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Abstract: Simultaneous wireless information and power transfer (SWIPT) has emerged as a pivotal
technology in 6G, offering an efficient means of delivering energy to a large quantity of low-power
devices while transmitting data concurrently. To address the challenges of obstructions, high path
loss, and significant energy consumption associated with long-distance communication, this work
introduces a novel alternating iterative optimization strategy. The proposed approach combines
active simultaneous transmission and reflection of reconfigurable intelligent surfaces (STAR-RIS) with
SWIPT to maximize spectrum efficiency and reduce overall system energy consumption. This method
addresses the considerable energy demands inherent in SWIPT systems by focusing on reducing
the power output from the base station (BS) while meeting key constraints: the communication
rate for information receivers (IRs) and minimum energy levels for energy receivers (ERs). Given
complex interactions between variables, the solution involves an alternating iterative optimization
process. In the first stage of this approach, the passive beamforming variables are kept constant,
enabling the use of semi-definite relaxation (SDR) and successive convex approximation (SCA)
algorithms to optimize active beamforming variables. In the next stage, with active beamforming
variables fixed, penalty-based algorithms are applied to fine-tune the passive beamforming variables.
This iterative process continues, alternating between active and passive beamforming optimization,
until the system converges on a stable solution. The simulation results indicated that the proposed
system configuration, which leverages active STAR-RIS, achieves lower energy consumption and
demonstrates improved performance compared to configurations utilizing passive RIS, active RIS,
and passive STAR-RIS. This evidence suggests that the proposed approach can significantly contribute
to advancing energy efficiency in 6G systems.

Keywords: active STAR-RIS; SWIPT; semicontinuous relaxation; penalty algorithm; alternate iterative
optimization

1. Introduction

With the development of Internet of Things (IoT) technology, the need for ubiquitous
communication between devices will become stronger [1]. Low-power devices will be
employed on a large scale; however, this will lead to very high energy consumption as
well as significant carbon emissions [2]. To address energy and environmental issues,
SWIPT technology is expected to be an integral part of 6G [3,4]. SWIPT technology relies
on wireless energy transmission technology, which allows simultaneous transmission of
energy and information using the same frequency bands and waveforms in order to realize
the synergy between ERs and IRs. The access point (AP) balances the energy reception
and information transmission performance by optimizing the energy beamforming and
information beamforming. However, the transmission efficiency and range of the SWIPT
system are not ideal for long-distance transmission due to the fact that the energy and
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information emission are concentrated at the AP, and the path loss is high when the receiver
is in the shadow area of the obstacle.

With the aim of decreasing the SWIPT system’s energy use, researchers have conducted
research on full-duplex technology [5] and reconfigurable intelligent surface (RIS). A lot of
reflective unit elements are distributed on the RIS plane, and the amplitude and direction
of incoming signal can be adjusted by changing phase or amplitude parameters of units
through coding control of circuits such as programmable gate arrays, thus expanding the
coverage of the signal [6]. Therefore, the use of RIS can alleviate the problem of transmission
loss caused by long-distance communication in SWIPT systems.

A great deal of research has been conducted by scholars on passive RIS-assisted SWIPT
techniques. One study [7] explored the simultaneous optimization of message rate and
received power in passive RIS-assisted multi-input single-output downlink multi-user
wireless networks and developed a practical algorithm. Another study [8] addressed the
challenge of low far-field power transmission efficiency with a passive RIS-assisted SWIPT
system. Utilizing sorting and iterative optimization algorithms, it sought to maximize
the minimum rate for information receivers, both in ideal and non-ideal channels. In
one study [9], passive RIS was employed to enhance the performance of cooperative non-
orthogonal multiple access (C-NOMA). The objective was to maximize the data rate for cell-
edge users while considering the energy constraints and minimum data rate requirements
of cell-center users. Another study [10] presented the problem of maximum average
secrecy rate, using RIS to enhance physical layer security in Rayleigh fading channels. One
study [11] combined RIS with UAVs to simultaneously transmit information and collect
energy by segmenting passive reflective arrays in geometric space, ensuring quality of
service in dynamic wireless environments. A further study [12] investigated the deep
integration of RIS and NOMA, which dramatically increased the data transfer rate in the
Internet of Medical Things (IOMT) while significantly improving the safety of private
users in RIS-assisted NOMA networks. These findings suggest that the RIS-assisted SWIPT
system is able to further boost wireless system capability.

However, to further decrease the power consumption and improve the performance
of the system, active RIS has been widely used [13]. One study [14] proposed an active RIS-
assisted SWIPT system to maximize the rate of IRs. The research results indicated that an
active RIS-assisted SWIPT system can obtain superior performance gains compared to other
systems. Another study [15] explored the issue of active RIS-assisted multi-user downlink
transmission and rate maximization based on actual hardware impairments. The simulation
results showed that active RIS achieves a higher total transmission rate compared to passive
RIS. One study [16] investigated an algorithm for combined emission beamforming and
energy-containing RIS reflection matrices to maximize energy efficiency using quadratic
transform-based fractional order planning techniques. A different study [17] examined
the complex and non-convex robust secrecy rate optimization problem when AP and RIS
share identical power source. The research findings indicated that, in the context of active
RIS, the proposed algorithm delivers superior secrecy rate performance in contrast to
passive RIS. Another study [18] addressed the problem of limited performance gain of
conventional passive RIS by proposing an active RIS-assisted multi-user multiple-input
multiple-output SWIPT system, which achieved the system power minimization while
satisfying the minimum communication rate demand and energy collection constraints of
both the IRs and ERs.

However, both passive and active RIS only consider the case of reflection and not
transmission. The tunable components are integrated into the substrate of the RIS, and the
wireless signal cannot penetrate the RIS, allowing no energy leakage into the space behind
the RIS; therefore, the AP and users must be placed on identical side of RIS, resulting in
utilization of only a half-space intelligent radio environment with very limited spectrum of
space utilization, severely limiting the flexibility and effectiveness of the RIS. To overcome
the limitations of RIS and thus make fuller use of spectrum resources, researchers have
proposed a new concept—STAR-RIS, which is not only reflective but also transmissive
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compared to RIS, thus achieving 360◦ wireless coverage [19]. One study [20] investigated a
multi-input single-output passive STAR-RIS-assisted NOMA downlink network, achieving
maximum energy efficiency while balancing total rate and power consumption. A different
study [21] proposed a network of passive STAR-RIS-assisted SWIPT systems applying the
time switching (TS) protocol to maximize the total rate of all the information receivers by
co-optimizing energy allocation of IRs and the beamforming vectors of passive STAR-RIS.
Zhu investigated the max–min fairness optimization problem for SWIPT systems with
assistance of passive STAR-RIS in imperfect channel states under the constraints of the
signal-to-interference-plus-noise Ratio (SINR) of IRs, aiming to maximize the minimum
power collected by the ERs [22].

Although the above work has achieved good results in passive RIS, active RIS, and
passive STAR-RIS-assisted SWIPT systems, respectively, passive RIS-assisted SWIPT sys-
tems still have high power consumption due to signal fading issues, and passive RIS is only
reflective but not transmissive, resulting in limited spectrum space utilization. Although
active RIS can reduce the attenuation by amplifying the signal, it still does not have the
function of transmission, and although passive STAR-RIS has the function of transmission
and reflection, it cannot amplify the signal; therefore, an active STAR-RIS that combines
signal amplification, transmission, and reflection to reduce the AP transmitting power to
a greater extent has become a hotspot in current research. However, few existing studies
involve the combination of active STAR-RIS and SWIPT techniques. To solve this issue, the
present paper explores the problem of energy minimization in an active STAR-RIS assisted
SWIPT system. The contributions of this paper are as below:

• This paper constructs a SWIPT system model assisted by active STAR-RIS and
consisting of AP, active STAR-RIS, multiple IRs, and multiple ERs. With multiple
ERs located in the reflective space and multiple IRs located in the transmissive
space, our goal is to minimize the AP transmission power constrained by communi-
cation rate of IRs and the energy accepted by the smallest ERs so that the spectrum
resources of the whole communication network are fully utilized with the optimal
energy transmission performance;

• To tackle the non-convex nature of the problem, this paper proposes an alternating
optimization (AO) algorithm for active and passive beamforming variable assign-
ment. The approach involves two subproblems: In the first, passive beamforming
variables are fixed, and the active beamforming variables are optimized using
semi-definite relaxation (SDR) and successive convex approximation (SCA). In
the second subproblem, active beamforming variables are kept constant, and a
penalty-based algorithm is used to optimize the passive beamforming variables.
By alternating between these two subproblems, the algorithm converges on an
optimal solution despite the problem’s non-convexity;

• The simulation results show that the proposed joint iterative optimization method
converges rapidly and delivers high-quality results. With active STAR-RIS, system
performance significantly improves, making better use of spectrum resources. Com-
paring four system models, namely active/passive RIS and active/passive STAR-RIS,
the active STAR-RIS-assisted SWIPT system achieved minimal AP transmit power
and superior performance even with consistent variables like SINR, the quantity
of active STAR-RIS reflector units, the quantity of AP transmitting antennas, and
minimum-energy receiver power. Active STAR-RIS also allows the system to utilize
both reflective and transmissive spaces, maximizing spectrum resource efficiency. This
dual-mode capability contributes to enhanced communication and energy transfer.

The paper is organized as follows: Section 2 mainly introduces the system model
of this paper and addresses the issue of minimum AP transmit power; in Section 3, the
subproblems 1 and 2 are solved using the SDR algorithm and the penalty algorithm,
respectively, and the optimization algorithm is employed with alternating iterations until
the system converges; Section 4 mainly introduces the analysis of the simulation results.
The whole paper is summarized in Section 5.
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The acronyms used in this paper are shown in Table 1.

Table 1. Abbreviations used in this paper.

Acronyms Full Name

SWIPT Simultaneous Wireless Information and Power Transfer
AP Access Point

SDR Semi-Definite Relaxation
SCA Successive Convex Approximation
IoT Internet of Things
RIS Reconfigurable Intelligent Surface

NOMA Non-Orthogonal Multiple Access
BS Base Station
AO Alternating Optimization

SINR Signal-to-Interference-plus-Noise Ratio
TS Time Switching
IRs Information Receivers
ERs Energy Receivers

2. System Model and Problem Description
2.1. System Model

Figure 1 illustrates the system model studied in this paper. We studied a nar-
rowband active STAR-RIS-assisted SWIPT system that operates on a frequency flat
channel. Here, the AP of N antennas serves IRs and ERs assisted by an active STAR-RIS
containing M units. KI = {1, 2, ..., k I} and KE = {1, 2, ..., kE} represent IRs and ERs,
respectively. Assuming that obstacles block the direct communication link between
the AP and users, the deployed active STAR-RIS provides communication services and
meets the energy-harvesting requirements for users in signal-blind areas by reflecting
and transmitting signals. G ∈ CM×N , f H

t,i ∈ C1×M , and f H
r,j ∈ C1×M represent channels

from AP to the active STAR-RIS, active STAR-RIS to i-th IRs, and active STAR-RIS to
j-th ERs, respectively. For simplicity, linear transmission precoding is considered at the
AP, and it is assumed that each information receiver or energy receiver is allocated a
separate information or energy beam.
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Figure 1. Active STAR-IRS-assisted SWIPT system model.

2.2. Problem Description

Let sm represent the signal incoming onto the m-th unit of the active STAR-RIS,
where m ∈ M ≜ 1, 2, ..., M. tm = (

√
βt

mejθt
m)sm and rm = (

√
βr

mejθr
m)sm represent trans-
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mitted and reflected signals on the m-th unit, respectively, where
√

βt
m ∈ [0,

√
βmax],√

βr
m ∈ [0,

√
βmax], θt

m ∈ [0, 2π), θr
m ∈ [0, 2π), and βmax ≥ 1. The variable βt

m and βr
m must

meet the following conditions:

βt
m + βr

m ≤ βmax, ∀m ∈ M (1)

This paper focuses on the energy splitting (ES) protocol for active STAR-RIS: For ES
mode, it is assumed that all units of active STAR-RIS operate in reflection and transmission
modes, and the signal on each unit is decomposed into an emission signal and reflection

signal. The decomposition ratio is βt
m : βr

m. ΘES
t = diag

(√
βt

1ejθt
1 ,
√

βt
2ejθt

2 , ...,
√

βt
Mejθt

M

)
and ΘES

r = diag
(√

βr
1ejθr

1 ,
√

βr
2ejθr

2 , ...,
√

βr
Mejθr

M

)
represent the emission and reflection

coefficient array, respectively.
Let xI

i , xE
j denote the signals carrying information and carrying energy, respectively,

where i ∈ KI , and j ∈ KE. The accepted signal at the i-th IRs is as follows:

yES
i = f H

t,i PΘES
t G( ∑

i∈KI

wixI
i + ∑

j∈KE

vjxE
j ) + f H

t,i PnRIS + ni (2)

where wi ∈ CN×1, vj ∈ CN×1 are the precoding vectors of the i-th IRs and the j-th

ERs, respectively. For information signals xI
i , there are xI

i ∼ CN(0, 1), E(
∣∣∣xE

j

∣∣∣2) = 1 and

∀i ∈ KI , ∀j ∈ KE. In Equation (2), there are ni ∼ CN(0, σ2
i ), P ≜ {P1, P2, ..., PM}H , and

nRIS ∼ CN(0, σ2
RIS).

Since energy beams are pseudo-random signals that do not carry any information,
their waveforms are assumed to be known at the AP and at each information receiver
prior to data transmission, and it is assumed in this paper that the interference they cause
can be cancelled out at each information receiver. Therefore, for the ES protocol, the
communication rate achievable by the i-th information receiver is as follows:

RES
i = lb

1 +

∣∣∣ f H
t,i PΘES

t Gwi

∣∣∣2
∑

j ̸=i,j∈KI

∣∣∣ f H
t,i PΘES

t Gwj

∣∣∣2+∣∣∣∣∣∣ f H
t,i PΘES

t

∣∣∣∣∣∣2σ2
RIS + σ2

i

 (3)

If the noise power is ignored, the power is accepted at the j-th energy receiver:

EES
j = ∑

k∈KI

∣∣∣ f H
r,jPΘES

r Gwk

∣∣∣2 + ∑
k∈KE

∣∣∣ f H
r,jPΘES

r Gvk

∣∣∣2, ∀j ∈ KE (4)

The objective of this paper is the joint optimization of the active beamforming variable{
wi, vj

}
, the passive beamforming variable ΘES

k , ∀k ∈ {t, r}, and the amplification mul-
tiplier matrix P for a given ES operation protocol under the communication rate of the
information receiver and the energy-harvesting constraints of the energy receiver so as to
minimize the AP power consumption. The optimization problem can be thus stated:

min
{wi},{vj},ΘES

k

∑
i∈KI

||wi||
2
+ ∑

j∈KE

∣∣∣∣vj
∣∣∣∣2 (5)

s.t. RES
i ≥ Ri, ∀i ∈ KI (6)

EES
j ≥ Ej, ∀j ∈ KE (7)

ΘES
k ∈ FES, ∀k ∈ {t, r} (8)
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where Ri in Equation (6) denotes the minimum rate requirement for user i, Ej in Equation (7)
denotes the minimum energy harvesting requirement for user j, and FES in Equation (8)
denotes the feasible set corresponding to the emission and reflection coefficient matrix.

Because of the coupling between variables, this paper uses the algorithm of alternating
iteration to optimize the solution for different variables. We first stabilize the passive
beamforming variable ΘES

k , ∀k ∈ {t, r} and the magnification matrix P, optimizing variable{
wi, vj

}
. Once the most optimal solution of

{
wi, vj

}
is available, we fix the value unchanged

and then optimize the passive beamforming variable ΘES
k , ∀k ∈ {t, r} and magnification

matrix P and so on iteratively until the system converges.

3. Optimization of Algorithm Design

In this paper, alternating optimization method is used to address joint beamforming
optimization problem. That is, problem (5) is split into two sub-problems: For the first,
SDR method is used to optimize

{
wi, vj

}
given Qk = PΘES

k , k ∈ {t, r}, and for the second,
the penalty-based algorithm is used to optimize

{
wi, vj

}
given Qk.

3.1. Active Beamforming Optimisation

First, we consider the optimization of
{

wi, vj
}

given Qk, k ∈ {t, r}. Let hH
t,i = f H

t,i QtG
and hH

r,j = f H
r,jQrG define Ht,i = ht,ihH

t,i, Hr,j = hr,jhH
r,j, Wi = wiwH

i , ∀i ∈ KI and meet

Wi≻0, rank(Wi) = 1. Let Vj = vjvH
j , ∀j ∈ KE meet Vj≻0, rank(Vj) = 1. Problem (5) is

converted into the optimization problem below:

min
Wi ,Vj

∑
i∈KI

TR(Wi) + ∑
j∈KE

TR
(
Vj) (9)

s.t. Yi ∑
i ̸=i,i∈KI

TR(Ht,iWi)−TR(Ht,iWi) + || f H
t,i Qt||2Yiσ

2
RIS (10)

+Yiσ
2
i ≤ 0, ∀i ∈ KI

∑
k∈KE

TR(Hr,jVk)+ ∑
k∈KI

TR(Hr,jWk) ≥ Ej, ∀j ∈ KE (11)

rank(Wi) = 1, rank(Vj) = 1 (12)

Wi≻0, Vj≻0, ∀i ∈ KI , ∀j ∈ KE (13)

In the above equation Yi = 2Ri − 1, because problem (9) has a non-convex constraint (12),
to address this problem, this paper uses the SDR method, and neglecting (12), problem (9) is
transformed into the following semidefinite relaxation form (14).

min
Wi ,Vj

∑
i∈κI

TR(Wi) + ∑
j∈κε

TR
(
Vj) (14)

s.t. Yi ∑
i ̸=i,i∈KI

TR(Ht,iWi)−TR(Ht,iWi) + || f H
t,i Qt||2Yiσ

2
RIS

+Yiσ
2
i ≤ 0, ∀i ∈ KI

(15)

∑
k∈KE

TR(Hr,jVk)+ ∑
k∈KI

TR(Hr,jWk) ≥ Ej, ∀j ∈ KE (16)

Wi≻0, Vj≻0, ∀i ∈ KI , ∀j ∈ KE (17)

The relaxation problem (14) is a convex positive semidefinite programming problem,
which can be effectively solved by using standard convex optimization tools such as CVX.
Next, the compactness of rank constraint relaxation in (12) was studied.

Theorem 1. Problem (14) always satisfies rank(Wi) = 1, rank(Vj) = 1,∀i ∈ KI , ∀j ∈ KE without
losing optimality.
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Proof of Theorem 1. Detailed proof can be found in Appendix A. □

3.2. Passive Beamforming Optimization

Secondly, we consider the optimization of Qk, k ∈ {t, r} given
{

wi, vj
}

and define
ct,i = diag( f H

t,i )Gwi, cr,j = diag( f H
r,j)Gvj. We also define the vector of transmission

and reflection coefficients as qk = [P1

√
βk

1ejθk
1 , P2

√
βk

2ejθk
2 , ..., PM

√
βk

Mejθk
M ]

H
, ∀k ∈ {t, r}.

Let Ct,i = ct,icH
t,i, Cr,j = cr,jcH

r,j, Qk = qk(qk)
H , ∀k ∈ {t, r} meet Qk≻0, diag(Qk) = βk,

rank(Qk) = 1, where βk ≜ [P2
1 βk

1, P2
2 βk

2, ..., P2
Mβk

M], ∀k ∈ {t, r}.
The problem is next solved using a penalty-based algorithm. We transform problem (5)

into the following optimization problem:

min
Qk ,βk

η ∑
k∈{t,r}

(||Qk||∗−||Qk||2) (18)

s.t. Yi ∑
i ̸=i,i∈KI

TR(Ct,iQt)−TR(Ct,iQt) + || f H
t,i Qt||2Yiσ

2
RIS

+Yiσ
2
i ≤ 0, ∀i ∈ KI

(19)

∑
k∈KE

TR(Cr,jQr)+ ∑
k∈KI

TR(Cr,jQr) ≥ Ej, ∀j ∈ KE (20)

diag(Qk) = βk ,∀k ∈ {t, r} (21)

Qk≻0, ∀k ∈ {t, r} (22)

0 ≤ βt
m, βr

m ≤ βmax , βt
m + βr

m ≤ βmax, ∀m ∈ M (23)

where the nonconvex rank-one constraint rank(Qk) = 1 is equivalently written as an
equational constraint:

||Qk||∗−||Qk||2 = 0, ∀k ∈ {t, r} (24)

We next relax the equation constraint (24) to a penalty item attached to the target
function. In Equation (24), there are ||Qk||∗ = ∑i σi(Qk) and ||Qk||2 = σi(Qk) standing for
the nuclear and spectral paradigms, respectively, and σi(Qk) is the i-th greatest singular
value of array Qk. For arbitrary Ermitian matrices Qk ∈ HM, Qk≻0, there will always be
||Qk||∗−||Qk||2 ≥ 0 . The equation holds true only when the rank of Qk is 1.

When the Qk rank is not one, η > 0 is the penalty factor of target function. A small
value is first used to initialize η to find a feasible point, after which the iterative process
gradually increases η to a value enormous enough to ultimately obtain a practicable rank-
one solution. The algorithm ends when the following situations occur:

max{||Qk||∗−||Qk||2, ∀k ∈ {t, r}} ≤ ε1 (25)

where ε1 denotes the accuracy that satisfies the predefined constraints of the equation. For
any penalty factor η > 0, problem (18) remains nonconvex due to the nonconvexity of the
target function. It is converted to (26) using the SCA method below.

For a given point Q(n)
k , a convex upper boundary for the penalty item is gained using

a first-order Taylor expansion during the n-th iteration process:∣∣∣∣∣∣Qk

∣∣∣∣∣∣∗−∣∣∣∣∣∣Qk

∣∣∣∣∣∣2 ≤
∣∣∣∣∣∣Qk

∣∣∣∣∣∣∗ − Q(n)
k (26)

where Q(n)
k ≜

∣∣∣∣∣∣∣∣Q(n)
k

∣∣∣∣∣∣∣∣2 + TR[u(Q(n)
k )(u(Q(n)

k ))
H
(Qk − Q(n)

k )] , u(Q(n)
k ) is the eigenvector

corresponding to the largest eigenvalue of Q(n)
k .
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Thus, problem (18) transforms into the following optimization problem:

min
Qk ,βk

η ∑
k∈{t,r}

(
∣∣∣∣∣∣Qk

∣∣∣∣∣∣∗ − Q(n)
k ) (27)

s.t. Yi ∑
i ̸=i,i∈KI

TR(Ct,iQt)−TR(Ct,iQt) + || f H
t,i Qt||2Yiσ

2
RIS

+Yiσ
2
i ≤ 0, ∀i ∈ KI

(28)

∑
k∈KE

TR(Cr,jQr)+ ∑
k∈KI

TR(Cr,jQr) ≥ Ej, ∀j ∈ KE (29)

diag(Qk) = βk ,∀k ∈ {t, r} (30)

Qk≻0, ∀k ∈ {t, r} (31)

0 ≤ βt
m, βr

m ≤ βmax , βt
m + βr

m ≤ βmax, ∀m ∈ M (32)

However, although the optimization problem (27) includes a target function, it still
confronts availability issues since arbitrary Qk that meets the constraints is an optimum
solution, so we mandatorily carry out a solution that optimizes the value of the SINR and
the collected energy and at the same time satisfies the rank-one constraints [23], and in
order to achieve, this we propose a new slack variable τi as the “SINR residuals”, and the
new problem is given by Equation (33):

min
Qk ,βk

η ∑
k∈{t,r}

(
∣∣∣∣∣∣Qk

∣∣∣∣∣∣∗ − Q(n)
k ) −

KI

∑
i=1

ατi (33)

s.t. (Yi + τi) ∑
i ̸=i,i∈KI

TR(Ct,iQt)−TR(Ct,iQt) + || f H
t,i Qt||2(Yi + τi)σ

2
RIS

+(Yi + τi)σ
2
i ≤ 0, ∀i ∈ KI

(34)

∑
k∈KE

TR(Cr,jQr)+ ∑
k∈KI

TR(Cr,jQr) ≥ Ej, ∀j ∈ KE (35)

diag(Qk) = βk ,∀k ∈ {t, r} (36)

Qk≻0, ∀k ∈ {t, r} (37)

0 ≤ βt
m, βr

m ≤ βmax , βt
m + βr

m ≤ βmax, ∀m ∈ M (38)

α, τi ≥ 0, ∀i (39)

The optimization problem (33) has the same feasible set as the optimization problem (27);
however, the optimization problem (33) has better convergence.

For the optimization problem (33), if Q is rank one, then the solution of Q∗ is also
optimal for problem (33). In this case, by performing an eigenvalue decomposition on Q∗,
the corresponding q∗ can be obtained. qmax denotes the unit eigenvector associated with
the largest eigenvalue λmax(Q). The optimal reflection vector q =

√
λmax(Q)qmax can be

obtained. Finally, the most optimal solution q∗ can be represented as q∗ = [q/qM+1](1:M)
.

Otherwise, if Q∗ has a higher rank, a further rank 1 solution needs to be constructed as
follows. The eigenvalue decomposition of Q∗ is expressed as Q∗ = UQ∑Q UH

Q , where UQ

is unitary, and ∑Q is diagonal. q∗ = UQ∑

1
2
Q r is then set, where r ∼ CN(0 ∼ I). Thus,

the solution to problem (33) is q∗ = [q/qM+1](1:M)
. Finally, the solutions of the obtained

problems (14) and (33) are used to solve the problem (5) through alternate optimization, in
which problems (14) and (33) are solved in an alternating manner until convergence.
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3.3. Complexity Analysis

Following the AO framework, problem (5) can be solved by solving problems (14) and (33)
in an iterative manner. It can be observed that these resulting convex problems contain linear
constraints; thus, all problems can be solved by the interior point method [24]. Specifically,
by ignoring the non-dominated linear constraints, the general expression for complexity
is provided in [25]. Then, the complexity of solving problems (14) and (33) is given by
OF = O(M3.5N4.5) and OU = O(M4.5N3.5), respectively. Furthermore, let Iiter denote the
number of iterations needed for the convergence of the proposed AO algorithm; the overall
complexity is given by O(Iiter(OF +OU)).

3.4. Algorithm Design

Because of complex interactions between the variables, problem (5) cannot be solved
directly, so it is necessary to fix the passive beamforming variables first, then solve the
problem (14), find the optimal solution of the active beamforming variables, fix the solution,
and then solve the problem (33) so as to continuously iterate until the system converges. In
Algorithm 1, the process of penalty-based algorithms is summarized. Firstly, the feasible
points and penalty factors are initialized. After obtaining the optimal solution to problem
(33), the penalty factors are updated and stopped after reaching the max iteration count or
falling below the predetermined threshold. In Algorithm 2, the AO method is summarized.
Firstly, the feasible points are initialized; after the variables w(r+1) and v(r+1) are obtained,
the variables Q(r+1) are obtained by Algorithm 1 so as to continuously optimize until the
maximum quantity of iterations or the difference between two objective function values is
lower than the predetermined threshold.

Algorithm 1: Solving problems (33) based on penalty algorithms

1: Initializing feasible points:
{

Q(0)
k

}
, penalty factor η

2: repeatable cycle:
3: Setting the loop iteration count n = 0

4: update
{

Q(n+1)
k

}
, by solving problems (33), n = n + 1

5: update η = ωη

6: Reach the maximum quantity of iterations nmax or constraint violation below predetermined
threshold ε1 > 0, terminate
7: Recovery of q∗ from Q∗

Algorithm 2: Solving problem (5) based on alternating optimization algorithm

1: Initializing feasible points: Q(0)

2: repeatable cycle:
3: Setting the loop iteration index r = 0

4: For a given Q(r)
k , w(r+1) and v(r+1) are obtained by solving problem (14) using CVX

5: After obtaining w(r+1) and v(r+1), find the solution of problem (33) to obtain
Q(r+1) = diag(qn+1) and r = r + 1 by using Algorithm 1.
6: Reached the maximum quantity of iterations rmax, or difference between objective function
values between two iterations is lower than the predetermined threshold ε2 > 0, end

4. Simulation Analysis

Figure 2 shows the simulation model under consideration. The AP and active STAR-
RIS are placed in (0, 0, 0) m and (0, 10, 0) m, respectively. The direct view link from the AP
to IRs and ERs is obstructed by obstacles. A semicircular area, centered on the active STAR-
RIS, randomly hosts a multitude IRs and ERs situated at radii of dr = 2 m and dt = 20 m,
respectively. The number of Monte Carlo simulations refers to the number of times the
actual results are approximated through multiple experiments. As the number of Monte
Carlo simulations increases, the estimated values gradually converge to the true values.
The more Monte Carlo simulations there are, the closer the estimated results are to the true
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values and the higher the accuracy. The common number of Monte Carlo simulations is
set to 200 [26,27], 500 [28], 1000 [29–31], 2000 [32], and 100,000 [33]. However, although a
small number of Monte Carlo simulations can obtain partially smooth curves, there are also
some curves that are not smooth. Excessive Monte Carlo simulations can obtain smoother
experimental results, but they consume a lot of time, while 1000 Monte Carlo simulations
can obtain smoother experimental results and consume less time. Therefore, this paper sets
the number of Monte Carlo simulations to 1000.
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For channel G, the model is as follows:

G =

√
ρ0

dαAR
AR

(√
KAR

KAR + 1
GLOS +

√
1

KAR + 1
GNLOS

)
(40)

The Rice factor is KAR = 3 dB; αAR represents the corresponding path loss index. The
unit path loss is ρ0 = 30 dB. GLOS is deterministic line-of-sight component, GNLOS is a
random non-line-of-sight component, and other channels can be obtained using similar
methods.

The other required parameter settings are as below: The quantity of ERs and IRs is
KE = 2, KI = 2, respectively. The initialization penalty factor is η = 10−4. The accuracy of
equation constraints is ε1 = 10−7. The convergence tolerance of the AO method is ε2 = 10−3.
The maximum iterations count for the algorithm is nmax = 49. The user noise power is
σ2

i = −120 dBm. The scaling factor based on the penalty algorithm is w = 10. Assuming
that all information receivers have the same QoS requirements, Ri = R0 ≜ lb(1 + γ0), γ0
is the minimal value of SINR required. The energy collection requirements for all energy
receivers are Ej = E0 = 1 mW.

The same simulation settings in the simulation analysis are listed in Table 2.
Figure 3 demonstrates the convergence of the method described in this paper. Among

them, the quantity of intelligent reflector units is M = 10, and the quantity of transmitting
antennas is N = 2. It can be observed that the iterative method in this paper guarantees
the monotonicity of the minimized AP transmit power from Figure 3.

This paper tested three scenarios: SINR = 5 dB, SINR = 8 dB, and SINR = 10 dB. As
the SINR increasing, the value to which the system converges gradually increases. This
is because with the increase of SINR, higher requirements are placed on communication
quality, and therefore, the required AP transmission power gradually increases. From
Figure 3, it can also be seen that after two iterations, the convergence degree of the system
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reaches about 90%. After three iterations, the AP transmission power tends towards a
stable value, indicating that iterative method described in this paper is efficient.

Table 2. System Simulation Settings.

Simulation Variables Value

Quantity of information receivers 2
Quantity of energy receivers 2

Noise power −120 dBm
Active STAR-RIS distance from AP 10 m

Distance between IRs and active STAR-RIS 20 m
Distance between ERs and active STAR-RIS 2 m
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Figure 4 shows how the AP transmission power changes with the change of the
quantity of AP transmission antennas N under five different models, where M = 10,
and γ0 = 10 dB. As observed in Figure 4, the AP transmission power assisted by active
STAR-RIS is the lowest, while the AP transmission power assisted by passive RIS is the
highest. This is because there is loss in the signal propagation process, while passive RIS
can only reflect the signal and can only meet the minimum power requirements received by
the energy receiver by increasing the AP transmission power. Active STAR-RIS can reflect
accepted signals as well as transmit and amplify it, making full use of spectrum resources
while reducing path loss, resulting in lower AP transmission power. From Figure 4, it
can also be seen that when the passive beamforming variables qt and qr are taken as a
random value, and only the active beamforming variable

{
wi, vj

}
is optimized, the AP

transmission power is greater than that of the active STAR-RIS. This is because when the
passive beamforming variable is fixed, its coefficient matrix cannot be adjusted, and there
is a lack of iterative optimization process. Additionally, as the quantity of transmitting
antennas N increases, AP transmission power of the five models gradually decreases. This
is because more transmitting antennas mean that signals have more transmission paths;
therefore, the AP transmission power gradually decreases.

Figure 5 shows the relationship between AP transmission power and the quantity
of active STAR-RIS units M, where N = 2, and γ0 = 10 dB. It can be observed that
within a certain range, as the quantity of active STAR-RIS units increases, AP transmission
power of five models gradually decreases from Figure 5. This is because, in one respect,
when the quantity of active STAR-RIS units increases, active STAR-RIS has more degrees
of freedom to achieve more reflection or transmission channels related to active STAR-
RIS, achieving the effect of improving beamforming gain. In another respect, the more
elements an active STAR-RIS has, the more paths and power it has to reflect or transmit
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AP transmission signals, thus increasing the efficiency of the energy. However, as the
quantity of active STAR-RIS units increases, the decreasing trend of AP transmission power
gradually decreases. This indicates that within a certain range, increasing the quantity of
active STAR-RIS elements is useful for the performance improvement of systems. When
exceeding this range, the quantity of active STAR-RIS elements is no longer the key factor
influencing AP transmission power. From Figure 5, it can also be seen that when the passive
beamforming variables qt and qr are fixed, and only the active beamforming variables{

wi, vj
}

are optimized, the AP transmission power is highest compared to the other four
models. This is because when the passive beamforming variables are fixed, the performance
of RIS is not fully utilized. However, the other four models can be continuously optimized
through iteration to achieve optimal performance. Therefore, the AP transmission power is
maximized by fixing the passive beamforming variables and only optimizing the active
beamforming variables.

Future Internet 2024, 16, 266 13 of 18 
 

 

accepted signals as well as transmit and amplify it, making full use of spectrum resources 

while reducing path loss, resulting in lower AP transmission power. From Figure 4, it can 

also be seen that when the passive beamforming variables tq  and rq  are taken as a ran-

dom value, and only the active beamforming variable { , }i jw v   is optimized, the AP 

transmission power is greater than that of the active STAR-RIS. This is because when the 

passive beamforming variable is fixed, its coefficient matrix cannot be adjusted, and there 

is a lack of iterative optimization process. Additionally, as the quantity of transmitting 

antennas N  increases, AP transmission power of the five models gradually decreases. 

This is because more transmitting antennas mean that signals have more transmission 

paths; therefore, the AP transmission power gradually decreases. 

 

Figure 4. Relationship between AP transmission power and quantity of transmission antennas. 

Figure 5 shows the relationship between AP transmission power and the quantity of 

active STAR-RIS units M  , where 2N =  , and 
0
γ 10dB=  . It can be observed that 

within a certain range, as the quantity of active STAR-RIS units increases, AP transmission 

power of five models gradually decreases from Figure 5. This is because, in one respect, 

when the quantity of active STAR-RIS units increases, active STAR-RIS has more degrees 

of freedom to achieve more reflection or transmission channels related to active STAR-

RIS, achieving the effect of improving beamforming gain. In another respect, the more 

elements an active STAR-RIS has, the more paths and power it has to reflect or transmit 

AP transmission signals, thus increasing the efficiency of the energy. However, as the 

quantity of active STAR-RIS units increases, the decreasing trend of AP transmission 

power gradually decreases. This indicates that within a certain range, increasing the quan-

tity of active STAR-RIS elements is useful for the performance improvement of systems. 

When exceeding this range, the quantity of active STAR-RIS elements is no longer the key 

factor influencing AP transmission power. From Figure 5, it can also be seen that when 

the passive beamforming variables tq  and rq  are fixed, and only the active beamform-

ing variables { , }i jw v  are optimized, the AP transmission power is highest compared to 

the other four models. This is because when the passive beamforming variables are fixed, 

the performance of RIS is not fully utilized. However, the other four models can be con-

tinuously optimized through iteration to achieve optimal performance. Therefore, the AP 

transmission power is maximized by fixing the passive beamforming variables and only 

optimizing the active beamforming variables.  

Figure 4. Relationship between AP transmission power and quantity of transmission antennas.

Future Internet 2024, 16, 266 14 of 18 
 

 

 

Figure 5. Relationship between AP transmission power and the quantity of active STAR-RIS units 

M . 

Figure 6 presents how the power received by the minimum ERs changes with varia-

tions in the AP’s transmission power, where 2N = , and 
0
γ 10dB= . From Figure 6, it 

can be seen that in all four models, the AP transmission power gradually grows with the 

growth of the minimum power accepted by ERs. Among them, the AP transmission power 

demanded by systems with assistance of active STAR-RIS/RIS is generally smaller than 

that demanded by systems with assistance of passive STAR-RIS/RIS, and the AP transmis-

sion power demanded by systems with assistance of active STAR-RIS is the smallest. This 

is because active STAR-RIS and active RIS have a certain amplification effect on the signal, 

thereby reducing signal attenuation, while passive STAR-RIS and passive RIS can only 

offset path loss by increasing AP transmission power, thereby meeting the minimum en-

ergy requirements received by the energy receiver. Compared to active RIS, active STAR-

RIS not only reflects but also transmits signals, increasing the coverage range of signals 

sent by base stations. Even if the energy receiver is in a relatively poor channel environ-

ment and cannot receive the reflected signals, it can still receive signals transmitted from 

active STAR-RIS, improving the utilization of base station transmission signals and opti-

mizing the efficiency of system operation. 

 

Figure 6. Relationship between AP transmission power and power received by minimum energy 

receiver. 

Figure 5. Relationship between AP transmission power and the quantity of active STAR-RIS units M.

Figure 6 presents how the power received by the minimum ERs changes with variations
in the AP’s transmission power, where N = 2, and γ0 = 10 dB. From Figure 6, it can be seen
that in all four models, the AP transmission power gradually grows with the growth of the
minimum power accepted by ERs. Among them, the AP transmission power demanded by
systems with assistance of active STAR-RIS/RIS is generally smaller than that demanded by
systems with assistance of passive STAR-RIS/RIS, and the AP transmission power demanded
by systems with assistance of active STAR-RIS is the smallest. This is because active STAR-
RIS and active RIS have a certain amplification effect on the signal, thereby reducing signal
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attenuation, while passive STAR-RIS and passive RIS can only offset path loss by increasing
AP transmission power, thereby meeting the minimum energy requirements received by the
energy receiver. Compared to active RIS, active STAR-RIS not only reflects but also transmits
signals, increasing the coverage range of signals sent by base stations. Even if the energy
receiver is in a relatively poor channel environment and cannot receive the reflected signals, it
can still receive signals transmitted from active STAR-RIS, improving the utilization of base
station transmission signals and optimizing the efficiency of system operation.
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As shown in Figure 7, the variation of AP transmission power with SINR value at
the information receiver is shown, where N = 2, and M = 10. Similarly, we compare
active/passive STAR-RIS and active/passive RIS. In Figure 7, as the SINR value increases,
the AP transmission power of four models gradually increases. This is because the larger
the SINR value at the IRs, the higher the required communication quality, thus requiring
higher AP transmission power. From Figure 7, it can also be seen that the active STAR-RIS
model proposed in this paper requires the smallest AP transmission power. This is because
active STAR-RIS can reflect and amplify signals as well as transmit and amplify them,
unlike passive RIS, thus making more use of frequency spectrum resources and reducing
path loss. Although active RIS can amplify signals, it cannot transmit them. Although
passive STAR-RIS can reflect and transmit signals, it cannot amplify them. Therefore, under
the same conditions, the required AP transmission power is higher than active STAR-RIS.

Future Internet 2024, 16, 266 15 of 18 
 

 

As shown in Figure 7, the variation of AP transmission power with SINR value at the 

information receiver is shown, where 2N = , and 10M = . Similarly, we compare ac-

tive/passive STAR-RIS and active/passive RIS. In Figure 7, as the SINR value increases, the 

AP transmission power of four models gradually increases. This is because the larger the 

SINR value at the IRs, the higher the required communication quality, thus requiring 

higher AP transmission power. From Figure 7, it can also be seen that the active STAR-RIS 

model proposed in this paper requires the smallest AP transmission power. This is be-

cause active STAR-RIS can reflect and amplify signals as well as transmit and amplify 

them, unlike passive RIS, thus making more use of frequency spectrum resources and re-

ducing path loss. Although active RIS can amplify signals, it cannot transmit them. Alt-

hough passive STAR-RIS can reflect and transmit signals, it cannot amplify them. There-

fore, under the same conditions, the required AP transmission power is higher than active 

STAR-RIS. 

 

Figure 7. Relationship between AP transmission power and SINR value at the information receiver. 

5. Conclusions 

This paper researches an active STAR-RIS-assisted SWIPT system with a focus on 

minimizing transmission power from AP while satisfying communication rate and mini-

mum energy collection requirements. The optimization strategy involves a joint tuning of 

the transmission precoding matrix, the reflection and transmission coefficient matrix, and 

the amplification matrix within the active STAR-RIS. The process begins by fixing the pas-

sive beamforming variables and applying SDR algorithm to determine the optimal active 

beamforming variables. Following this, the derived active beamforming variables are held 

constant, and a penalty-based algorithm is used to fine-tune the passive beamforming 

variables. This AO approach continues iteratively until the system reaches convergence. 

Compared to passive RIS, active RIS, and passive STAR-RIS configurations, the active 

STAR-RIS-assisted system provides substantial energy savings while maintaining con-

sistent variables such as the quantity of transmitting antennas, the quantity of intelligent 

reflector units, the minimum power accepted by ERs, and the SINR at IRs. However, this 

paper only investigates the minimum transmission power of AP under perfect channel 

states and linear energy receiver models. In the future, we will study the problem of min-

imizing AP transmission power in more complex situations, such as in imperfect channel 

states and nonlinear energy receiver models. 

Author Contributions: Conceptualization, C.G. and S.L.; methodology, C.G.; software, C.G.; vali-

dation, C.G., S.L., and M.W.; formal analysis, S.D.; investigation, Y.W.; resources, B.Y.; data curation, 

C.G.; writing—original draft preparation, C.G.; writing—review and editing, S.L.; visualization, S.L.; 

Figure 7. Relationship between AP transmission power and SINR value at the information receiver.



Future Internet 2024, 16, 266 14 of 16

5. Conclusions

This paper researches an active STAR-RIS-assisted SWIPT system with a focus on
minimizing transmission power from AP while satisfying communication rate and min-
imum energy collection requirements. The optimization strategy involves a joint tuning
of the transmission precoding matrix, the reflection and transmission coefficient matrix,
and the amplification matrix within the active STAR-RIS. The process begins by fixing
the passive beamforming variables and applying SDR algorithm to determine the optimal
active beamforming variables. Following this, the derived active beamforming variables are
held constant, and a penalty-based algorithm is used to fine-tune the passive beamforming
variables. This AO approach continues iteratively until the system reaches convergence.
Compared to passive RIS, active RIS, and passive STAR-RIS configurations, the active
STAR-RIS-assisted system provides substantial energy savings while maintaining consis-
tent variables such as the quantity of transmitting antennas, the quantity of intelligent
reflector units, the minimum power accepted by ERs, and the SINR at IRs. However, this
paper only investigates the minimum transmission power of AP under perfect channel
states and linear energy receiver models. In the future, we will study the problem of mini-
mizing AP transmission power in more complex situations, such as in imperfect channel
states and nonlinear energy receiver models.
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Appendix A

Proof of Theorem 1. The problem of relaxing rank(Wi) = 1 is jointly convex with respect to
the optimization variables, and it satisfies Slater constraints; therefore, strong duality holds.
To reveal the structure of Wi, the Lagrange function is given by the following equation:

L = ∑
i∈KI

TR(Wi)− ∑
i∈KI

TR(YiWi) + µi(γiTR(Ht,iWi)− TR(Ht,iWi))

−λk( ∑
k∈KI

TR(Hr,jWk)) + ∆
(A1)

where ∆ is the set of all items that do not depend on {Wi}; µi, λk, and Yi are Lagrange mul-
tipliers related to constraints (10), (11), and (13), respectively. Based on the Karush–Kuhn–
Tucker (KKT) condition regarding Wi, the optimal structure of W∗

i can be characterized
as follows:

K1 : λ∗
k , µ∗

i ≥ 0, Y∗
i ≻0

K2 : Y∗
i W∗

i = 0N
K3 : ∇W∗

i
L = 0

(A2)

Among them, λ∗
k , µ∗

i , and Y∗
i represent the optimal Lagrange multiplier; 0N represents

the N-th order zero matrix; and ∇W∗
i

L is the gradient of L with respect to W∗
i . ∇W∗

i
L can

be represented as follows:

Y∗
i = IN + µ∗

i (γi Ht,i − Ht,i)− λ∗
k Hr,i (A3)
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Using the results in Appendix A of reference [34], it can be proven that
rank

(
Y∗

i
)
= N − 1. Furthermore, equation K2 means rank

(
Y∗

i )+rank
(
W∗

i
)
≤ N ; there-

fore, rank
(
W∗

i
)
≤ 1 is established. Due to the service quality constraint in (10), the

proof is complete for the optimal solution rank
(
W∗

i ) =1 . Relaxing the rank constraint
of rank

(
Vj) =1 proves the same principle. □
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