,
demonstrating its effectiveness. Additionally, the qualitative analysis highlights a key
advantage of the new approach: it predicts a wider intensity range for every emotion
compared to the original ViPER [9]. This means that the Video-LLaVA-based approach
is better at recognizing and scoring extreme emotion cases, which is critical for nuanced
emotional understanding. However, this study also highlights several limitations, such
as the need for large ad hoc training datasets for model fine-tuning and challenges in
integrating multimodal modalities.

As future work, we plan to extend the scope of our analysis to other emotion recogni-
tion scenarios, explore the use of audio–language LLMs, and integrate LLMs into diverse
transformer-based architectures.
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