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Abstract: The proliferation of IoT services has spurred a surge in network attacks, heightening cyber-
security concerns. Essential to network defense, intrusion detection and prevention systems (IDPSs)
identify malicious activities, including denial of service (DoS), distributed denial of service (DDoS),
botnet, brute force, infiltration, and Heartbleed. This study focuses on leveraging unsupervised
learning for training detection models to counter these threats effectively. The proposed method
utilizes basic autoencoders (bAEs) for dimensionality reduction and encompasses a three-stage
detection model: one-class support vector machine (OCSVM) and deep autoencoder (dAE) attack
detection, complemented by density-based spatial clustering of applications with noise (DBSCAN)
for attack clustering. Accurately delineated clusters aid in mapping attack tactics. The MITRE
ATT&CK framework establishes a “Cyber Threat Repository”, cataloging attacks and tactics, enabling
immediate response based on priority. Leveraging preprocessed and unlabeled normal network
traffic data, this approach enables the identification of novel attacks while mitigating the impact of
imbalanced training data on model performance. The autoencoder method utilizes reconstruction
error, OCSVM employs a kernel function to establish a hyperplane for anomaly detection, while
DBSCAN employs a density-based approach to identify clusters, manage noise, accommodate diverse
shapes, automatically determining cluster count, ensuring scalability, and minimizing false positives
and false negatives. Evaluated on standard datasets such as CIC-IDS2017 and CSECIC-IDS2018,
the proposed model outperforms existing state of art methods. Our approach achieves accuracies
exceeding 98% for the two datasets, thus confirming its efficacy and effectiveness for application in
efficient intrusion detection systems.

Keywords: autoencoder; DBSCAN; support vector machine; unsupervised learning; cloud security

1. Introduction

The continuous growth of the Internet has led to numerous cybersecurity challenges,
necessitating robust solutions to protect digital infrastructures. Intrusion detection systems
(IDSs) play a crucial role by meticulously analyzing data streams such as network packets
for signs of threats [1]. Positioned as the second line of defense after firewalls, as illustrated
in Figure 1, IDSs utilize advanced algorithms to identify anomalies, facilitating prompt
response from administrators. Beyond threat detection, Figure 2 illustrates that IDSs offer
real-time monitoring, detailed analysis, instant alerts, and administrative controls, enabling
organizations to stay vigilant against evolving cyber threats. In essence, an IDS is an
essential component of modern cybersecurity, fortifying networks against relentless attacks
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in an era of escalating digital risks [2]. The proposed system architecture showcases col-
laborative efforts enhancing cybersecurity, with machine learning (ML) and deep learning
(DL) pivotal in anomaly detection.
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1.1. Motivation

In 2023, Douglas AutoTech Corp, Hopkinsville, KY, USA, a prominent automotive
manufacturer, upgraded its entire production line to utilize IoT technology in a smart
factory setup. This transformation was intended to boost efficiency and lower expenses by
linking machinery, sensors, and production systems into a centralized IoT network. While
the transition yielded substantial operational improvements, it also introduced several
cybersecurity vulnerabilities. AutoTech Corp soon found that its IoT network had become
a prime target for malicious actors using increasingly sophisticated tactics, prompting the
need for strong cybersecurity measures to protect its operations.

The Bitdefender 2023 IoT Security Landscape Report underscores a significant event in
2023: a large-scale DDoS attack targeting a smart home network. The attack took advantage
of weaknesses in different IoT devices, including security cameras, smart thermostats, and
connected appliances. This attack interrupted the regular functioning of these devices,
causing considerable inconvenience and posing a potential security threat to users. The
attackers employed a botnet made up of compromised IoT devices to initiate the surge
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of malicious traffic. The report provides details on multiple attack vectors such as brute
force, spoofing, and web-based attacks. These tactics are becoming increasingly common
as the number of connected devices continues to rise. These incidents highlight the urgent
requirement for strong security measures and ongoing monitoring in IoT environments to
protect against emerging cyber threats.

1.2. Problem Statement

Supervised models are proficient at identifying known attacks; however, they depend
significantly on the attack patterns learned during their training phase. Consequently, they
find it challenging to detect unknown or emerging attacks when such threats manifest
in network traffic. Special attention is devoted to novel attacks commonly known as
zero-day attacks and false negatives, which can lead to undetected security breaches,
heightened vulnerability, and damage to reputation [3,4]. To overcome this limitation, we
have implemented an unsupervised learning approach that can detect unknown, emerging,
or zero-day attack vectors. This approach, which is trained on imbalanced and unlabeled
data, is capable of identifying abnormal behavior in network traffic without the need for
pre-labeled attack patterns. Unsupervised learning models provide significant benefits
for IDSs, especially in situations where labeled data are limited or unavailable. Unlike
supervised learning, which relies on labeled datasets for training, unsupervised learning
can function effectively using unlabeled data. This is particularly advantageous in the
context of IDS, where acquiring a complete and precisely labeled dataset encompassing all
possible attack types can be difficult and expensive.

Leveraging these techniques strengthens cybersecurity, enabling real-time risk detec-
tion and mitigation. The quality of training data profoundly affects unsupervised anomaly
detection’s efficacy, emphasizing the need for diverse datasets to address traffic feature
variations [5–8]. Neglecting complex data patterns can impair detection. Addressing these
challenges enhances system robustness, aiding proactive cybersecurity measures against
emerging threats in the digital realm.

1.3. Expected Outcomes

The proposed method initiates by employing dimensionality reduction through a
basic autoencoder (bAE). This technique aims to extract encoded features from individual
data categories, enhancing the efficiency of subsequent processing and analysis [9]. In
its role as a stage 1 detector, the one-class support vector machine (OCSVM) utilizes the
hyperparameter ν to regulate the trade-off, acting as an upper limit on the proportion of
anomalies included in model training from normal network traffic.

The kernel function is designed to establish a hyperplane that effectively segregates
data from the origin [10,11]. Anomalies are identified when new samples deviate to the
opposite side of the hyperplane, thereby yielding a negative value in the decision function
for these outlier points [12].

The OCSVM accurately classifies normal traffic, supplying essential data for the dAE
neural network, forming the foundation of a stage 2 detector for effective anomaly detection.
The dAE captures essential features for model training from normal network traffic. By
computing the disparity between input and output, a detection threshold is set, ensuring
precise discrimination between normal and abnormal traffic [13].

After passing through the OCSVM and dAE, abnormal traffic undergoes processing
with DBSCAN, which serves as a stage 3 detector, forming clusters based on feature density.
DBSCAN’s key parameters, such as epsilon (ε) and MinPts, influence cluster shape and
density, providing the ability to identify dense clusters, handle noise, adapt to various
shapes, automatically determine cluster count, scale effectively, and reduce false negatives
and false positives [14]. These accurately delineated clusters can help in mapping attack
tactics for intrusion prevention. Using the MITRE ATT&CK framework [15], we establish
the “Cyber Threat Repository” to catalog attacks, tactics, and mitigation strategies. Detected
attacks trigger immediate responses based on priority levels.
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The proposed methodology focuses on employing OCSVM + dAE + DBSCAN for
outlier detection. It entails analyzing the disparity between the input and output of the
detection model and assessing density within the clustering model. Our novel approach
involves reducing dimensions, training models, detecting anomalies, clustering them, and
ultimately preventing any identified anomalies.

During dimensionality reduction, the basic autoencoder (bAE) extracts features and
captures normal traffic data without supervision, resulting in unique patterns within
the latent space features. In one-class SVMs, the hyperparameter “nu” (ν) governs the
balance between capturing normal instances and minimizing margin violations or support
vectors [10]. In anomaly detection, when test data are input, samples that fall on the wrong
side of the hyperplane are identified as anomaly points. Anomalous points are determined
by a decision function that yields a negative value [16]. The dAE neural network proceeds
to reconstruct the input data via encoding–decoding, generating an average reconstruction
error employed as the detection threshold [17]. The output of normal traffic from the
OCSVM serves as input, and the mean squared error (MSE) is calculated to determine
the reconstruction error. If this error surpasses the established threshold, the traffic is
flagged as abnormal; otherwise, it is classified as normal [18]. Following this, abnormal
traffic from both OCSVM and dAE is subjected to DBSCAN processing, which identifies
clusters based on packet feature density. The critical parameters of DBSCAN, epsilon (ε)
and MinPts, affect both the shape and density of the clusters [14]. Upon detection of an
attack by the intrusion detection module, the intrusion prevention module is triggered to
mitigate the intrusion and take necessary actions. Integrated with the MITRE ATT&CK
threat intelligence framework [19], the prevention module implements resolution based on
priority if the attack is already in the cyber threat repository database. However, for new
attacks not in the database, cybersecurity personnel address the issue accordingly.

1.4. Key Contributions

1. We introduce a novel hybrid algorithm rooted in deep learning principles. It initiates
with raw traffic data, utilizing autoencoder for dimensionality reduction.

2. Our hybrid algorithm employs a one-class SVM and a deep autoencoder neural
network to distinguish between non-attack and attack data. Identified attacks undergo
processing using DBSCAN to form precise attack clusters.

3. Upon detection of attacks, the MITRE ATT&CK-based prevention system is activated
to respond accordingly.

4. Validation entails assessing enhanced metrics such as accuracy, precision, specificity,
recall, F-measure, false negative rate (FNR), prevention rate, priority-based blocking
rate, and success rate on two datasets, namely, CSECIC-IDS2018 and CIC-IDS2017.

This research article unfolds as follows: Section 1 covers intrusion detection basics
and prerequisites. Section 2 explores the current literature. Section 3 describes the datasets
utilized, Section 4 details our novel method, while Section 5 scrutinizes the results as well
as the comparative analysis with state-of-art methods. Finally, Section 6 concludes our
paper, offering insights and suggesting future research directions.

2. Related Works

Intrusion detection systems (IDSs) are classified into host-based (HIDS) and network-
based (NIDS) types. An HIDS analyzes host data like operating system logs, while an NIDS
monitors network traffic for detecting malicious activities [20]. This study focuses on NIDSs,
due to their crucial role in network security. Supervised IDS methods, necessitating labeled
datasets, face challenges with deep learning’s data hunger, especially in imbalanced data
scenarios. A solution is the semi-supervised anomaly-based NIDS, trained solely on normal
data [1,21]. This method quantifies abnormality levels, thus identifying potential anomalies
by elevated anomaly scores, enhancing adaptability and effectiveness in threat mitigation.

Supervised learning in abnormal traffic detection deploys machine learning algorithms
to classify data, identifying and flagging unusual patterns in the dataset [22,23]. Several
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researchers [24] have developed NIDSs based on machine learning and deep learning,
owing to their impressive performance.

Fan et al. in [25] presented the RF-SVM-IL framework for detecting DDoS attacks,
utilizing random forest (RF) and support vector machine (SVM) for classifying dual traffic
data. They incorporated an incremental learning (IL) algorithm to sift through extra input
samples, thereby lessening computational burden and improving the model’s capacity to
precisely categorize traffic, especially under high attack volumes. However, the article notes
that while SVMs can manage high-dimensional data, their training space and computational
complexity increase significantly with larger datasets. This results in limited processing
capacity for handling large-scale data.

Yaras S et al. [26] introduces a hybrid deep learning algorithm that integrates convolu-
tional neural network (CNN) and long short-term memory (LSTM) models for detecting
DDoS attacks. The methodology includes preprocessing and feature selection on the CI-
CIoT2023 and TON_IOT datasets, followed by testing the algorithm in both binary and
multiclass scenarios. The dataset comprises diverse IoT attacks collected from real-world
environments. The algorithm achieved impressive accuracy rates: 99.995% for detecting at-
tacks and 99.96% for identifying attack types with CICIoT2023, and 98.75% with TON_IOT.
This approach offers advantages by harnessing the capabilities of both CNNs and LSTM,
resulting in superior detection accuracy and a minimal false positive rate. However, em-
ploying extensive datasets amplifies both training and testing durations. Future avenues
include refining algorithm parameters through metaheuristic techniques and streamlining
training processes to build efficient, cost-effective intrusion detection systems. The study
makes a substantial contribution to the literature by establishing a benchmark for future
research in the field.

Harahsheh K et al. [27] presents a hybrid feature selection approach tailored for IoT envi-
ronments, utilizing the InSDN dataset. The approach includes multiple stages: preprocessing
the data, reducing dimensions, selecting features, evaluating models, and incorporating a
caching mechanism to improve efficiency. Random forest is utilized for both ranking features
and detecting anomalies. The study bases its analysis on the InSDN dataset, which comprises
343,889 records of normal and various attack traffic. The method achieves exceptionally high
accuracy (99.99%) at a minimal computational cost (0.8599 s) and effectively reduces the
feature set from 84 to 11, making it well suited for IoT environments with limited resources.
However, the method’s dependence on stable feature counts for caching could be problematic
if column content changes while the feature count remains constant. Future research will aim
to investigate the data within columns to overcome this limitation and further enhance feature
selection methods for improved accuracy and efficiency.

Javed A et al. [28] introduces a holistic approach to enhance intrusion detection sys-
tems (IDSs) in IoT environments. The authors employed the TON_IoT dataset, which
consists of 461,043 instances and encompasses various attack categories, simulating be-
haviors at the edge, fog, and cloud levels. The methods included feature scaling, label
encoding, chi-square for feature selection, and principal component analysis (PCA) for
feature extraction. The random forest algorithm was selected for its robustness in handling
continuous and categorical data, its capability to manage missing values effectively, and its
ability to parallelize computations. The proposed model attained a 99.99% accuracy with a
computational cost of 0.8599 s, utilizing only 11 features. Benefits include achieving high
accuracy and efficiency in environments with limited resources. However, the approach’s
applicability to diverse environmental conditions is restricted. Future research aims to
enhance the methodology by delving into column-specific data analysis, broadening the
range of attack types, and extracting additional network parameters from IoT devices.

Liao et al. in [29] devised an ensemble framework incorporating various autoencoders
(AEs) and generative adversarial networks (GANs). The framework integrates traditional
AE (tAE), variational AE (vAE), convolutional AE (cAE), convolutional variational AE
(cvAE), and a GAN. A weighted average ensemble aggregates anomaly scores derived from
multiple models’ reconstruction errors post-training. By comparing scores to a predefined
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threshold, samples are classified. Experimental results showcase superior performance
of the ensemble model over single models, prompting the collaborative use of multiple
detectors for anomaly identification. However, handling the complexity and computational
resources needed for ensemble methods can pose challenges.

Almaraz-Rivera J.G. et al. [30] introduces a network-based intrusion detection system
(IDS) designed to safeguard IoT networks against distributed denial-of-service (DDoS)
attacks. The methodology includes generating synthetic images using flow-level traffic
data from the LATAM-DDoS-IoT and Bot-IoT datasets and exploring both supervised
and self-supervised learning approaches. The findings reveal that in specific tests, self-
supervised learning outperforms supervised learning, demonstrating a 4.83% improvement
in F1-measure and a 14.61% increase in accuracy for multiclass protocol classification. The
article emphasizes the benefits of self-supervised learning, including its ability to elimi-
nate the requirement for extensive labeled data and its capacity for robust generalization.
However, it also acknowledges the challenges in generalizing, particularly in dynamic
threat landscapes with emerging attack types. Future research directions aim to refine
training frameworks for contrastive learning experiments and to delve deeper into visual
representations within cybersecurity domains.

Ansam Khraisat et al. [31] introduce a novel hybrid intrusion detection system that
integrates the C5.0 decision tree classifier and the one-class support vector machine (OC-
SVM) to improve detection accuracy and minimize false alarms. This hybrid approach
harnesses the advantages of both anomaly-based and signature-based detection meth-
ods. The techniques utilized include the stacking ensemble technique, which combines
multiple machine learning approaches to improve the effectiveness of intrusion detection
systems. The evaluation utilizes the Network Security Laboratory-Knowledge Discovery
in Databases (NSL-KDD) and Australian Defense Force Academy (ADFA) datasets, recog-
nized as benchmark datasets for intrusion detection. The proposed HIDS offers advantages
such as high detection accuracy and low false alarm rates, effective for detecting both well-
known intrusions and zero-day attacks. The system surpasses traditional IDS models by
leveraging the combined strengths of SIDSs (signature-based intrusion detection systems)
and AIDSs (anomaly-based intrusion detection systems). However, a notable drawback
is the risk of high false alarm rates, particularly in dynamic and evolving cyber-attack
environments. The authors propose future research directions that include refining the
feature selection process and integrating advanced attack detection techniques to further
enhance detection accuracy.

Shafin S.S. et al. [32] presents a deep learning-based detection system designed to
identify obfuscated memory malware (OMM), specifically tailored for resource-constrained
environments such as IoT devices. The system utilizes a hybrid architecture that integrates
convolutional neural networks (CNNs) and bidirectional long short-term memory (Bi-
LSTM) networks to manage the detection and classification of various types of obfuscated
memory malware (OMM). The study developed two models, CompactCBL and RobustCBL,
incorporating a structure consisting of a two-layer CNN followed by a two-layer Bi-LSTM
block. A thorough tuning of model parameters was carried out to optimize performance
while considering resource constraints. The models underwent evaluation using the CIC-
Malmem-2022 dataset, which encompasses diverse malware types such as ransomware,
spyware, and trojans. The proposed models demonstrate superior performance in terms of
detection accuracy and efficiency compared to existing methods. They are lightweight and
ideal for deployment on IoT devices, with the CompactCBL model especially notable for
its compact size of 577 kB. The study highlights challenges in attaining high accuracy for
detecting specific attack types within the OMM category. Future work will aim to improve
detection accuracy for specific attack types and unknown (zero-day) attacks by employing
semi-supervised and unsupervised learning models.

Ravi and Shalinie in [33] introduce an innovative security framework for intrusion de-
tection and mitigation in IoT networks, utilizing a semi-supervised learning approach. This
approach integrates labeled and unlabeled data to improve detection accuracy and enhance
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model robustness. The framework uses feature selection techniques that combine Pearson
correlation, rank-based chi-square, and score correlation to identify relevant features. It
then applies an extreme gradient ensemble boosting method to categorize attack types.
The framework underwent evaluation using the USNW-NB15, NSL-KDD, and CCIDS2017
datasets, recognized as standard benchmarks in intrusion detection systems. The proposed
method achieved high accuracy rates: 99.96% for USNW-NB15, 97.48% for NSL-KDD, and
99.93% for CCIDS2017. Its minimal computational complexity and high detection rate
make it well suited for real-time IoT security applications. Yet, challenges arise from the
potential misclassification stemming from the varied and dynamic nature of IoT network
traffic, compounded by the model’s dependence on the quality and representativeness of
labeled data. Future avenues for research encompass refining feature selection methodolo-
gies, incorporating advanced machine learning algorithms, and investigating blockchain
applications for decentralized security enhancements within IoT networks.

Li, Meng, and Au, in [34], present an approach to enhance collaborative intrusion
detection systems (CIDSs) in IoT environments through the application of semi-supervised
learning. The study aims to overcome the issue of insufficient labeled data by harnessing
unlabeled data. The DAS-CIDS system employs a semi-supervised learning algorithm
based on disagreements. This method enables the system to leverage large quantities of un-
labeled data to improve detection performance, minimizing the need for extensive human
intervention in the labeling process. The authors assessed the effectiveness of DAS-CIDS
through evaluations using simulated datasets and real-world IoT network environments,
focusing on intrusion detection efficacy and false alarm reduction. The key benefit of
DAS-CIDS lies in its automatic utilization of unlabeled data, thereby reducing the depen-
dence on expensive and labor-intensive labeled data acquisition. As a result, it achieves
enhanced detection performance and significantly lowers false alarm rates compared to
conventional supervised classifiers. The study highlights concern regarding the algorithm’s
applicability across various IoT environments and underscores the necessity for additional
testing to ensure its scalability and robustness. The authors propose investigating advanced
semi-supervised learning methods and improving the system’s ability to adapt to diverse
IoT environments. Furthermore, future research should consider integrating alternative
machine learning algorithms and enhancing the system’s scalability.

In the work [35], Kwon et al. present a framework named Cyber Threat Dictionary
(CTD), which maps attacks to defense mechanisms, aligning the MITRE ATT&CK matrix
with the NIST framework. The CTD comprises a search engine offering attack details and
solutions, along with a suggestion component for providing appropriate countermeasures.

The current studies offer promising approaches to IoT intrusion detection; however,
they also demonstrate significant shortcomings. Yaras et al. [26] achieve high accuracy us-
ing CNN and LSTM models but encounter extended training durations attributed to large
datasets. Harahsheh et al. [27] illustrate vulnerabilities in feature caching stability, affecting
consistency when there are changes in dataset content. Javed et al. [28] demonstrate signif-
icant accuracy using random forest, yet their approach is constrained in its adaptability
to various IoT environments. Liao et al. [29] exhibit superior performance through their
ensemble framework, yet they face difficulties in handling the complexity and computa-
tional resources necessary for effectively implementing ensemble methods. Almaraz-Rivera
et al. [30] face difficulties in achieving generalized self-supervised learning across new at-
tack types. Ansam Khraisat et al. [31] achieve high accuracy but still experience significant
false alarms in dynamic cyber-attack scenarios. Shafin S.S. et al. [32] encounter challenges
in achieving consistent accuracy in detecting OMM and zero-day attacks.

Considering earlier investigations, crafting an efficient intrusion detection and pre-
vention system (IDPS) requires tackling feature engineering for high-dimensional data
and choosing potent detectors. In this study, we present a pioneering method employ-
ing autoencoders (AEs) and three distinct anomaly detectors, enhancing IDPS efficacy in
identifying and mitigating potential security threats to network integrity.
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3. Dataset
3.1. CSECIC-IDS2018

In 2018, the Canadian Institute of Cybersecurity (CIC) collaborated with the Com-
munications Security Establishment (CSE) to develop the CSECIC-IDS2018 dataset [36].
Initially intended for evaluating intrusion detection research, it has evolved into a crucial
benchmark for assessing IDSs. This carefully curated dataset mirrors real-world cyber
threats and attacks, offering a range of scenarios for thorough analysis. Its importance
stems from its ability to simulate intricate network environments, enabling both academics
and practitioners to effectively assess and enhance intrusion detection systems. The dataset
was gathered over a span of ten days, encompassing 80 columns, seven attack families, and
fifteen distinct attack types. As shown in Table 1, it meets critical criteria such as overall
traffic volume, a variety of attack types, and thorough labeling. The simulated attacks
targeted an infrastructure consisting of 50 machines within an organization composed of
five departments, 420 machines, and 30 servers. The dataset contains detailed records of
network traffic and system logs for individual machines, utilizing CICFlowMeter-V3 to
extract 80 attributes. The CSECIC-IDS2018 dataset comprises ten CSV files, encompassing
16,232,943 instances and 80 features. The distribution of attacks is shown in Figure 3.

Table 1. CSECIC-IDS2018 dataset network traffic.

Class Type Count Total

Benign Benign - 13,484,708
DDoS HOIC 686,012 1,263,933

LOIC-UDP 1730
LOIC-HTTP 576,191

DoS Hulk 461,912 654,300
GoldenEye 41,508
Slowloris 10,990
SlowHTTPTest 139,890

Brute force FTP 193,360 380,949
SSH 187,589

Bot Bot - 286,191
Infiltration Infiltration - 161,934
Web Web 611 928

XSS 230
SQL Injection 87

Total instances 16,232,943
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3.2. CIC-IDS2017

The CIC-IDS2017 dataset, created by the Canadian Institute of Cyber Security (CIC) [36],
profiles intrusion traffic using a simulated attack scenario involving seven attack families.
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The testbed infrastructure was partitioned into an attack network and a victim network,
each equipped with standard devices such as firewalls, routers, switches, and a variety
of operating systems (including Linux, Windows, and Macintosh). The dataset empha-
sizes a wide range of attacks, anonymity, inclusion of protocols, comprehensive traffic
capture, network configuration details, metadata, labeled data samples, and diverse feature
characteristics. In contrast to the restricted attack categories found in KDDCUP99 and
NSL-KDD, the CIC-IDS2017 dataset encompasses a wider spectrum of attacks, including
DDoS, DoS, brute force, XSS, SQL injection, botnet activities, web attacks, and infiltration
attempts, as shown in Table 2. The dataset consists of 2,830,540 labeled flows, each contain-
ing 83 features categorized using the CICFlowMeter V4.0 tool, resulting in a dataset that is
high-dimensional, multiclass, and imbalanced.

Table 2. CIC-IDS2017 dataset network traffic.

Instance Class Number of Instances

Benign 2,359,087
DoS Hulk 231,072
PortScan 158,930
DDoS 41,835
DoS GoldenEye 10,293
FTP-Patator 7938
SSH-Patator 5897
DoS Slowloris 5796
DoS Slowhttptest 5499
Bot 1966
Web attack–brute force 1507
Web Attack–XSS 652
Infiltration 36
Web Attack–SQL injection 21
Heartbleed 11

4. Proposed Method for Intrusion Detection and Prevention

The proposed model for intrusion detection and prevention (IDP), which integrates
bAE + OCSVM + dAE + DBSCAN + ATT&CK, referred to as hybrid IDPS, has been
meticulously designed with a comprehensive structure encompassing key phases in the
realm of cybersecurity. The model’s framework includes traffic data preprocessing, feature
extraction, training the detection model, conducting anomaly detection, and clustering
and preventing attacks. This model adopts a hybrid approach, integrating a deep learning
algorithm that incorporates various techniques for enhanced cybersecurity measures.

In the dimensionality reduction phase, the basic autoencoder (bAE) is employed
to effectively reduce the number of dimensions. A one-class Support vector machine
(OCSVM) is utilized for detecting anomalies, providing a robust mechanism during the
training phase of the model. Additionally, the deep autoencoder (dAE) is employed for
identifying abnormal behavior, with a specific focus on minimizing false negatives. The
root mean square propagation (RMSP) algorithm serves as the optimization technique,
contributing to the efficiency of the overall model.

The model’s capacity for handling anomaly attacks is strengthened through the ap-
plication of the DBSCAN algorithm during the clustering phase. Moreover, prevention
strategies are integrated into the model, drawing on the insights and methodologies pro-
vided by the MITRE ATT&CK framework.

The architectural diagram of the proposed model, in Figure 4 further illustrates the
intricate structure that integrates various techniques for a robust cybersecurity solution.
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4.1. Data Preparation

The data preparation module has concentrated on three key segments:

1. Collecting data;
2. Preprocessing data;
3. Reducing dimensionality.

4.1.1. Data Collection

Data collection for intrusion detection systems (IDSs) involves consolidating raw data
from diverse sources, including network traffic and system logs. Integration of incident
information and external threat feeds enhances IDS capabilities. Despite challenges in
real-world adoption, systematic dataset generation addresses testing limitations. Datasets
like DARPA, KDD Cup 1999, NSL-KDD, ISCX IDS 2012, UNSW-NB15, CIC-IDS2017, and
CSECIC-IDS2018 support research, facilitating intrusion detection system evaluation. In
this research, raw data “rDATA” is derived from the CIC-IDS2017 and CSECIC-IDS2018
datasets, chosen for their contemporaneity and representation of real-world data.

4.1.2. Data Preprocessing

Data preprocessing is crucial post-collection, especially in machine learning. ISCX
offers datasets like CIC-IDS2017 and CSECIC-IDS2018 in CSV format, containing benign
and attack traffic. Normalization is vital due to undistributed histogram data, ensuring
uniform scale via Z-score standardization. Each data point’s Z-score (Zi) is calculated using
the mean (µ) and standard deviation (σ) of the dataset as expressed by the formula in
Equation (1):

Zi =
(x − µ)

σ
(1)
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4.1.3. Dimensionality Reduction

The preprocessed data, labeled as “prDATA” and comprising seventy-six features,
undergoes dimensionality reduction through the basic autoencoder (bAE) as depicted in
Figure 5. As a feature extraction technique, bAE systematically reduces dimensionality
while considering all features’ influence on the outcome. This process involves three
internal submodules: the encoder, decoder, and loss function. Together, they contribute to
extracting essential features, resulting in a condensed feature representation.
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The encoder transforms “prDATA” into a lower-dimensional “zDATA” using weights
W and biases b with an activation function f. Among activation functions, the rectified
linear unit (ReLU) is represented as max(0, prDATA), while the sigmoid activation function
is defined as in Equation (2):

Sigmoid =
1

(1 + ê(−prDATA))
(2)

ReLU and sigmoid introduce non-linearity into the model’s output. The decoder aims
to reconstruct the original input data “rcDATA” from “zDATA” using weights W and biases
b with another activation function “g”. The loss function, typically the mean squared error
(MSE), quantifies the disparity between “prDATA” and “rcDATA”. The reconstruction
formula is defined in Equation (3) as follows:

rcDATA = g
((

W ′ ∗ zDATA
)
+ b′

)
(3)

After dimensionality reduction, the features, now in “zDATA”, are ready for further
processing. These reduced-dimensional data points, derived from the latent space, are
crucial for subsequent analytical and modeling tasks.

4.2. Detection Stage 1: OCSVM

One-class support vector machine (OCSVM) is a distinctive method in one-class classi-
fication, focusing solely on a singular data class, unlike binary or multiclass methods [12].
After training, the model assesses whether a new sample belongs to the designated target
class. OCSVM operates in a high-dimensional kernel space F by transforming samples
from “zDATA” using a mapping function ϕ. The inner product within F is computed using
a kernel function k aiming to find a hyperplane that maximizes the separation between
data and the origin. OCSVM addresses a quadratic problem, formulating a hyperplane
with a weight vector w and margin ρ, allowing for soft margins via non-negative slack
variables ε. The hyperparameter ν controls the trade-off, acting as an upper limit on the
proportion of anomalies. In the OCSVM framework, w signifies the weight vector of the
hyperplane, and ρ represents the margin. The inclusion of non-negative slack variables ε
introduces flexibility by permitting some samples to extend beyond the hyperplane, soft-
ening the margin. The hyperparameter ν, constrained within (0, 1), plays a crucial role in
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balancing the trade-off and acts as an upper limit on the proportion of anomalies, affecting
the model’s sensitivity to outliers. The Gaussian kernel function, as employed in Equation
(4), effectively represents data in the kernel space, with the hyperparameter γ controlling
the shape of the decision boundary in the feature space. Following problem resolution, the
decision function f(x) is calculated for a given testing sample as in Equation (5):

k(x, y) = exp
(
−γ ∥ x − y ∥2

)
(4)

f (x) = Sgn(< w, θ(x) > f − ρ) (5)

Anomalies are identified, as illustrated in Figure 6, when new samples fall on the
incorrect side of the hyperplane, resulting in negative values in the decision function
for anomalous points, denoted as “zDATAab1”. Conversely, normal samples positioned
correctly on the hyperplane yield positive values in the decision function, denoted as
“zDATAn1”.
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4.3. Detection Stage 2: OCSVM + Deep Autoencoder (dAE)

The deep autoencoder (dAE) is pivotal in the second stage of our detection process.
Its design focuses on operating as a deep learning classifier, adept at handling lower-
dimensional data, especially in clustered data scenarios. This section outlines how the dAE
leverages its capabilities to effectively differentiate between normal and anomalous traffic.

4.3.1. Input Data and Classification

In the context of normal traffic, represented by zDATAn1, the output from the OCSVM
classifies normal traffic, supplying essential data for the dAE neural network, and the dAE
emerges as a deep learning classifier. The dAE is trained primarily on non-attack packet
data, improving its capacity to identify normal patterns and behaviors effectively.

4.3.2. Deep Learning Classifier

It thrives on processing lower-dimensional data, which showcases optimal perfor-
mance, especially in clustered data scenarios. Its prowess lies in capturing meaningful
patterns and behaviors, making it adept at discerning normal observations. Focused solely
on non-attack packet data, the dAE stands out in this domain by effectively classifying
attacks through its learned knowledge from the training dataset.

4.3.3. Training Process

Operating through the iterative process of backpropagation, the deep autoencoder
leverages training data results to learn, involving both decoder and forward propagation
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phases. These phases constitute stages of the encoder, visually depicted in Figure 5. With
a Z-dimensional vector, the encoder function (e) is defined in Equation (6). Encoded
data undergo processing, reverse-propagating for decoding using the original data. The
decoder function (d) is parameterized as shown in Equation (7), enabling multiple encode
and decode processes on hidden layers. During training, the objective is to minimize the
mean squared error between the input data and the reconstructed output. This ensures
that the model effectively captures the key features and patterns of normal traffic. This
reconstruction error indicates the model’s ability to accurately reconstruct normal data.

Ei = e
(

zDATAn1
i, θe

)
(6)

Di = d(Ei, θd) (7)

4.3.4. Backpropagation and Cost Minimization

Backpropagation on encoded data occurs using a mean squared error cost minimizer.
This process is utilized on test data as well. The goal is to reduce the reconstruction error,
thus enhancing the model’s accuracy. The comprehensive procedure can be outlined by
integrating both the encoder and decoder functions, as depicted in Equation (8):

Di = d
(

e
(

zDATAn1
i, θe

)
, θd

)
= g

(
zDATAn1

i, θ
)

(8)

4.3.5. Establishing the Threshold

After completing the training process, the distribution of reconstruction errors pertain-
ing to the normal data is analyzed. Typically, this distribution reveals a clustering of low
reconstruction errors, demonstrating the model’s effectiveness in reconstructing normal
traffic. To determine the anomaly detection threshold, the standard deviation method is
used on the reconstruction errors.

4.3.6. Output and Classification

During the detection phase, the dAE handles new incoming data, which could com-
prise both normal and anomalous samples. When a new instance is input to the dAE, it
undergoes encoding followed by decoding using the learned functions e and d. If the
instance is normal, the reconstruction error will be minimal, reflecting the model’s famil-
iarity with normal data pattern. In contrast, anomalous data points will not align well
with the learned patterns of the dAE. When an anomalous sample undergoes encoding
and decoding, the reconstruction error will be notably higher due to the model’s lack of
training on these patterns. The elevated reconstruction error serves as a signal or indicator
of an anomaly occurring. The data points characterized by high reconstruction errors are
identified as abnormal and categorized under “zDATAab2”.

The output “zDATAab2” from the dAE algorithm represents the classified attack data.
The algorithm efficiently reduces the mean squared error, thereby improving its capability
to accurately classify normal and anomalous traffic.

4.4. Detection Stage 3: OCSVM + dAE + DBSCAN Clustering

In this research, DBSCAN is utilized due to its robustness in handling noise and its
capability to identify clusters of arbitrary shapes without needing a predefined number of
clusters. Moreover, its flexibility in parameter tuning and scalability are essential for en-
hancing the effectiveness of intrusion detection. This section explains how DBSCAN applies
these capabilities to effectively cluster both normal traffic and various attack anomalies.

The outputs “zDATAab1” from OCSVM and “zDATAab2” from stage 2 dAE, respec-
tively, contain information about attack patterns, representing points within the output
space. DBSCAN operates on these data using the ε (epsilon) and MinPts parameters,
initiating its clustering process from an unvisited point. The ε parameter defines the maxi-
mum distance for considering neighborhood points, essentially setting a radius for each
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point. DBSCAN identifies clusters by retrieving ε-neighborhoods, forming clusters if they
are sufficiently populated, otherwise classifying as noise. MinPts signifies the minimum
number of samples required for a point to be considered a core point, which serves as the
central element within dense regions. The fit method assigns clusters based on density,
expanding to densely populated ε-neighborhoods. This iterative process continues until
the entire density-connected cluster is identified. New unvisited points are sequentially
processed, potentially revealing additional clusters or noise. DBSCAN optimizes clustering
by minimizing the number of clusters from all possible clustering within the dataset. It
ensures that each pair of points within a cluster is density-reachable, maintaining the
original properties of clusters in terms of “maximality” and “connectivity”.

4.5. Prevention: MITRE ATT&CK

Utilizing the MITRE ATT&CK framework, we establish a comprehensive database,
referred to as the “Cyber Threat Repository”, cataloging various attacks alongside asso-
ciated tactics, assigned priorities, and corresponding mitigation strategies. As shown in
Figure 7, upon detecting a potential attack, if it matches an entry within the repository, its
priority level is promptly identified for subsequent actions. Attacks deemed high-priority
trigger an immediate response, where the identified data traffic is swiftly intercepted and
blocked by the “Security Enforcement Gateway”, while simultaneous notifications are
dispatched to relevant stakeholders. Conversely, low-priority incidents prompt the redi-
rection of associated data traffic to a designated repository known as the “Incident Log
Database”, facilitating subsequent analysis and prompting alerts to cybersecurity personnel
for targeted mitigation measures in accordance with the repository’s guidance.
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The suggested model can be implemented by placing it between the firewall and the
network router. This allows for it to predict potential attacks within the network after being
trained on actual data sourced from the network. The data are collected, prepared, and
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utilized for training the model. The trained model has the capability to analyze the data
flowing through the network in real time.

5. Results

The suggested approach undergoes evaluation on the seven attacks within each dataset
as shown in Table 3, utilizing the CSECIC-IDS2018 and CIC-IDS2017 [36] intrusion detection
datasets. The evaluation entails contrasting the proposed model with standard clustering
techniques (OPTICS [37], fuzzy C-means [38], K-means [39], and hierarchical [40]) using
un-clustered data, followed by a performance assessment.

Table 3. Experimental samples.

CIC-IDS2017 CSECIC-IDS2018

Training class Benign, DoS, DDoS, botnet and
brute force

Benign, DoS, DDoS, botnet and
brute force

Testing class Training class + Heartbleed
and infiltration

Training class + web attack
and infiltration

Numbers of features 83 80
Number of benign instances 2,359,087 2,374,871
Number of attack instances 224,893 239,842

5.1. Experimental Dataset Usage

Table 3 displays the dataset utilized and the components of selected samples for this
study, while Table 4 shows the configuration of hyperparameters. Performance metrics are
evaluated to gauge the effectiveness of the intrusion detection model, utilizing a confusion
matrix. This assessment includes accuracy, precision, recall, specificity, false negative rate,
and F-score.

Table 4. Hyperparameter configuration.

Hyperparameter Values

nu(v) 0.095
Kernel Gaussian
Optimizer Adam
Learning rate 0.001
Epochs 40
Batch size 32
Patience 8
Latent space 3
Threshold 0.0219
Epsilon (ε) 0.2
MinPts 800

Precision, as defined in Equation (9), measures the accuracy of optimistic predictions.
Recall, represented by Equation (10), captures the ability of the model to correctly classify
positive instances. Specificity, outlined in Equation (11), provides valuable insights into
the model’s effectiveness in identifying instances of the negative class accurately. The
F-score, presented in Equation (12), offers a comprehensive evaluation metric that balances
precision and recall. Accuracy, as indicated in Equation (13), quantifies the proportion
of correct classifications made by the model. The false negative rate (FNR), or miss rate,
quantifies the percentage of actual positive instances incorrectly identified as negatives by
the model, as defined in Equation (14).

In evaluating the efficacy of the prevention model, key performance indicators in-
cluding prevention rate, priority-based blocking rate, and success rate are employed. The
prevention rate, as depicted in Equation (15), signifies the proportion of thwarted threats.
The priority-based blocking rate, illustrated in Equation (16), focuses on intercepting high-
priority threats. Equation (17) measures the overall effectiveness of the model. These
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metrics offer valuable insights into the model’s ability to mitigate threats and prioritize
actions, crucial for effective cybersecurity management and risk mitigation strategies:

Precision =
True Positive

Predicted Positives
(9)

Recall =
True Positive

True Positive + False Negative
(10)

Speci f icity =
True Negative

True Negative + False Positive
(11)

F − Measure =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(12)

Accuracy =
True Positive + True Negative

Predicted Positive + Predicted Negative
(13)

False Negative Rate =
False Negative

True Positive + False Negative
(14)

Prevention Rate =
Number o f detected attacks mitigated

Total number o f detected attacks
(15)

Priority based blocking Rate =
Number o f High priority attacks Blocked

Total number o f High priority attacks detected
(16)

Success Rate =
Number o f attacks prevented

Total number o f detected attacks
(17)

The effective performance of the model hinges on critical elements like the suitable
architecture and hyperparameter configurations of the detection model. A series of com-
prehensive experiments were carried out to identify the most effective hyperparameter
configurations. The bAE in the proposed method is composed of a solitary input layer
and a sole output layer. The OCSVM model is designed with a single class, while the dAE
consists of three latent space. These layers are structured with unit sizes tailored to align
with the loss function, ensuring an optimal fit with the varying dimensions of features
present within the training data.

5.2. Training and Testing of Detection Model

In this methodology, the dataset is split into training (70%) and testing (30%) subsets.
The model training includes the utilization of a Gaussian kernel function to ensure effec-
tive representation of data in the kernel space for OCSVM. The initial value of the “nu”
parameter (v) is set to 0.5 and adjusted through cross-validation, resulting in “nu” being
set to 0.95. Early stopping criteria are implemented in dAE to determine the optimal epoch
count. Additionally, ReLU serves as the activation function, while Adam optimization with
a learning rate of 0.001 aids in model optimization during training.

5.3. Evaluation on Stage 1: OCSVM

Based on the results of detection stage 1 using OCSVM, we analyze the metrics
depicted in confusion matrix Figure 8 for CSECIC-IDS2018 and Figure 9 for CIC-IDS2017.
The model calculates the performance metrics as illustrated in Figure 10. The significant
count of true negatives (2,316,485) demonstrates the model’s effectiveness in identifying
normal traffic accurately as non-attacks, highlighting its strong capability in distinguishing
non-malicious activities. The false negatives (12,624) indicate cases where the model failed
to detect actual attacks. While relatively low compared to true positives and true negatives,
this number remains critical as missed detections could lead to undetected attacks.
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The model’s high number of true positives (212,268) demonstrates its capability to
accurately identify a substantial portion of attacks. This positive aspect highlights the
model’s reliability in identifying malicious activities, thereby contributing significantly to
its high recall rate. The false positives (59,166) represent cases where normal traffic was
mistakenly classified as an attack. This is problematic because false positives can result in
unnecessary alerts, leading to potential alarm fatigue and challenges in resource allocation.

The higher incidence of false positives suggests that although the model is adept at
detecting attacks, it tends to be overly cautious, labeling benign traffic as malicious. The
assessment of detection accuracy in OCSVM relies on the “nu” parameter, which regulates
the balance between model complexity (flexibility) and the acceptance of margin violations.
The current “nu” parameter (set to 0.95) in the OCSVM model creates a decision boundary
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that is overly stringent, leading normal traffic patterns to be misclassified as attack patterns.
To optimize performance, we adjusted the “nu” parameter to 0.1, thereby relaxing the
model’s strictness and enhancing precision and specificity. Although the precision is
moderately high, there is still room for improvement to meet elevated standards. However,
this adjustment does affect other metrics. To mitigate false negatives overlooked by the
OCSVM model and decrease the false positive rate, we implemented a hybrid approach
incorporating a deep autoencoder (dAE) in the subsequent detection stage. The dAE
model effectively identifies normal patterns, thereby enhancing overall accuracy, recall,
and specificity.
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5.4. Evaluation on Stage 2: OCSVM + Deep Autoencoder (dAE)

The deep autoencoder (dAE) model operates as the second stage in the intrusion
detection system, handling data flagged as negative by the stage 1 one-class SVM (OCSVM).
The evaluation of detection stage 2, dAE, utilizes mean squared error (MSE) as the loss
function, with a threshold value established at 0.0219. Figure 11 illustrates the stage 2
dAE detection model’s loss function, where this research utilized a three-latent-space dAE,
40 epochs, 32 batches, and the Adam optimizer with a learning rate of 0.001 and patience
of 8. The stage 2 dAE model’s confusion matrix is shown in Figures 12 and 13 and its
performance is depicted in Figure 14 across the CIC-IDS2017 and CSECIC-IDS2018 datasets,
showcasing the effectiveness of the model. The detection model, constructed using both
“Normal” and “Attack” data from these datasets, demonstrates significant performance
across both datasets. The experimental results highlight its notable performance, which is
comparatively higher than that of the stage 1 OCSVM.

The dAE demonstrates improved performance metrics across precision, recall, speci-
ficity, F1-score, and accuracy for both the CIC-IDS2017 and CSECIC-IDS2018 datasets, as
depicted in Figure 14. Moreover, it notably reduces false positives, enhancing its ability
to differentiate between normal and attack traffic beyond the initial screening by OCSVM.
With a reduced false negative rate, the dAE enhances overall detection capabilities, high-
lighting its role in improving the reliability and efficiency of intrusion detection systems.
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5.5. Evaluation on Stage 3: OCSVM + dAE + DBSCAN

The DBSCAN model operates as the third stage in the intrusion detection system,
handling data flagged as positive by the stage 1 one-class SVM (OCSVM) and stage 2
dAE. The evaluation of the stage 3 DBSCAN uses an epsilon value of 0.2 and a minimum
of 800 points for clustering. The clustering model is assessed against commonly used
clustering algorithms including K-means [39], fuzzy C-means (FC-Means) [38], hierarchical
clustering [40] (specifically divisive hierarchical clustering—DHC), and OPTICS [37], utiliz-
ing network traffic datasets for evaluation. The scatter plots in Figures 15 and 16 display
the experimental results for CSECIC-IDS2018 and CIC-IDS2017, respectively. The experi-
mental results show that the proposed clustering method effectively separates instances
into eight groups, including benign ones, for both CSECIC-IDS2018 and CIC-IDS2017
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datasets. It demonstrates high accuracy in identifying positive and negative instances while
maintaining a balanced performance in classification.
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Table 5 illustrates how the proposed method consistently outperforms alternative
clustering algorithms across a range of metrics, highlighting its effectiveness in clustering
tasks in the CIC-IDS2017 dataset. The proposed method attains the highest recall score
(0.9907), indicating its robust capability to identify positive instances effectively, also
suggesting a minimal false negative rate.

Table 5. Performance comparison of stage-3 clustering OCSVM + dAE + DBSCAN on CIC-IDS2017.

Methods Precision Recall Specificity Accuracy F-Measure FNR

OPTICS [37] 0.9331 0.9345 0.9298 0.9324 0.9338 0.0655
FC-Means [38] 0.9451 0.9464 0.9418 0.9443 0.9458 0.0536
K-Means [39] 0.9540 0.9553 0.9507 0.9532 0.9547 0.0447
Hierarchical [40] 0.9509 0.9522 0.9476 0.9501 0.9516 0.0478
Proposed 0.9948 0.9907 0.9806 0.9927 0.9886 0.0093

Figure 17 illustrates that the proposed method outperforms others in the CSECIC-
IDS2018 dataset, showcasing higher F1-score, recall, precision, FNR, and accuracy. The
proposed approach achieves the highest overall correctness of clustering at 0.9881. The
proposed approach achieves the highest F1-measure at 0.993, signifying a well-balanced
performance between precision and recall.
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5.6. Performance Analysis of Proposed Method
5.6.1. Analysis on CSECIC-IDS2018 Dataset

The CSECIC-IDS2018 and CIC-IDS 2017 datasets were assessed using various anomaly
detection methods. Key metrics such as precision, recall, specificity, accuracy, F-measure,
and false negative rate (FNR) were used in the evaluation. Table 6 presents the analysis
of these metrics for different methods applied to the CSECIC-IDS2018 dataset. This is
followed by a detailed explanation of our proposed intrusion detection approach, which
involves OCSVM + dAE + DBSCAN.

Table 6. Performance analysis of proposed IDS on CSECIC-IDS2018 dataset.

Methods Precision Recall Specificity F-Measure Accuracy FNR

Detection Stage 1:
OCSVM 0.7956 0.9474 0.9754 0.8649 0.9728 0.0526
dAE 0.8008 0.9453 0.9763 0.8671 0.9734 0.0547
DBSCAN 0.7916 0.9328 0.9752 0.8564 0.9713 0.0672

Detection Stage 2:
OCSVM + DBSCAN 0.9561 0.9526 0.8298 0.9544 0.9275 0.0474
dAE + DBSCAN 0.9556 0.9525 0.8222 0.9541 0.9266 0.0475
dAE + OCSVM 0.7772 0.9536 0.9985 0.8564 0.9982 0.0464
OCSVM + dAE 0.9543 0.9731 0.9997 0.9636 0.9996 0.0269

Detection Stage 3:
dAE + OCSVM + DBSCAN 0.9504 0.9697 0.7983 0.9600 0.9353 0.0303
OCSVM + dAE + DBSCAN 0.9954 0.9906 0.9814 0.9930 0.9888 0.0094

Stage 1 Methods

OCSVM demonstrates high recall and specificity, leading to a low false negative rate
(FNR), indicating slightly superior performance compared to dAE and DBSCAN. The dAE
method achieves good recall and specificity, albeit with a slightly higher false negative
rate (FNR). In contrast, DBSCAN exhibits lower recall and specificity than OCSVM and
dAE, resulting in a higher false negative rate (FNR). Among the three methods, OCSVM
performs exceptionally well, particularly in recall and achieving a low false negative rate,
demonstrating strong capability in detecting actual anomalies. It is thus considered a
recommended method for stage 1 detection.

Stage 2 Combined Methods

The rationale for implementing a two-stage anomaly detection approach with OCSVM
and dAE is to leverage the respective strengths of each technique, aiming for improved
detection performance. OCSVM and dAE exhibit complementary performance both indi-
vidually and together.
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OCSVM correctly identified 227,218 as true positive samples, while dAE detected
226,719, indicating that OCSVM found an additional 499 samples missed by dAE. On
the other hand, dAE identified 226,719 samples correctly, while OCSVM detected 227,218,
showing that dAE missed 499 samples that OCSVM detected. The combined use of
OCSVM and dAE effectively reduces false negatives and false positives to just 340 and 588,
respectively. This underscores the method’s effectiveness in minimizing detection errors.

The pairing of OCSVM and DBSCAN achieves high precision and recall but shows
decreased specificity, characterized by a lower false negative rate (FNR). The combination
of dAE and DBSCAN shows comparable performance, marked by notable enhancements
in precision and recall. The combination of dAE and OCSVM achieves high recall but at
the cost of relatively lower precision. The combined method of OCSVM and dAE shows
substantial improvements in precision, recall, and exceptional specificity, resulting in a
notably low false negative rate (FNR). This OCSVM + dAE approach is proposed for stage
2 consideration.

The two-stage approach improves anomaly detection by leveraging the strengths of
both OCSVM and dAE, resulting in a more robust and accurate detection mechanism. The
combined method significantly decreases false negatives and false positives compared to
using each method individually, providing a strong rationale for adopting a two-stage
anomaly detection strategy.

Stage 3 Proposed Method

The combination of dAE, OCSVM, and DBSCAN demonstrates strong overall per-
formance with high precision and recall, albeit with reduced specificity. The proposed
method, integrating OCSVM, dAE, and DBSCAN, shows superior performance across all
metrics—precision, recall, specificity, accuracy, and notably low false negative rate (FNR),
as shown in Table 6.

5.6.2. Analysis on CIC-IDS2017 Dataset

The CIC-IDS2017 dataset underwent evaluation using three distinct anomaly detec-
tion methods: OCSVM, dAE, and DBSCAN. The performance metrics assessed include
precision, recall, specificity, F1-score, accuracy, and false negative rate (FNR).

Stage 1 Method

As shown Figure 18, among the three methods, DBSCAN exhibits the lowest precision
and recall, suggesting a higher number of false positives and missed anomalies. Its speci-
ficity is marginally lower compared to OCSVM and dAE, and its F1-score indicates the
least balance between precision and recall. DBSCAN also demonstrates the lowest accuracy
and the highest false negative rate. The dAE method shows marginally superior precision
and recall compared to the other methods. Despite its slightly lower recall, it maintains a
competitive false negative rate, demonstrating its effectiveness in distinguishing between
anomalies and normal instances.

This proposed OCSVM demonstrates a precision of 0.7820, indicating that 78.2% of its
positive predictions were correct, and a recall of 0.9439, successfully identifying 94.39% of
the actual anomalies. Its specificity is 0.9749, showing that it correctly identified 97.49% of
normal instances, and it achieves an F1-score of 0.8554, demonstrating a balanced trade-off
between precision and recall. OCSVM demonstrates an accuracy rate of 97.22%, indicating
that nearly 97.22% of predictions were correct. It also exhibits a false negative rate (FNR) of
0.0561, implying that approximately 5.61% of true anomalies were not detected. Among
the three methods, OCSVM stands out with notably better recall and a lower false negative
rate compared to the others. This highlights its strong capability in effectively identifying
true anomalies.
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Figure 18. Performance analysis of stage 1 OCSVM on CIC-IDS2017.

Stage 2 Method

As shown in Figure 19, the combination of OCSVM + DBSCAN demonstrates high
precision and recall, effectively identifying true positives while minimizing false positives.
Its lower specificity suggests some difficulties in accurately identifying normal instances.
The F1-score demonstrates a well-balanced performance between precision and recall,
achieving solid accuracy alongside a low false negative rate (FNR).
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Like OCSVM + DBSCAN, the method dAE + DBSCAN exhibits high precision and
recall. However, its slightly lower specificity suggests some challenges in accurately identi-
fying normal instances. The dAE + OCSVM combination demonstrates strong performance
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in achieving high recall and excellent specificity, effectively identifying anomalies and nor-
mal instances. However, its precision is comparatively lower, leading to a higher incidence
of false positives.

The OCSVM + dAE combination proposed here demonstrates superior performance
across most metrics, characterized by high precision, recall, and nearly flawless specificity.
The F1-score and accuracy excel, accompanied by the lowest false negative rate (FNR)
among the methods, underscore its exceptional ability to detect anomalies while minimizing
both false positives and false negatives.

Stage 3 Method

As shown in Figure 20, the dAE + OCSVM + DBSCAN combination demonstrates
high precision and recall, effectively identifying true positives with minimal false positives.
However, its specificity is diminished, indicating difficulties in accurately identifying nor-
mal instances. The F1-score demonstrates robust performance, indicating a well-balanced
trade-off between precision and recall. The accuracy is reliable, coupled with a consistently
low false negative rate (FNR), highlighting its overall effectiveness.
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Figure 20. Performance analysis of stage 3 OCSVM + dAE + DBSCAN on CIC-IDS2017.

The proposed approach, combining OCSVM + dAE + DBSCAN, shows superior
performance across all metrics. It demonstrates outstanding precision, recall, and speci-
ficity, highlighting its robust ability to accurately detect anomalies as well as normal
instances. The F1-score and accuracy excel, with the lowest FNR, showcasing its remark-
able effectiveness in reducing both false positives and false negatives, establishing it as the
top-performing method in this assessment.

Hence, the proposed detection model successfully identified and classified seven
distinct cyber-attacks. Subsequently, the prevention model effectively mitigated four of
these detected attacks by promptly blocking them and routing the associated data traffic to
the security enforcement gateway, due to their high-priority designation within the Cyber
Threat Repository. Concurrently, the remaining three attacks, deemed as lower priority,
were redirected to the Incident Log Database for further analysis and subsequent mitigation
efforts. These findings highlight the effectiveness of the prevention model, as it successfully
mitigated all detected attacks. The priority-based blocking strategy is highly effective,
successfully blocking all high-priority attacks, as shown in Table 7. Furthermore, Figure 21
demonstrates an impressive success rate in preventing all detected attacks, emphasizing
the resilience of the prevention model. These findings confirm the model’s ability to uphold
security without any compromises.
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Table 7. Performance of MITRE ATT&CK-based prevention model.

Metrics CIC-IDS2017 CSECIC-IDS2018

Prevention rate (PR) 1.000 1.000
Priority based blocking rate (PBBR) 1.000 1.000

Future Internet 2024, 16, x FOR PEER REVIEW 28 of 31 
 

 

 
Figure 21. Success rate of MITRE ATT&CK-based prevention model. 

The evaluation and results of the proposed cybersecurity solution reveal key insights 
into its effectiveness and robustness. The assessment of OCSVM underscores the critical 
influence of the “nu” parameter on detection accuracy, essential for optimizing perfor-
mance. Similarly, evaluation of the deep autoencoder (dAE) demonstrates its effectiveness 
in anomaly detection, utilizing MSE across datasets. The detection model�s overall perfor-
mance across both “Normal” and “Attack” data in CIC-IDS2017 and CSECIC-IDS2018 da-
tasets shows significant efficacy, consistently delivering notable results. Moreover, the 
proposed approach outperforms alternatives in clustering tasks, exhibiting superior pre-
cision, recall, and overall accuracy. Comparative analysis across datasets highlights its su-
periority, with high correctness of clustering, F1-measure, and recall scores. Successful 
identification and classification of cyber-attacks, coupled with the prevention model�s re-
markable success rate in mitigating them, underline the solution�s robustness in enhanc-
ing cybersecurity resilience. Implementation insights elucidate practical deployment 
strategies, leveraging various techniques like autoencoders, OCSVM, DBSCAN, and the 
MITRE ATT&CK framework. Overall, these evaluations collectively demonstrate the com-
prehensive efficacy of the proposed cybersecurity solution in detection, prevention, and 
overall resilience enhancement, promising in tackling contemporary cybersecurity chal-
lenges. 

5.7. Limitations and Future Work 
Although the proposed method, integrating OCSVM, dAE, and DBSCAN, demon-

strates superior performance across most metrics, it does have inherent limitations and 
shortcomings. The method�s efficacy is validated on the CSECIC-IDS2018 and CI-
CIDS2017 datasets. However, its performance may vary on other datasets or in different 
domains, underscoring the need for additional validation across diverse datasets to ensure 
broad applicability. Moreover, the effectiveness of the proposed method hinges signifi-
cantly on meticulously tuning parameters for each algorithm, a task that can consume 
considerable time. This research focuses on detecting emerging zero-day attacks, utilizing 
a binary classification algorithm. Future research can expand on this work by exploring 
multiclass classification techniques. It should prioritize optimizing the method to mini-
mize computational complexities, validating it across diverse datasets, simplifying pa-
rameter tuning, improving scalability, and ensuring reliable performance in varied and 
dynamic environments. 

Figure 21. Success rate of MITRE ATT&CK-based prevention model.

The evaluation and results of the proposed cybersecurity solution reveal key insights
into its effectiveness and robustness. The assessment of OCSVM underscores the critical
influence of the “nu” parameter on detection accuracy, essential for optimizing perfor-
mance. Similarly, evaluation of the deep autoencoder (dAE) demonstrates its effectiveness
in anomaly detection, utilizing MSE across datasets. The detection model’s overall per-
formance across both “Normal” and “Attack” data in CIC-IDS2017 and CSECIC-IDS2018
datasets shows significant efficacy, consistently delivering notable results. Moreover, the
proposed approach outperforms alternatives in clustering tasks, exhibiting superior pre-
cision, recall, and overall accuracy. Comparative analysis across datasets highlights its
superiority, with high correctness of clustering, F1-measure, and recall scores. Successful
identification and classification of cyber-attacks, coupled with the prevention model’s re-
markable success rate in mitigating them, underline the solution’s robustness in enhancing
cybersecurity resilience. Implementation insights elucidate practical deployment strate-
gies, leveraging various techniques like autoencoders, OCSVM, DBSCAN, and the MITRE
ATT&CK framework. Overall, these evaluations collectively demonstrate the comprehen-
sive efficacy of the proposed cybersecurity solution in detection, prevention, and overall
resilience enhancement, promising in tackling contemporary cybersecurity challenges.

5.7. Limitations and Future Work

Although the proposed method, integrating OCSVM, dAE, and DBSCAN, demonstrates
superior performance across most metrics, it does have inherent limitations and shortcomings.
The method’s efficacy is validated on the CSECIC-IDS2018 and CICIDS2017 datasets. How-
ever, its performance may vary on other datasets or in different domains, underscoring the
need for additional validation across diverse datasets to ensure broad applicability. Moreover,
the effectiveness of the proposed method hinges significantly on meticulously tuning param-
eters for each algorithm, a task that can consume considerable time. This research focuses
on detecting emerging zero-day attacks, utilizing a binary classification algorithm. Future



Future Internet 2024, 16, 253 27 of 29

research can expand on this work by exploring multiclass classification techniques. It should
prioritize optimizing the method to minimize computational complexities, validating it across
diverse datasets, simplifying parameter tuning, improving scalability, and ensuring reliable
performance in varied and dynamic environments.

6. Conclusions

This study presented a novel comprehensive approach to address the escalating
cybersecurity concerns associated with the proliferation of Internet services and the corre-
sponding surge in network attacks. By leveraging unsupervised learning techniques, the
proposed method offers a robust framework for training detection models to effectively
counter a wide range of threats, including denial of service (DoS), distributed denial of
service (DDoS), botnet, brute force, infiltration, and Heartbleed. The significance of this
work lies in its multi-stage detection model, which combines basic autoencoders (bAEs), a
one-class support vector machine (OCSVM), and deep autoencoder (dAE) attack detection,
supplemented by density-based spatial clustering of applications with noise (DBSCAN)
for attack clustering. This integrated approach enables the accurate delineation of attack
clusters, aiding in the mapping of attack tactics and facilitating timely response strategies.
Furthermore, by leveraging preprocessed and unlabeled normal network traffic data, this
methodology allows for the identification of novel attacks while mitigating the impact
of imbalanced training data on model performance. The use of reconstruction error in
the autoencoder method, kernel functions in OCSVM, and density-based clustering in
DBSCAN ensures robust anomaly detection, noise management, and scalability, resulting
in highly accurate intrusion detection. The evaluation of the proposed model on standard
datasets such as CIC-IDS2017 and CSECIC-IDS2018 demonstrates its efficacy, with accura-
cies exceeding 98% in both cases. These results underscore the potential of this approach
to significantly enhance network security and protect against evolving cyber threats. This
research contributes to the advancement of intrusion detection systems and underscores
the importance of leveraging innovative techniques to safeguard critical networks against
cyber threats. By combining machine learning algorithms with robust clustering methods,
this approach offers a promising solution for efficient and effective intrusion detection in
the ever-changing cybersecurity landscape.

Looking ahead, the findings of this study suggest various avenues for application and
extension. The developed framework can be further refined and customized to address
specific network environments and threat landscapes. Additionally, the integration of
frameworks like the MITRE ATT&CK provides a structured approach to cataloging attacks
and tactics, enabling proactive defense strategies based on threat prioritization.

Author Contributions: Conceptualization, P.K., S.P., M.T., B.B. and F.B.; methodology, P.K., S.P.
and M.T.; software, P.K., S.P. and M.T.; validation, P.K., S.P., M.T., B.B. and F.B.; formal analysis,
P.K., S.P. and M.T.; investigation, P.K., S.P., M.T., B.B. and F.B.; resources, P.K., S.P. and M.T.; data
curation, P.K., S.P. and M.T.; writing—original draft preparation, P.K., S.P. and M.T.; writing—review
and editing, P.K., S.P., M.T., B.B. and F.B.; visualization, B.B. and F.B.; supervision, B.B. and F.B.;
project administration, B.B. and F.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset used for this article is available online at https://www.unb.
ca/cic/datasets/ids-2018.html and https://www.unb.ca/cic/datasets/ids-2017.html for CSECIC-
IDS2018 and CIC-IDS2017 respectively, date accessed 11 July 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2017.html


Future Internet 2024, 16, 253 28 of 29

References
1. Jiang, K.; Wang, W.; Wang, A.; Wu, H. Network Intrusion Detection Combined Hybrid Sampling with Deep Hierarchical Network.

IEEE Access 2020, 8, 32464–32476. [CrossRef]
2. Gandi, V.P.; Jatla, N.S.L.; Sadhineni, G.; Geddamuri, S.; Chaitanya, G.K.; Velmurugan, A.K. A Comparative Study of AI Algorithms

for Anomaly-based Intrusion Detection. In Proceedings of the 7th International Conference on Computing Methodologies and
Communication, ICCMC 2023, Erode, India, 23–25 February 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway,
NJ, USA, 2023; pp. 530–534. [CrossRef]

3. Ali, T.A.J.; Jawhar, M.M.T. Detecting network attacks model based on a convolutional neural network. Int. J. Electr. Comput. Eng.
2023, 13, 3072–3078. [CrossRef]

4. Lv, Z.; Chen, D.; Cao, B.; Song, H.; Lv, H. Secure Deep Learning in Defense in Deep-Learning-as-a-Service Computing Systems in
Digital Twins. IEEE Trans. Comput. 2024, 73, 656–668. [CrossRef]

5. Sun, N.; Ding, M.; Jiang, J.; Xu, W.; Mo, X.; Tai, Y.; Zhang, J. Cyber Threat Intelligence Mining for Proactive Cybersecurity Defense:
A Survey and New Perspectives. IEEE Commun. Surv. Tutor. 2023, 25, 1748–1774. [CrossRef]

6. Pitafi, S.; Anwar, T.; Widia, I.D.M.; Yimwadsana, B.; Pitafi, S. Revolutionizing Perimeter Intrusion Detection: A Machine
Learning-Driven Approach with Curated Dataset Generation for Enhanced Security. IEEE Access 2023, 11, 106954–106966.
[CrossRef]

7. Zheng, J.; Zhang, Z.; Ma, Q.; Gao, X.; Tian, C.; Chen, G. Multi-Resource VNF Deployment in a Heterogeneous Cloud. IEEE Trans.
Comput. 2022, 71, 81–91. [CrossRef]

8. Mao, Y.; Shang, X.; Liu, Y.; Yang, Y. Joint Virtual Network Function Placement and Flow Routing in Edge-Cloud Continuum.
IEEE Trans. Comput. 2024, 73, 872–886. [CrossRef]

9. Figueiredo, J.; Serrão, C.; de Almeida, A.M. Deep Learning Model Transposition for Network Intrusion Detection Systems.
Electronics 2023, 12, 293. [CrossRef]

10. Sarhan, M.; Kulatilleke, G.; Lo, W.W.; Layeghy, S.; Portmann, M. DOC-NAD: A Hybrid Deep One-class Classifier for Network
Anomaly Detection. arXiv 2022, arXiv:2212.07558.

11. Devarakonda, A.; Sharma, N.; Saha, P.; Ramya, S. Network intrusion detection: A comparative study of four classifiers using the
NSL-KDD and KDD’99 datasets. J. Phys. Conf. Ser. 2022, 2161, 12043. [CrossRef]

12. Wang, C.; Sun, Y.; Lv, S.; Wang, C.; Liu, H.; Wang, B. Intrusion Detection System Based on One-Class Support Vector Machine and
Gaussian Mixture Model. Electronics 2023, 12, 930. [CrossRef]

13. Ren, Y.; Feng, K.; Hu, F.; Chen, L.; Chen, Y. A Lightweight Unsupervised Intrusion Detection Model Based on Variational
Auto-Encoder. Sensors 2023, 23, 8407. [CrossRef] [PubMed]

14. Jain, P.; Bajpai, M.S.; Pamula, R. A Modified DBSCAN Algorithm for Anomaly Detection in Time-series Data with Seasonality. Int.
Arab. J. Inf. Technol. 2022, 19, 23–28. [CrossRef] [PubMed]

15. Xiong, W.; Legrand, E.; Åberg, O.; Lagerström, R. Cyber security threat modeling based on the MITRE Enterprise ATT&CK
Matrix. Softw. Syst. Model. 2022, 21, 157–177. [CrossRef]

16. Sokkalingam, S.; Ramakrishnan, R. An intelligent intrusion detection system for distributed denial of service attacks: A support
vector machine with hybrid optimization algorithm based approach. Concurr. Comput. 2022, 34, e7334. [CrossRef]

17. Duhayyim, M.A.; Alissa, K.A.; Alrayes, F.S.; Alotaibi, S.S.; Tag El Din, E.M.; Abdelmageed, A.A.; Yaseen, I.; Motwakel, A.
Evolutionary-Based Deep Stacked Autoencoder for Intrusion Detection in a Cloud-Based Cyber-Physical System. Appl. Sci. 2022,
12, 6875. [CrossRef]

18. Mousa, A.K.; Abdullah, M.N. An Improved Deep Learning Model for DDoS Detection Based on Hybrid Stacked Autoencoder
and Checkpoint Network. Future Internet 2023, 15, 278. [CrossRef]

19. Shin, C.; Lee, I.; Choi, C. Exploiting TTP Co-Occurrence via GloVe-Based Embedding with MITRE ATT&CK Framework. IEEE
Access 2023, 11, 100823–100831. [CrossRef]

20. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

21. Thirimanne, S.P.; Jayawardana, L.; Yasakethu, L.; Liyanaarachchi, P.; Hewage, C. Deep Neural Network Based Real-Time Intrusion
Detection System. SN Comput. Sci. 2022, 3, 145. [CrossRef]

22. Guarino, S.; Vitale, F.; Flammini, F.; Faramondi, L.; Mazzocca, N.; Setola, R. A Two-Level Fusion Framework for Cyber-Physical
Anomaly Detection. IEEE Trans. Ind. Cyber-Phys. Syst. 2024, 2, 1–13. [CrossRef]

23. Ramasamy, M.; Eric, P.V. A novel classification and clustering algorithms for intrusion detection system on convolutional neural
network. Bull. Electr. Eng. Inform. 2022, 11, 2845–2855. [CrossRef]

24. Ahmad, Z.; Khan, A.S.; Shiang, C.W.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of machine
learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]

25. Fan, J.F.J.; Fan, G.Y.J.; Yang, J.G.G. DDoS Attack Detection System Based on RF-SVM-IL Model Under SDN. J. Comput. Sci. 2021,
32, 031–043. [CrossRef]

26. Yaras, S.; Dener, M. IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm. Electronics 2024, 13,
1053. [CrossRef]

27. Harahsheh, K.; Al-Naimat, R.; Chen, C.H. Using Feature Selection Enhancement to Evaluate Attack Detection in the Internet of
Things Environment. Electronics 2024, 13, 1678. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.2973730
https://doi.org/10.1109/ICCMC56507.2023.10084186
https://doi.org/10.11591/ijece.v13i3.pp3072-3078
https://doi.org/10.1109/TC.2021.3077687
https://doi.org/10.1109/COMST.2023.3273282
https://doi.org/10.1109/ACCESS.2023.3318600
https://doi.org/10.1109/TC.2020.3042247
https://doi.org/10.1109/TC.2023.3347671
https://doi.org/10.3390/electronics12020293
https://doi.org/10.1088/1742-6596/2161/1/012043
https://doi.org/10.3390/electronics12040930
https://doi.org/10.3390/s23208407
https://www.ncbi.nlm.nih.gov/pubmed/37896500
https://doi.org/10.34028/iajit/19/1/3
https://www.ncbi.nlm.nih.gov/pubmed/31909732
https://doi.org/10.1007/s10270-021-00898-7
https://doi.org/10.1002/cpe.7334
https://doi.org/10.3390/app12146875
https://doi.org/10.3390/fi15080278
https://doi.org/10.1109/ACCESS.2023.3315121
https://doi.org/10.3390/app9204396
https://doi.org/10.1007/s42979-022-01031-1
https://doi.org/10.1109/TICPS.2023.3336608
https://doi.org/10.11591/eei.v11i5.4145
https://doi.org/10.1002/ett.4150
https://doi.org/10.53106/199115992021103205003
https://doi.org/10.3390/electronics13061053
https://doi.org/10.3390/electronics13091678


Future Internet 2024, 16, 253 29 of 29

28. Javed, A.; Ehtsham, A.; Jawad, M.; Awais, M.N.; Qureshi, A.-H.; Larijani, H. Implementation of Lightweight Machine Learning-
Based Intrusion Detection System on IoT Devices of Smart Homes. Future Internet 2024, 16, 200. [CrossRef]

29. Liao, J.; Teo, S.G.; Kundu, P.P.; Truong-Huu, T. ENAD: An ensemble framework for unsupervised network anomaly detection. In
Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021, Rhodes, Greece, 26–28 July
2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 81–88. [CrossRef]

30. Almaraz-Rivera, J.G.; Cantoral-Ceballos, J.A.; Botero, J.F. Enhancing IoT Network Security: Unveiling the Power of Self-Supervised
Learning against DDoS Attacks. Sensors 2023, 23, 8701. [CrossRef]

31. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. Hybrid intrusion detection system based on the stacking
ensemble of C5 decision tree classifier and one class support vector machine. Electronics 2020, 9, 173. [CrossRef]

32. Shafin, S.S.; Karmakar, G.; Mareels, I. Obfuscated Memory Malware Detection in Resource-Constrained IoT Devices for Smart
City Applications. Sensors 2023, 23, 5348. [CrossRef]

33. Ravi, N.; Shalinie, S.M. Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network. IEEE Internet
Things J. 2020, 7, 11041–11052. [CrossRef]

34. Li, W.; Meng, W.; Au, M.H. Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT
environments. J. Netw. Comput. Appl. 2020, 161, 102631. [CrossRef]

35. Kwon, R.; Ashley, T.D.; Castleberry, J.E.; McKenzie, P.L.; Gourisetti, S.N.G. Cyber Threat Dictionary Using MITRE ATT&CK Matrix
and NIST Cybersecurity Framework Mapping. United States 2020. Available online: https://www.osti.gov/biblio/1734565
(accessed on 17 July 2024).

36. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the ICISSP 2018—The 4th International Conference on Information Systems Security and
Privacy, Madeira, Portugal, 22–24 January 2018; SciTePress: Setúbal, Portugal, 2018; pp. 108–116. [CrossRef]

37. Mustafa, D.H.; Husien, I.M. Adaptive DBSCAN with Grey Wolf Optimizer for Botnet Detection. Int. J. Intell. Eng. Syst. 2023, 16,
409–421. [CrossRef]

38. Nguyen, T.L.; Kao, H.; Nguyen, T.T.; Horng, M.F.; Shieh, C.S. Unknown DDoS Attack Detection with Fuzzy C-Means Clustering
and Spatial Location Constraint Prototype Loss. Comput. Mater. Contin. 2024, 78, 2181–2205. [CrossRef]

39. Dwivedi, D.; Bhushan, A.; Singh, A.K.; Snehlata. Leveraging K-means clustering for enhanced detection of network traffic attacks.
In Proceedings of the 2024 3rd International conference on Power Electronics and IoT Applications in Renewable Energy and its
Control (PARC), Mathura, India, 23–24 February 2024; pp. 72–76. [CrossRef]

40. An, H.; Ma, R.; Yan, Y.; Chen, T.; Zhao, Y.; Li, P.; Li, J.; Wang, X.; Fan, D.; Lv, C. Finsformer: A Novel Approach to Detecting
Financial Attacks Using Transformer and Cluster-Attention. Appl. Sci. 2024, 14, 460. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/fi16060200
https://doi.org/10.1109/CSR51186.2021.9527982
https://doi.org/10.3390/s23218701
https://doi.org/10.3390/electronics9010173
https://doi.org/10.3390/s23115348
https://doi.org/10.1109/JIOT.2020.2993410
https://doi.org/10.1016/j.jnca.2020.102631
https://www.osti.gov/biblio/1734565
https://doi.org/10.5220/0006639801080116
https://doi.org/10.22266/ijies2023.0831.33
https://doi.org/10.32604/cmc.2024.047387
https://doi.org/10.1109/PARC59193.2024.10486408
https://doi.org/10.3390/app14010460

	Introduction 
	Motivation 
	Problem Statement 
	Expected Outcomes 
	Key Contributions 

	Related Works 
	Dataset 
	CSECIC-IDS2018 
	CIC-IDS2017 

	Proposed Method for Intrusion Detection and Prevention 
	Data Preparation 
	Data Collection 
	Data Preprocessing 
	Dimensionality Reduction 

	Detection Stage 1: OCSVM 
	Detection Stage 2: OCSVM + Deep Autoencoder (dAE) 
	Input Data and Classification 
	Deep Learning Classifier 
	Training Process 
	Backpropagation and Cost Minimization 
	Establishing the Threshold 
	Output and Classification 

	Detection Stage 3: OCSVM + dAE + DBSCAN Clustering 
	Prevention: MITRE ATT&CK 

	Results 
	Experimental Dataset Usage 
	Training and Testing of Detection Model 
	Evaluation on Stage 1: OCSVM 
	Evaluation on Stage 2: OCSVM + Deep Autoencoder (dAE) 
	Evaluation on Stage 3: OCSVM + dAE + DBSCAN 
	Performance Analysis of Proposed Method 
	Analysis on CSECIC-IDS2018 Dataset 
	Analysis on CIC-IDS2017 Dataset 

	Limitations and Future Work 

	Conclusions 
	References

