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Abstract: We propose a detection system incorporating a weighted voting mechanism that reflects
the vote’s reliability based on the accuracy of each detector’s examination, which overcomes the
problem of cooperative detection. Collaborative malware detection is an effective strategy against
zero-day attacks compared to one using only a single detector because the strategy might pick up
attacks that a single detector overlooked. However, cooperative detection is still ineffective if most
anti-virus engines lack sufficient intelligence to detect zero-day malware. Most collaborative methods
rely on majority voting, which prioritizes the quantity of votes rather than the quality of those
votes. Therefore, our study investigated the zero-day malware detection accuracy of the collaborative
system that optimally rates their weight of votes based on their malware categories of expertise of
each anti-virus engine. We implemented the prototype system with the VirusTotal API and evaluated
the system using real malware registered in MalwareBazaar. To evaluate the effectiveness of zero-day
malware detection, we measured recall using the inspection results on the same day the malware was
registered in the MalwareBazaar repository. Through experiments, we confirmed that the proposed
system can suppress the false negatives of uniformly weighted voting and improve detection accuracy
against new types of malware.

Keywords: malware detection; collaborative security; VirusTotal; MalwareBazaar

1. Introduction

As the Internet becomes a critical piece of infrastructure for our lives, malware threats
are increasing yearly. Malware steals confidential information, destroys important data,
and sometimes uses the data as collateral for blackmail, money laundering, and other
highly malicious crimes. In recent years, a large-scale distributed denial-of-service attack
was carried out by exploiting IoT devices infected with a malware program called Mirai [1].
In 2017, a large number of computers around the world were infected with ransomware
called WannaCry [2]. Furthermore, in 2022, a targeted attack by a malware application
called Emotet was attached in phishing emails [3].

Although accurate and quick malware detection is essential, a single detection method
can overlook the attack. The number of new malware attacks is constantly being observed
each year according to the report [4]. This report indicates that the malware detection
method should collect intelligence about new malware in real-time to respond to its activity.
Many malware detection systems have been widely studied, but they can still overlook
the malware depending on the type. Even today, as the accuracy of machine learning
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technology continues to improve, this method still has problems in terms of usability
and safety.

While collaborative malware detection has been widely studied to tackle the issue
of hard-to-detect attacks [5–8], they are still insufficient to detect new malware. These
methods conduct voting based on the detection results obtained from multiple anti-virus
vendors testing the same sample and use the majority result to determine the sample’s
maliciousness. While studies [5–8] showed that this approach could detect malware more
accurately than the results of a single anti-virus inspection, the majority decision would
negatively impact the accuracy of the judgment. For example, even if reliable detection
engines with high accuracy determine that a suspicious file is malware, the malware will be
overlooked when most classifiers determine that the file is benign. Based on this concern,
these majority-vote-based methods might miss the new type of malware because most
anti-virus engines lack sufficient information to detect the new malware at that time.

To consider the reliability of the anti-virus engines in a final decision, we weighted
the voting value of malware detection by anti-virus engines according to their accuracy
history. This method can be expected to improve the detection accuracy by reducing
false negatives, that is, overlooked malware. This study mainly examined the accuracy
of collaborative malware detection when weighting is set to the optimal setting based on
VirusTotal results. To verify the actual detection accuracy against unknown malware, we
used a malware repository service called MalwareBazaar. By inspecting malware registered
in MalwareBazaar on the same day as it was registered, we simulatively measured the
detection accuracy of unknown malware with insufficient information.

The remainder of this paper is structured as follows. Section 2 describes the back-
ground for the research domain of malware detection. Section 3 provides the key concept,
architecture, and detailed components of the proposed system. Section 4 reports the
evaluation experiment for the proposed system, and Section 5 gives and discusses its
results. Section 6 and Section 7 discuss the differences and originality of our work and the
limitations on interpreting the detection results. In Section 8, we summarize this paper.

The main contributions of this paper are as follows:

• An investigation of the actual detection accuracy of each anti-virus engine on VirusTo-
tal [9] using actual malware samples. Combining multiple anti-virus engines could
improve detection accuracy based on the observation that each engine has different
strengths when it comes to the various malware categories.

• A demonstration of the potential of an optimal weighted-voting-based malware detec-
tion system to improve detection accuracy against unknown malware. We evaluated
the overall recall when the weights for each anti-virus engine were assigned according
to the above findings. We inspected the malware the same day it was first registered
in the MalwareBazaar repository. This overall recall shows that false negatives for
weighted voting decrease compared to the results of uniform weighting, even if the
type of malware is new.

• A verification of whether the procedures for malware detection experiments conducted
in this study enabled the evaluation of the detection accuracy against unknown
malware. We examined the same malware files under the same conditions after more
than 20 days to confirm that detection accuracy improved. As a result, we clarified
that the evaluation of the detection accuracy for unknown malware can be simulated
according to the above procedures.

2. Background

The signature-based detection method detects malicious programs by registering
hashes or binaries of malware files as signatures in advance and matching them with
samples at the time of inspection [10]. Therefore, the signature detection method can detect
already known malware but fails to detect unknown malware. Because a delay occurs
between the time when an anti-virus vendor discovers malware and the time when the
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vendor registers the signature, computers are at risk of being infected with the newly
discovered malware during this delay.

Heuristic detection is a method to determine whether a file is a malware application
by extracting and registering behavioral features such as API call sequences and machine
language opcodes from known malware in advance and comparing the program code
from the file analysis to see if there is anything that behaves similarly to the registered
features. Data mining and machine learning techniques are used to register the behavioral
features of malware [11,12]. This detection method can deal with subspecies and unknown
malware that are difficult to detect by the signature-based method. Therefore, it cannot
detect new types of malware that behave in an uncommon manner. Although the accuracy
of detection is improving with the development of machine learning technology, it is
still not realistic to detect malware using heuristic detection methods alone, and most
heuristic detection methods are used to compensate for the shortcomings of signature-
based detection methods.

The behavior detection method, also known as dynamic heuristic detection, involves
executing the sample code in an isolated environment, such as a virtual sandbox or other
isolated environments, and monitoring its behavior and changes in the computer’s in-
ternal environment to detect malicious entities [13,14]. However, malware developers
attempt to circumvent behavior detection by incorporating features into their programs
that hide the malware’s malicious behavior. In addition, false positives and negatives are
expected to occur due to the ambiguity of the decision criteria, and the method is also
time-consuming and burdensome for the computers that deploy it. As with the heuristic
detection method, this method is mostly used to compensate for the shortcomings of the
signature detection method.

Collaborative security [5–8,15–17] is an approach in which multiple security systems
and organizations share information and make security-related decisions. The advantages
of this approach include rapid response to threats and optimization of each organization’s
resources by sharing information among multiple organizations and systems. In ref. [5], the
author proposed a blockchain-based collaborative malware detection system that enables
instantaneous and tamper-resistant detection by multiple anti-virus vendors. The anti-virus
vendors join a consortium blockchain network and provide the detection results obtained
by their own anti-virus engine. These results are used to calculate the maliciousness
to determine whether a sample file is malware based on majority-voting-style malware
detection. Throughout the experiment, it was shown that majority voting using detection
results from multiple anti-virus engines was effective in reducing the number of false
positives. However, depending on the voting results at the time of malware identification,
detection results output from multiple anti-virus engines may be ignored even though
they are accurate, resulting in unacceptable detection omissions. George et al. [7] tackled
the issue of the risk of malicious Android Package Kit files causing malicious behavior
on mobile devices that use the Android platform. As a solution, the authors proposed a
system that classifies the functions or behaviors of mobile malware and performs malware
detection by prediction and majority voting using a machine learning model on a blockchain
node. Experimental results showed that the proposed system has better detection accuracy
than a single malware detector.

In recent research, ensemble-based attack detection methods that combine multiple
machine- and deep-learning-based detectors have been proposed [18–21]. These studies
use multiple detectors to overcome the weaknesses of the machine and deep learning, such
as a limited amount of training data, an imbalance between normal and abnormal samples,
and the selection of optimal hyperparameter settings. In the simple strategy, the results
are ensembled based on majority voting [18] and veto voting [18,19]. The veto voting
determines the “malware” regardless of the number of votes, even if one vote claims the file
is malware. The literature [20,21] makes the final malware detection based on the predicted
class probabilities from multiple detectors. To ensemble the results from multiple detectors,
Islam et al. [20] attempted weighted voting predictions based on the prediction accuracy
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of each detector. Xue and Zhu [21] used a soft voting strategy to ensemble the multiple
detection results. The soft voting strategy is one of the majority voting strategies that
averages the class probabilities from multiple detectors and obtains the answer according
to the maximum average class probability. This strategy can be useful in an environment
where each detector can give the class probabilities of all categories. Although these papers
mentioned weighted majority voting, they do not clarify how weights are calculated.

3. Proposed Method
3.1. Aim of This Research

Our research focuses on how to reflect the reliability of each anti-virus engine in
the value of their votes on voting-based collaborative malware detection. Most voting-
based malware detection systems [5–8] are limited by not considering each anti-virus
engine’s detection performance, and they use votes with uniform weights to determine
malware. The potential drawback is the possibility of overlooking malware when the
system determines a malware sample as benign based on the votes of multiple-classifiers
with low detection accuracy, even if the results of detection engines with high detection
accuracy judge it as malicious. According to the previous studies, there will be a bias in
the categories that each engine is more likely to detect, depending on which signatures the
signature-based method has or which features the behavior method uses for analysis.

3.2. Architecture

As shown in Figure 1, the proposed method comprises one or more control servers
and multiple anti-virus engines. The control server mainly inspects the malware acquired
from users through multiple anti-virus engines and makes the final decision based on those
results. The anti-virus engines are assumed to present as Web APIs or applications bundled
together if the vendor allows it. The system workflow follows the five steps illustrated in
Figure 1: (1) When a user uploads a file to the proposed service, the control server receives
it and (2) asks the anti-virus engines to inspect it via an API. (3) Each detection result from
each anti-virus vendor is aggregated onto the control server, and (4) then the server makes
a final decision according to the algorithm detailed in Section 3.3.3. Finally, (5) the system
returns the output to the users.

A B D C E

Users

Anti-virus engine

Suspicious binary file

Detection result

Control server

(1)

(2)

(3)

(3)

(2)

(2)

(3)

(2)

(2)

(3)

(3)

(5)

(4)

*
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A
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Decision

Weighted Based 
Decision
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Figure 1. Architecture of the proposed system. See Section 3.2 for an explanation of the numbers
in parentheses.
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3.3. Malware Detection Algorithm

The proposed system detects malware according to the following steps:

1. Express the detection results from multiple anti-virus engines (detailed in Section 3.3.1).
2. Assign an appropriate weight for the vote from each anti-virus engine (detailed in

Section 3.3.2).
3. Calculate the maliciousness to make a final decision on malware detection (detailed

in Section 3.3.3).

Table 1 shows the notation used in Sections 3.3.1–3.3.3.

Table 1. Notation used in Section 3.

Notation Description

C Total number of malware categories handled

K Total number of active anti-virus engines

M Anomaly score calculated by the proposed system

T Threshold for the anomaly score

Vb Total score of benign judgment votes

Vm Total score of malicious judgment votes

W Weight matrix (W ∈ RC×K)

whigh, wmid, wlow Weights of vote, whigh > wmid > wlow

Dhigh, Dlow Criterion for assigning vote weights for the detection rate

Shigh, Slow Criterion for assigning vote weights for the anomaly score

Rck
Detection rate for category c, which is from the k-th anti-virus engine

(Rck ∈ [0, 1])

ŝ Normalized anomaly score s from the anti-virus engine

3.3.1. Expression of Detection Results

The results of each detection should be expressed numerically and uniformly to enable
the system to handle different result representations from multiple anti-virus engines. Each
engine might output different anomaly scores: signature-based methods might present a
discrete value of 0 or 1, while machine learning methods might express the maliciousness
as a probability value between 0 and 100. Some anti-virus engines might also present
additional information, such as malware categories.

In this study, the output of every engine was normalized to a value between 0 and
1 to obtain a voting value. The proposed system expresses benign results as “0” and
malicious results as “1”. If the value output by the engine does not fall within the range, it
is normalized using the maximum value the engine can output.

3.3.2. Assignment of Appropriate Weights

In this study, we introduced a method of weighting the detection results output from
anti-virus engines by applying an appropriate weight value according to the analysis
history. The proposed system sets different priorities at multiple levels depending on the
contents of the detection results output by each anti-virus engine.

To reflect the reliability of detection results, the proposed system uses a weight matrix
W ∈ RC×K, where C is the total number of malware categories handled and K is the total
number of active anti-virus engines. The malicious voting weight for category c of the k-th
anti-virus engine Wck takes three weighting levels whigh > wmid > wlow. If an anti-virus
engine provides a binary-category classification rather than a multi-category classification,
the system assigns the same weight to all categories.

The three weighting levels are assigned by Equation (1) based on the detection rate
Rck. Rck is a value that indicates the performance of anti-virus engines, which is calculated
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in advance by attempting the detection process against a set of binary files whose true
categories are already known.

Wck =


wlow if 0 ≤ Rck < Dlow,
wmid if Dlow ≤ Rck < Dhigh,
whigh if Dhigh ≤ Rck ≤ 1.

(1)

The metrics that can be used as Rck are not limited to any specific one if they are related
to detection performance. The system administrator might adopt the recall to reduce false
negatives, the F-value to balance precision and recall, or some other metric.

Unfortunately, this rule alone does not allow for the calculation of weights when
the reported malware category is not included in the set of categories maintained by the
system. In this case, the system takes the following measures to make the results as useful
as possible. Some anti-virus engines using machine learning techniques might calculate the
anomaly score s. If the anomaly score is included in the anti-virus engine response, Wck is
assigned a weight value by Equation (2) where ŝ is normalized s to the range of [0, 1]. If
there is no anomaly score response, Wck is assigned wlow.

Wck =


wlow if 0 ≤ ŝ < Slow,
wmid if Slow ≤ ŝ < Shigh,
whigh if Shigh ≤ ŝ ≤ 1.

(2)

3.3.3. Calculation of the Anomaly Score for the Final Decision

The calculation of the anomaly score is inspired by the methods used in [5]. A
sample file is determined as malware based on whether the calculated anomaly score
M(0 ≤ M ≤ 1) is greater than or equal to a predefined threshold T. The anomaly score is
calculated regardless of the malware category to avoid missing attacks even when category
classification accuracy is unstable. Although this score is the same as that in Fuji et al. [5],
the difference is that weights are used to add up Vm as shown in Algorithm 1, which
includes all three steps.

M = Vm/(Vm + Vb) (3)

Algorithm 1 Proposed malware detection algorithm
1: function DETECTION( f ile)
2: Vm = 0, Vb = 0
3: for all k← K do
4: if k-th anti-virus engine determines file is malicious then
5: w = wlow
6: if Determined category c is in the set of maintained categories then
7: w←Wck
8: else
9: if k-th anti-virus engine response includes the anomaly score s then

10: ŝ← normalize(s)
11: w← get_weight(ŝ) ▷ Assign the weight value by Equation (2)
12: end if
13: end if
14: Vm ← Vm + 1× w ▷ Apply the weight for a malicious judgment vote
15: else
16: Vb ← Vb + 1
17: end if
18: end for
19: M = Vm/(Vm + Vb) ▷ Calculate the anomaly score
20: if M ≥ T then
21: return The final decision is “malicious”
22: else
23: return The final decision is “benign”
24: end if
25: end function
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4. Experiment
4.1. Experiment 1: Area-of-Expertise of Each Anti-Virus Engine

To rank anti-virus engines in terms of detection results, we first investigated whether
malware categories exist for which anti-virus engines have a detection advantage. It is
necessary to determine the priority of weighting, which is indispensable for selecting the
appropriate size of weights according to the record of an anti-virus engine’s detection results.
We collected malware files and those hashes for which malware categories have already been
identified using the online malware repository service MalwareBazaar [22]. MalwareBazaar
provides malware hashes and files for a target malware category by specifying the name as
the search tag (Figure 2). We used this search tag as the correct label for malware categories.

In this evaluation experiment, we used the malware analysis web service VirusTo-
tal [9] as multiple anti-virus engines to assess the same sample files and to acquire the
results. VirusTotal provides online malware detection using more than 70 anti-virus engines.
Users can inspect files and websites and search for inspection results using URLs and file
hashes. We obtained the analysis results in the JSON format using the VirusTotal API. The
prototypes were created as Python scripts and used in the experiments.

We then used the results to calculate and compare the average recall for each anti-virus
engine’s malware category, hoping to clarify the distribution of detection rates and the
existence of each engine’s area of expertise. The recall is calculated by tp/(tp + f n), where
tp is true positive and f n is false negative.

Figure 2. Screenshot of how malware samples were retrieved in MalwareBazaar for experiment 1.
Users can search for malware tagged with XX by entering tag:XX. This figure shows the search result
for “tag:Spyware” as shown in the red box at the top.

4.2. Experiment 2: Zero-Day Malware Detection Performance

This experiment aimed to verify that weighted voting-based malware detection could
improve the recall compared to non-weighted voting-based methods.

In our experiments, we collected malware samples using MalwareBazaar to verify the
accuracy of both methods for detecting unknown malware. From a practical standpoint,
evaluating detection performances for including unknown malware files is desirable be-
cause new malware files are created daily. However, it is difficult to intentionally collect
the latest unknown malware immediately after its appearance. Because new malware files
are uploaded to the MalwareBazaar repository daily, the acquired malware would likely be
the latest, including unknown malware.

We retrieved the malware samples registered in MalwareBazaar and inspected them
on VirusTotal the same day (see Table 2). Each group had up to 250 samples because the
VirusTotal API is limited to calling 500 samples per day and consumes the resources of
two APIs to upload a file and download the corresponding detection result. Groups D
and E had fewer samples than the others, as the number of registered malware samples on
that day did not exceed 250. The detection result was evaluated by recall as described in
Section 4.1.
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Table 2. Malware samples used in experiment 2 (collected in 2023).

Group A B C D E F G

Collection and Inspection Date 10/30 10/31 11/01 11/05 11/06 11/07 11/08

Number of Samples 250 250 250 98 249 250 250

We compared the recall between the proposed system and Fuji et al. [5] based on
the uniformly weighted voting method. Hereafter, Fuji et al.’s method is referred to as
the conventional method. The threshold value T was set to 0.5, as in the environment
conditions in [5]. This allowed us to compare the recall between the proposed system
with weighted voting and the conventional method with simple majority voting. The
voting weights for each anti-virus engine were calculated using the recall scores observed
in experiment 1. We empirically set the weights as whigh = 3, wmid = 2, wlow = 1 and
Dlow = Slow = 0.65, Dhigh = Shigh = 0.85.

4.3. Experiment 3: Accuracy over Time

In this experiment, we verified whether the malware samples in experiment 2 likely
contained unknown malware by seeing if they became detected over time. As mentioned
in Section 4.2, measuring accuracy against truly unknown malware is challenging. The
results of experiment 2 alone cannot determine whether it was truly unknown to those
anti-virus engines.

Therefore, we conducted detection experiments on the same malware again after a
period of time had passed. We then measured and compared the recall scores of experiment
2’s results to verify whether detection accuracy had improved. In general, malware that has
just been observed would be overlooked if it is a new or variant type. Still, as time passes
and more information is gathered, detecting attacks of new malware should gradually
become possible. We re-inspected the same samples as those used in experiment 2 more
than 20 days after the first inspection to compare the change in accuracy over time. Thus,
the samples used in the experiment were all the same as those in the results of experiment
2 (Table 2). Each sample was re-inspected on the date shown in Table 3.

Table 3. Malware samples used in experiment 3. The groups were the same as those used in
experiment 2.

Group A B C D E F G

Re-inspection Date 11/21 11/22 11/23 11/27 11/28 11/29 11/30

5. Results and Discussion
5.1. Experiment 1

This experiment provided a sufficient basis for using areas-of-expertise survey results
as criteria for weighting votes. Table A1 in the Appendix A shows the average malware
recall for each anti-virus engine, calculated based on the detection results by VirusTotal
for a total of six malware categories, including Spyware, Backdoor, Trojan, Ransomware,
Adware, and Worm. This result shows that even when the same malware was tested,
differences in recall scores were caused by differences in anti-virus engines, indicating that
each anti-virus engine has areas-of-expertise depending on the malware category.

5.2. Experiment 2

The experimental results showed that the proposed system was superior to the conven-
tional method in terms of recall when 7 days of samples were used as the detection target.
Figure 3 shows the result of recall between the conventional method and the proposed
method for each sample group. Our method improved recall by about 0.1 across all samples,
indicating that weighted voting can reduce false negatives.
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Therefore, the proposed system detects malware more accurately than the uniformly
weighted voting and is also effective for detecting unknown malware that has not yet
been registered.
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Figure 3. Recall scores of the proposed system and conventional method [5].

5.3. Experiment 3

As a result of the experiment, the results of experiment 2 can be interpreted as the
results when using unknown malware for some anti-virus engines. Figure 4 shows the
recall results between the first inspection date and the re-inspection date for each sample
group. The experimental results showed that the malware recall scores improved with time.

One factor contributing to this result was that the malware pattern databases of some
of the anti-virus engines used for detection via VirusTotal were updated within 20 days.
Thus, this result indicates that the malware used in experiment 2 was undetectable in the
early stages after the malware’s appearance.
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Figure 4. Recall scores of the proposed system over time. The results shown in “observation” are the
same as the “proposed system” values in Figure 3.

6. Closely Related Research

Davies et al. [6] proposed a ransomware detection approach based on a cumulative
malicious score through various benign-or-malicious binary classification tests to determine
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the final outcome. Similar concepts can also be seen in the literature [7,23]. These studies
did not consider the weights of each analysis, whereas this study provided insight that
detection accuracy can be improved by setting appropriate weights.

Many studies [24–26] used the VirusTotal results to automatically generate correct
labels for the supervised learning method. These studies mainly investigated whether
VirusTotal detection results could provide correct labels for more accurate machine-learning
training. They inspected malware samples obtained from public datasets [24], manually
created datasets [25,26], or the distribute API on VirusTotal [25]. The distribute API enables
us to retrieve the latest files uploaded to VirusTotal from users worldwide. We evaluated
the detection accuracy against malware recently registered in MalwareBazaar, and used
the tags as correct labels. This indicates that our results are not based solely on VirusTotal
judgments, but may approximate more general results of the data labeled by annotators.
However, it is important to interpret our results cautiously, as the labels may not always be
tagged by reputable MalwareBazaar users.

Fung et al. [23] conducted research most closely related to our study. Their approach
determines maliciousness by using the classification history as feedback from multiple
detectors based on binary-classification. Unlike their approach, our work investigated the
detection performance of multiple malware categories.

Similar to our work, Cocca et al. [27] evaluated the accuracy of anti-virus engines
listed on VirusTotal on a large dataset collected by MalwareBazaar. They were interested in
the prospect that there could be different detection results between the anti-virus engines.
However, this research was not necessarily conducted on the same day it was registered;
thus, unlike our research, it did not investigate the detection performance of new types
of malware.

7. Future Work and Limitations

Since some notes apply to interpreting our findings, we discuss these notes by showing
this study’s future work and limitations.

The proposed system’s evaluation experiments were conducted under the condition
that all samples were malware. The false positive rate must still be evaluated by applying
the system to benign files to demonstrate detection performance accurately. Generally,
collecting unbiased benign files to evaluate false positives fairly is challenging. Appropriate
methods should be considered, such as using manually created files as a ground truth
dataset for evaluation, while allowing for some bias, as Zhu et al. [25] did. If our system is
implemented by applying the VirusTotal API, each anti-virus engine’s false positives are
shown on VirusTotal statistics based on user reports [28]. These statistics could be useful in
deciding which anti-virus engine to use in practice.

Furthermore, the detection performance reported in this study must be interpreted
with caution as to whether it truly represents the accuracy of detecting unknown malware.
Although the MalwareBazaar submission policy states, “Please refrain from uploading
malware samples older than 10 days to MalwareBazaar”, the freshness and correctness of
the samples depend on whether the users that upload adhere to the standards. Therefore,
it is necessary to re-examine the best way to collect samples for experiments in the future.

Although this study used VirusTotal, some studies have pointed out that some scan-
ners alter their verdict even if the same file is inspected [24,25]. Hence, only scanners
known to be stable and suitable scanners should be incorporated into the detection. For
instance, Salem et al. [24] removed unstable scanners by a certainty score calculated by
tallying up the output labels analyzing the same application multiple times. This approach
also helps prevent adversarial scanners that consistently return irresponsible results from
trying to mislead the final decision in cooperative systems, even without VirusTotal.

8. Conclusions

Highly accurate malware detection methods are needed to cope with the ever-increasing
number of malicious attacks causing damage to society. Although malware detection tech-
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niques such as signature-based, heuristic-based, and behavior-based methods have been
widely used, different detection methods are suitable for different attacks. Given the many
new types and variants that emerge, a single technique is not enough to detect all malware.

While collaborative malware detection could improve detection performance by in-
tegrating multiple detection results, these approaches can even overlook new types of
malware. Most methods output the final result by majority vote, which means they miss
attacks that are difficult to detect for many detection methods. Since variants and unknown
malware are developed by attackers to evade detection, most anti-virus engines do not
have sufficient evidence to detect malware when it appears quickly.

This study verified the detection accuracy of collaborative malware detection using
VirusTotal and MalwareBazaar to achieve high accuracy even against unknown malware.
We developed a prototype system that applies weights to the malware detection results of
anti-virus engines based on their areas-of-expertise. Even if the malware is new, false nega-
tives can be reduced by prioritizing dynamic analysis methods with high detection accuracy.

We evaluated the detection accuracy against unknown malware to confirm that the
optimization of weights determined based on reliability could deal with new types of
malware. By inspecting malware that appeared in MalwareBazaar on the same day, we
measured the detection accuracy of unknown malware with insufficient information.

Through the evaluation, we confirmed the new system’s superiority over uniformly
weighted voting in terms of detection accuracy improvement due to the suppression of
false negatives. We also verified that the new system can improve detection accuracy over
time by examining the transition of malware recall.
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Appendix A. Average Recall Scores for All Anti-Virus Engines

Table A1. Average recall scores for anti-virus engines on VirusTotal. 1 “N/A” means that no detection
results were obtained. Numbers in parentheses are the number of samples in each category.

Engine Name Spyware Backdoor Trojan Ransomware Adware Worm
(144) (122) (500) (500) (500) (497)

Acronis 0.076 0.197 0.222 0.418 0.694 0.584

Ad-Aware 0.611 0.443 0 0.166 0.04 0.531

AhnLab-V3 0.889 0.697 0.926 0.886 0.366 0.799

Alibaba 0.861 0.541 0.898 0.838 0.926 0.797

ALYac 0.229 0.861 0.882 0.980 0.982 0.930

https://drive.google.com/drive/folders/1vGcBdbjDusgzoMPWyVCRGx_vvM7w_g3s?usp=sharing
https://drive.google.com/drive/folders/1vGcBdbjDusgzoMPWyVCRGx_vvM7w_g3s?usp=sharing
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Table A1. Cont.

Engine Name Spyware Backdoor Trojan Ransomware Adware Worm
(144) (122) (500) (500) (500) (497)

Antiy-AVL 0.500 0.730 0.868 0.978 0.980 0.742

APEX 0.194 0.434 0.884 0.704 1.00 0.821

Arcabit 0.681 0.803 0.880 0.996 0.994 0.797

Avast 0.493 0.893 0.934 0.920 0.982 0.946

Avast-Mobile 0.701 0.041 0.026 0.022 N/A1 0.010

AVG 0.493 0.893 0.934 0.920 0.982 0.954

Avira 0.944 0.893 0.842 0.750 0.980 0.867

Avware N/A N/A N/A N/A N/A 0.002

Baidu 0.014 0.049 0.006 0.032 0 0.288

BitDefender 0.854 0.959 0.882 0.994 0.992 0.980

BitDefenderFalx 0.660 0.025 0.028 N/A N/A N/A

BitDefenderTheta 0.132 0.295 0.232 0.530 0.986 0.680

Bkav 0.090 0.213 0.358 0.422 0.100 0.592

CAT-QuickHeal 0.681 0.303 0.614 0.586 0.114 0.455

ClamAV 0.083 0.279 0.432 0.550 0.114 0.565

CMC 0 0 0 0 0 0.004

Comodo 0.243 0.393 N/A 0.100 0.086 0.425

CrowdStrike 0.194 0.484 0.860 0.580 0.486 0.795

Cybereason 0.118 0.262 0.352 0.514 0.006 0.638

Cylance 0.194 0.508 0.950 0.764 0.838 0.825

Cynet 0.910 0.811 0.944 0.952 0.980 0.907

Cyren 0.646 0.631 0.912 0.922 0.980 0.895

DeepInstinct 0.049 0.180 0.936 0.316 0.112 0.298

DrWeb 0.861 0.754 0.832 0.918 0.748 0.851

eGambit 0.014 0.025 N/A N/A N/A 0.042

Elastic 0.222 0.590 0.910 0.824 0.986 0.873

Emsisoft 0.826 0.943 0.872 0.976 0.972 0.952

Endgame N/A N/A N/A N/A N/A 0.002

ESET-NOD32 0.951 0.893 0.964 0.888 0.988 0.964

F-Prot 0 N/A N/A N/A N/A 0.002

F-Secure 0.389 0.377 0.834 0.492 0.426 0.495

FireEye 0.861 0.975 0.908 0.994 0.994 0.990

Fortinet 0.924 0.820 0.966 0.914 1.00 0.897

GData 0.861 0.967 0.964 0.990 0.990 0.980

Google 0.535 0.615 0.926 0.930 0.980 0.626

Gridinsoft 0.132 0.295 0.886 0.554 0.358 0.547

Ikarus 0.931 0.779 0.962 0.932 0.964 0.873

Invincea N/A N/A N/A N/A N/A 0.034

Jiangmin 0.153 0.582 0.308 0.718 0.070 0.419
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Table A1. Cont.

Engine Name Spyware Backdoor Trojan Ransomware Adware Worm
(144) (122) (500) (500) (500) (497)

K7anti-virus 0.208 0.541 0.876 0.856 0.008 0.799

K7GW 0.889 0.574 0.910 0.864 0.008 0.799

Kaspersky 0.924 0.869 0.958 0.922 0.988 0.972

Kingsoft 0.569 0.320 0 0.340 0.498 0.392

Lionic 0.882 0.836 0.916 0.906 0.922 0.813

Malwarebytes 0.229 0.443 0.934 0.762 0.866 0.783

MAX 0.799 0.951 0.882 0.984 0.994 0.966

MaxSecure 0.208 0.525 0.682 0.726 0.770 0.684

McAfee 0.924 0.721 0.968 0.926 0.986 0.875

McAfee-GW-Edition 0.861 0.877 0.978 0.958 0.962 0.922

Microsoft 0.917 0.877 0.940 0.966 0.990 0.944

MicroWorld-eScan 0.854 0.959 0.912 0.994 1.00 0.978

NANO-anti-virus 0.312 0.352 0.334 0.624 0.098 0.584

nProtect N/A N/A N/A N/A N/A 0.002

Paloalto 0.146 0.393 0.712 0.352 0.502 0.531

Panda 0.215 0.541 0.882 0.876 0.068 0.746

Qihoo-360 0.035 0.033 N/A N/A N/A 0.093

Rising 0.167 0.713 0.916 0.948 0.540 0.897

Sangfor 0.194 0.672 0.904 0.810 0.626 0.879

SentinelOne 0.132 0.434 0.698 0.562 0.098 0.799

Sophos 0.750 0.689 0.970 0.918 0.982 0.869

SUPERAntiSpyware 0.028 0.025 0.220 0.132 0 0.113

Symantec 0.757 0.738 0.772 0.938 0.892 0.903

SymantecMobileInsight 0.625 0.033 0.032 N/A N/A N/A

TACHYON 0.035 0.082 0.084 0.276 0 0.308

tehtris 0.035 0.057 0.102 0.100 0 0.167

Tencent 0.840 0.762 0.912 0.924 0.674 0.877

TheHacker N/A N/A N/A N/A N/A 0.002

TotalDefense 0 0 N/A N/A N/A 0.050

Trapmine 0.069 0.238 0.650 0.430 1.00 0.485

TrendMicro 0.208 0.721 0.794 0.932 0.848 0.779

TrendMicro-HouseCall 0.229 0.754 0.812 0.680 0.894 0.787

Trustlook 0.667 0.033 0.032 0 N/A 0

VBA32 0.208 0.508 0.644 0.688 0.620 0.811

VIPRE 0.653 0.770 0.950 0.990 0.988 0.851

VirIT 0.076 0.123 0.750 0.590 0.352 0.362
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Table A1. Cont.

Engine Name Spyware Backdoor Trojan Ransomware Adware Worm
(144) (122) (500) (500) (500) (497)

ViRobot 0.056 0.270 0.206 0.496 0.164 0.356

Webroot 0.139 0.369 0.668 0.472 0.124 0.364

WhiteArmor N/A N/A N/A N/A N/A 0

Xcitium 0.160 0.385 0.652 0.628 0.518 0.280

Yandex 0.160 0.385 0.256 0.350 0.006 0.296

Zillya 0.292 0.508 0.264 0.748 0.002 0.531

ZoneAlarm 0.535 0.500 0.964 0.654 0.554 0.628

Zoner 0.035 0.016 0.040 0.048 0 0.147
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