
Citation: Miao, J.; Rajasekhar, D.;

Mishra, S.; Nayak, S.K.; Yadav, R.

A Microservice-Based Smart

Agriculture System to Detect Animal

Intrusion at the Edge. Future Internet

2024, 16, 296. https://doi.org/

10.3390/fi16080296

Academic Editors: Manuel José

Cabral dos Santos Reis and

Carlos Serôdio

Received: 23 July 2024

Revised: 12 August 2024

Accepted: 12 August 2024

Published: 16 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Microservice-Based Smart Agriculture System to Detect
Animal Intrusion at the Edge
Jinpeng Miao 1,* , Dasari Rajasekhar 2 , Shivakant Mishra 1,* , Sanjeet Kumar Nayak 2

and Ramanarayan Yadav 3

1 Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA
2 Department of Computer Science and Engineering, Indian Institute of Information Technology,

Design and Manufacturing, Chennai 600127, Tamil Nadu, India; cs22d0003@iiitdm.ac.in (D.R.);
sanjeetn@iiitdm.ac.in (S.K.N.)

3 Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research
and Management, Ahmedabad 380026, Gujarat, India; ramnarayan@iitram.ac.in

* Correspondence: jinpeng.miao@colorado.edu (J.M.); shivakaht.mishra@colorado.edu (S.M.)

Abstract: Smart agriculture stands as a promising domain for IoT-enabled technologies, with the
potential to elevate crop quality, quantity, and operational efficiency. However, implementing a smart
agriculture system encounters challenges such as the high latency and bandwidth consumption linked
to cloud computing, Internet disconnections in rural locales, and the imperative of cost efficiency for
farmers. Addressing these hurdles, this paper advocates a fog-based smart agriculture infrastructure
integrating edge computing and LoRa communication. We tackle farmers’ prime concern of animal
intrusion by presenting a solution leveraging low-cost PIR sensors, cameras, and computer vision to
detect intrusions and predict animal locations using an innovative algorithm. Our system detects
intrusions pre-emptively, identifies intruders, forecasts their movements, and promptly alerts farmers.
Additionally, we compare our proposed strategy with other approaches and measure their power
consumptions, demonstrating significant energy savings afforded by our strategy. Experimental
results highlight the effectiveness, energy efficiency, and cost-effectiveness of our system compared
to state-of-the-art systems.

Keywords: smart agriculture; animal intrusion detection; LoRa; fog computing

1. Introduction

Smart agriculture harnesses cutting-edge information technology, integrating big data,
mobile Internet, cloud computing, and the Internet of Things (IoT) technologies to enable
the precise tracking, monitoring, automation, and analysis of agricultural operations. Cur-
rently, cloud-based infrastructures are prevalent in supporting various smart agriculture
applications and data processing. In this setup, data from smart sensors in agricultural
fields are transmitted to the cloud via the Internet, where they are stored and processed for
decision-making purposes. However, the utilization of cloud-based infrastructures in smart
agriculture comes with two significant limitations, as highlighted in recent research [1]:
(i) The transmission of sensor data over the Internet requires continuous connectivity,
consuming high bandwidth and resulting in delays, rendering it impractical for rural areas
with unstable internet connectivity. (ii) Transmitting large volumes of data from IoT devices
to the cloud for storage and processing quickly depletes the energy of battery-powered
IoT devices. To overcome these limitations, we propose a LoRa (Long Range)-enabled,
fog-based smart agriculture infrastructure. This approach intelligently distributes computa-
tional workloads to Raspberry Pi devices, thereby reducing the volume of data transferred
to the server and facilitating the delivery of latency-sensitive services in real-time.

Following a survey conducted with farmers to discern the primary challenges amenable
to solutions through smart agriculture, animal intrusion emerged as the most pressing con-

Future Internet 2024, 16, 296. https://doi.org/10.3390/fi16080296 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16080296
https://doi.org/10.3390/fi16080296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0008-2147-8480
https://orcid.org/0009-0007-4124-0042
https://orcid.org/0000-0001-5070-9366
https://orcid.org/0000-0003-4290-0632
https://orcid.org/0000-0002-5014-2010
https://doi.org/10.3390/fi16080296
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16080296?type=check_update&version=1


Future Internet 2024, 16, 296 2 of 20

cern. Given that farms are typically situated in rural settings, adjacent to natural habitats,
the incursion of animals poses a significant threat to farm owners, necessitating prompt
action to address the resulting havoc and destruction. Unlike other smart agricultural
services such as smart irrigation, crop quality monitoring, and pest control, detecting
animal intrusion presents unique challenges due to its inherent uncertainty, lack of control,
and unpredictability. Animals may disrupt crops and roam freely across fields at any
given moment, leading to substantial losses in production. Consequently, recovering from
such damage entails considerable time and financial resources to mitigate the associated
costs effectively.

In this paper, building upon our previous research [2], we introduce a cost-effective,
energy-efficient integrated fog and LoRa-enabled microservice-based infrastructure de-
signed specifically for smart agriculture. This infrastructure is complemented by an innova-
tive strategy for detecting animal intrusion, which combines passive infrared (PIR) sensors
with a rotating camera. Our primary aim is to expedite the detection and localization of
animal intrusions for farmers. While a straightforward approach to field monitoring would
involve relying solely on cameras without PIR sensors, this method entails the use of a
greater number of high-resolution cameras to cover the same area, resulting in higher costs
and increased energy consumption compared to PIR sensors. Additionally, employing
only cameras necessitates fixing them in a single direction, potentially diminishing the
effectiveness of animal identification when an animal approaches the boundary of the
camera’s field of view. By incorporating a rotating camera, we ensure that the animal
is captured at the center of the image, significantly enhancing the success rate of animal
identification. Furthermore, our work includes an in-depth analysis of power consumption
and a comparison with the camera-only strategy, highlighting the efficiency and efficacy of
our proposed approach.

The paper is structured as follows: We commence by illustrating how LoRa’s low-
power, low-bandwidth, and long-range capabilities revolutionize rural agricultural lands
into smart agriculture systems. Subsequently, we delve into the design and implementation
of a microservice-based edge server, delivering essential, time-sensitive services to farmers
in disconnected Internet environments. To enhance animal intrusion detection, we explore
different sensor placement strategies and develop an algorithm to locate invasive animals
and predict their future locations. Finally, we meticulously evaluate our system’s perfor-
mance, conducting comparisons with current state-of-the-art frameworks across various
metrics such as cost, latency, energy consumption, and distance.

This paper makes the following contributions:

• Adoption of the LoRa protocol effectively addresses the limitations of intermittent
Internet connectivity and high latency of cloud-based infrastructure.

• A microservice-based architecture at the edge is used to enable latency-sensitive
services to be delivered just in time.

• The proposal of three sensor layouts and an algorithm that accurately predicts the
future locations of animals.

• A comprehensive analysis and comparison of the layouts through experiments.
• A comparison of our proposed solution (combination of rotating camera with PIR

sensors) with an all-camera strategy in terms of costs and energy.
• A rigorous evaluation and discussion on the accuracy of the algorithm, power con-

sumption, and the practicality of the system.

2. Related Work

With the rise of smart agriculture, numerous systems have emerged. Yet, most grapple
with safety hazards, high costs and resource demands, dependency on internet connectivity,
or poor performance. Amid the plethora of systems in the literature, our focus lies on the
latest intelligent agricultural and animal intrusion detection methods.

Devaraj et al. suggest using the traditional electric fence, which shocks animals that
cross the boundary [3]. While effective and easy to install, it requires a consistent and



Future Internet 2024, 16, 296 3 of 20

substantial power supply, along with regular maintenance. In contrast, our system remains
unaffected during power outages and, importantly, does not pose risks to animals or people.
In [4], authors analyze why traditional methods such as electric fencing are futile in some
scenarios and have high costs.

Cameras and computer vision are effective at identifying intruding animals. Some
researchers [5–7] use deep learning algorithms to recognize animals captured by the camera
at regular intervals. However, fixed interval detection wastes resources and may miss some
animals. Yadahalli et al. [4] instead send images to a thin film transistor (TFT) display and
use a flash light for better night images, which are more expensive and consume more
power. Compared to computer vision, it is also harder for humans to accurately identify
animals in images where they make up a small percentage. Instead of capturing images,
Thomas et al. [8,9] analyze videos, which is challenging to meet latency requirements and
necessitates significantly higher computational power.

Cloud-based infrastructures [4,10,11] are popular in smart agriculture for their pow-
erful computing capabilities. In these systems, data are transmitted over the Internet to
the cloud, where the data are stored and processed for decision-making. However, these
systems rely on Internet connectivity, which may be unavailable in rural areas, and can
result in high latency due to data transmission to the cloud.

The systems proposed from 2017 to 2022 [12–18] that use infrared sensors lack specifics
on sensor placement and algorithms. In [5], it fails to achieve better performance. The
works presented in [3,19–21] cannot support a large service coverage at a low cost.

In comparison, our proposed system excels at accurately detecting and predicting
animal locations while minimizing power consumption and transmission latency, and elim-
inating dependence on internet connectivity by leveraging LoRa communication protocol.

3. Background
3.1. LoRa and LoRaWAN Protocol

LoRa is an ultra-long-distance wireless transmission technology based on spread
spectrum technology [22,23]. Long Range Wide Area Network (LoRaWAN) is a set of
communication protocol and system architecture designed for long-distance communica-
tion network [23,24]. Lora has a great advantage in handling co-channel interference. It
solves the problem of not being able to take into account long distance, anti-interference,
and low power consumption at the same time. Compared with other communication
technologies, LoRa’s ultra-low cost, high sensitivity, ultra-low power consumption, strong
anti-interference ability, low bandwidth consumption, and long transmission distance make
it ideal for this project.

3.2. IoT Devices
3.2.1. Arduino

A microcontroller-based open source hardware platform. Arduino Mega is Arduino
development board based on the ATmega. It is cheap and easy-to-use features make it
widely used in practical IoT projects.

3.2.2. Multi-Channel LoRaWAN GPS Concentrator

A high-performance multi-channel transmitter/receiver designed to receive multiple
LoRa packets simultaneously. It is intended to provide a robust connection between
a central wireless data concentrator and a large number of wireless endpoints over a
considerable range of distances.

3.2.3. PIR Sensor

An electronic sensor that measures infrared (IR) light radiating from objects in its
field of view. The characteristics of this sensor include the angle of detection (α) and the
maximum detectable distance (d) with the detection range calculated as a cone with h as



Future Internet 2024, 16, 296 4 of 20

the diameter of the circle as the base. It is small, cheap, power-efficient, easy to use, and
durable. Therefore, it is typically used for security and automatic lighting related purposes.

3.2.4. All-Day Camera

A camera that is able to detect invasive animals both day and night, which requires a
built-in motorized IR-cut filter so that it can switch in and out automatically based on light
condition. The filter will be turned off with the purpose that only visible light during the
daylight, and IR sensitivity during the night with IR LEDs on.

3.3. Fog Computing
3.3.1. Containerization

A software deployment process that bundles the application’s code with all the files
and libraries the application needs to run on any infrastructure [25]. By virtualizing
the operating system kernel, this technology enables user-space software instances to be
divided into multiple independent units that run in the kernel as opposed to a single
instance. This particular software instance is referred to as a container, a software package
that provides the complete runtime environment for an application. With containerization,
people can create individual packages or containers that can run on all types of devices
and operating systems. Containerization is lightweight, portable, scalable, fault-tolerant,
agile, and saves hardware resources.

3.3.2. Microservices

A type of software architecture that builds complicated programs using modularity
and small functional units that are each focused on a particular responsibility and func-
tion. Microservices architecture makes applications easier to scale and faster to develop.
Compared to monolithic architecture, microservices architecture is agile, scalable, easy to
deploy, technically free, code-reusable, and resilient [26].

4. Proposed System
4.1. System Architecture

The architecture of the proposed microservice-based fog-enabled infrastructure for
smart agriculture is shown in Figure 1. It consists of two layers: a sensing layer and fog com-
puting layer, which are linked by cross-layer upstream and downstream communication
for data and control information flows [27].

The sensing layer is comprised of the sensors and actuators deployed across the agricul-
tural field to periodically sense the physical parameters of interest such as air temperature,
air humidity, soil temperature and moisture at various depths, wind speed, and rainfall.
To address the challenge of poor Internet connectivity, we have adopted a LoRa and Lo-
RaWAN enabled communication system due to their support for low-power, wide-area
networking designed to wirelessly connect limited-energy-operated IoT devices to an edge
server at a distance of 1–2 km. The fog layer is composed of one or more servers, and
provides an administrative control of the entire IoT infrastructure of the agricultural field.
It addresses the limitations of intermittent Internet connectivity, high latency and high
network bandwidth consumption of cloud-based infrastructure. The fog nodes host latency-
sensitive services, including fire detection, sprinkler control, and animal intrusion detection.
To enable a flexible architecture that leverages existing container-based support for various
machine learning services, we have designed the fog layer as a microservice architecture.
This architecture comprises loosely coupled, fine-grained microservices with lightweight
protocols. Each microservice performs a specific function, such as data collection, filtering,
and processing. For instance, data collectors aggregate data for targeted services, while data
filters extract the most relevant information, which is then fed into the respective service.



Future Internet 2024, 16, 296 5 of 20

Fire
Detection

Sprinkler
Control

Temperature
Filter

Anomaly
Detector

Moisture
Filter

Humidity
Filter

Data Collector 
(Temperature)

Data Collector
(Images)

Data Collector
(Soil Moisture)

Data Collector
(Humidity)

Security Module

D
at

a 
Fi

lte
rin

g
D

at
a A

gg
re

ga
tio

n
A

lte
r M

an
ag

em
en

t
La

te
nc

y 
Se

ns
iti

ve
 se

rv
ic

e

M
icroservice based A

rchitecture
C

ontainer Instantiation
Inter container com

m
unication

D
ynam

ic C
ontainer O

rchestration

Upto 15KM
LoRa/LoRaWAN

Edge G
atew

ay
Zigbee/W

iFi/
B

luetooth
Sensor &

 A
ctuators

D
ata C

om
presstion

Fire Alert

Se
ns

in
g 

La
ye

r
Fo

g 
C

om
pu

tin
g 

La
ye

r 

to onsite
Sprinkler
Controller

Figure 1. Proposed system architecture.

4.2. Animal Intrusion Detection

In view of the serious problems caused by animal intrusion to farmers, our goal is
to automatically detect animal intrusions, identify animals, repel animals with automatic
actuations like beep sounds and laser lights, and inform the farmer(s) in a timely manner
about the intrusion. This work is performed using two types of sensors: a PIR sensor
for detecting any motion in its field of view and an all-day camera sensor attached to the
Raspberry Pi for capturing images that will be processed to identify animals. To meet
the low-latency requirement, the scheduling mechanism and the prediction algorithm are
implemented in the fog layer, while the object detection is carried out on the Raspberry Pi.
This is because the low bandwidth of LoRa cannot support the transmission of large-sized
images. To achieve a highly flexible architecture that accommodates future additions,
we have designed our system to deploy each microservice in its own container, ensuring
complete separation and independence. As shown in Figure 2, there are three microservices:

1. The Security module passes the sensor data it receives from authenticated sensors to
the appropriate Prediction container.

2. The Prediction container runs localization and prediction algorithms on these data
as well as recorded data, and then sends the predicted position at a future time to
the camera.

3. The Notification module notifies the farmer via messages once animals are detected.

Corresponding to the process marked with capital letters in Figure 2, the steps are
described as follows:

A: Animal movement is detected by PIR sensors and the data are transmitted to the
server using LoRa.

B: A container on the edge server predicts the location of the animal at a future time
based on input from multiple sensors and sends this location to the Raspberry Pi
that operates a camera on the field.

C: The edge server sends a “possible animal invasion” alert to the farmer.
D: The Raspberry Pi instructs the camera to rotate in the direction of the predicted

position and take a picture. The Raspberry Pi then runs an animal detection algorithm
on this image and sends the results to the edge server.

E: If an animal was identified, actuations are activated immediately to repel it and the
edge server sends a reliable alert to the farmer.



Future Internet 2024, 16, 296 6 of 20

Fog Server

Container 1 Container 2 Container 3

Farmer

Security NotificationPrediction

E
D

A
PIR sensors

camera
Farm

C

B

Figure 2. System architecture for animal intrusion detection.

4.3. Sensor Layouts

For animal intrusion detection, a pivotal consideration is the strategic placement of
sensors in the field. The objective is to achieve maximum coverage, ensuring thorough
data collection, improving prediction accuracy, and accounting for diverse scenarios, all
while minimizing the number of sensors. Given the ambiguity surrounding the optimal
placement strategy, we put forth and experiment with three plausible layouts tailored for a
square-shaped field. The optimal layout certainly depends on the shape of the fields, but
the idea remains the same.

We establish four virtual coordinate systems based on the four directions on the
farmland (as shown in Figure 3), encompassing the x-axis and y-axis, with the corners
serving as the origins of these systems. Our localization and prediction algorithms rely on
this coordinate framework. This setup also aims to simplify the process of farmers locating
invasive animals. In other words, when sensors detect an animal, the animal’s location is
regarded as a point (marked with R1, R2, . . . in Figures 4–6) rather than a range, which is
convenient for us to design algorithms to predict animals’ position. In order to describe the
specific location of the animal to the farmer, we define four corners and four sides. Below,
we describe the three sensor layouts in detail.

Corner A

y-axis of side A

x-axis of side A

y-axis of side BSide B

y-axis of side C

x-axis of side C

Side C

y-
ax

is
 o

f s
id

e 
D

x-
ax

is
 o

f s
id

e 
D

Si
de

 D

x-axis of side B

Farm Field

C
orner B

Corner C

C
or

ne
r D

Side A

Figure 3. Virtual coordinate systems built upon the farm.



Future Internet 2024, 16, 296 7 of 20

S1 S2

S3

R1 R2

R3

R4 R5

Figure 4. Layout A: vertical placement.

S1 S2 S3

R2R1

R3

R4

Figure 5. Layout B: horizontal placement.

S1
S2 S3

S4
R1

R2

R3

R4

R6

R5

Figure 6. Layout C: hybrid placement.

4.3.1. Layout A—Vertical

We place all sensors at a height of d meters above the ground and project them
vertically downward, with the coverage area of each sensor being a circle of diameter h.
This produces a coverage area consisting of many circles. As shown in Figure 4, we put
two rows of interlocking and overlapping sensors at the boundary of the field. This not
only increases the coverage, but the overlapping areas allow for relatively fine-grained
segmentation of the area to improve the accuracy of localization and prediction. The
increase in budget associated with an additional row of sensors is well worth it compared
to more accurately catching animal intrusions and thus preventing damage to the farm.
But the shortcoming of this layout is that the farthest detectable location is too close to the
farm boundary, only h/2, which leads to a greater chance of animal damage to the farm.



Future Internet 2024, 16, 296 8 of 20

4.3.2. Layout B—Horizontal

In contrast to Layout A, all sensors are placed on the ground and horizontally pro-
jecting towards the farm’s exterior, with each sensor covering an isosceles triangle with h
as the base and d as the height, resulting in a coverage area of many triangles. As shown
in Figure 5, we put one row of interlocking and overlapping sensors at the boundary.
This also has the same advantages as Layout A, i.e., increased coverage and fine-grained
area segmentation to improve localization and prediction accuracy. Moreover, it over-
comes the limitations of Layout A by extending the farthest detectable distance, thus
improving protection.

4.3.3. Layout C—Hybrid

With vertical and horizontal placement, it was natural to explore a hybrid placement.
We still place two rows of sensors, one vertically along the boundary and the other projected
horizontally outward at the same location, as shown in Figure 6. This layout provides
good coverage, fine-grained area segmentation, and a far-reaching detectable location.
However, uncovered middle areas can lead to inaccurate or even outrageous predictions.
Additionally, this layout has a calculated minimal coverage area.

In addition to these three layouts, we also considered other layouts that required fewer
sensors. However, they were ruled out due to their limited coverage, which limits their
prediction accuracy, and their short sensing distance to the boundary, which make them
unsuitable for fast-moving animals.

4.4. Proposed Algorithm

We propose and deploy an algorithm (as shown in Algorithm 1) on the fog server to
predict the future location of intrusive animals based on the previous readings returned by
the sensors. Whenever a sensor detects an animal, it sends the data back to the container
running the algorithm on the fog server in the format of “#side-#sensor-timestamp”. The
data received by the container are combined with the previous record to make a prediction.
The data here may have two scenarios: one is the data are read back from a non-overlapping
coverage area; the other is the animal is in the overlapping area covered by multiple sensors.
In this case, there will be multiple sensors with similar timestamps to send back data and
the server needs to make the final prediction after receiving data from all these sensors. We
use a “tolerance time difference” to define this similar timestamp. In addition, we need
to define another threshold as the minimum time interval between animal intrusions, i.e.,
if the server does not receive new data within the amount of time, the next data received
are considered to be a new animal intrusion. It should be determined by the number of
animals within the vicinity and their appearance frequency around the field.

We define a mapping of sensor numbers and position coordinates in the algorithm.
The server first converts the sensor number in the received data into a coordinate and
combines the previous set of coordinates to calculate the distance and direction, and then
to calculate the average speed of the animal’s movement with the timestamp difference.
With the direction and speed, the next position of the animal can be predicted under the
assumption that the animal will move in the same direction with the same speed for a short
period of time. This period is the sum of the time it takes for the sensor to return data, the
time it takes for the algorithm to make the prediction, the time it takes for the instruction to
be passed from the server to the Raspberry Pi, and the time it takes for the camera to rotate
to point to the predicted position.

The direction and speed of animal movement are not stable, but the constant detection
and updating of position information by the sensors, the fast transmission of LoRa, and the
high-speed calculation of the system can make the predicted deviation be calibrated quickly
and continuously. The field of view of the camera can also provide a certain degree of
tolerance. Taken together, our proposed algorithm is expected to effectively and accurately
locate and predict the location of animals. Next, we evaluate and verify the adequacy of
the algorithm through experiments.



Future Internet 2024, 16, 296 9 of 20

Algorithm 1 Algorithm to Predict Animal Locations

Input: side number side, sensor number sensor, and timestamp tcur
Output: A coordinate of predicted animal position {xpredict, ypredict}

1: xprev ▷ x value of previous location
2: yprev ▷ y value of previous location
3: tprev ▷ Timestamp of previous reading
4: time_threshold ▷ Interval to refresh the collected data
5: time_tolerance ▷ Interval to define similar timestamp
6: latency ▷ Time required from detection to camera pointing to the predicted position
7: pos_mapping← {sensor : {x : y}}
8: function PREDICT(side, sensor, tcur)
9: xcur ← pos_mapping[sensor][x]

10: ycur ← pos_mapping[sensor][y]
11: if tcur − tprev > timing_threshold then
12: Do nothing
13: else if tcur − tprev ≤ time_tolerance then
14: Wait until all data received
15: else
16: dist←

√
(xcur − xprev)2 + (ycur − yprev)2

17: speed← dist/(tcur − tprev)
18: θ ← arctangent(ycur − yprev, xcur − xprev)
19: d← latency ∗ speed
20: xpredict ← xcur + d ∗math.cos(θ)
21: ypredict ← ycur + d ∗math.sin(θ)
22: return xpredict, ypredict
23: end if
24: xprev ← xcur
25: yprev ← ycur
26: tprev ← tcur
27: end function
28: while true do
29: PREDICT(side, sensor, tcur)
30: end while

5. Evaluation

All experiments presented in this paper using the parameters shown in Table 1. To
evaluate our work, we constructed an end-to-end LoRa communication system, deployed
the three sensor layouts proposed in Section 4.3, and gathered sensing data by moving
along various trajectories. We then implemented our proposed algorithm to analyze the
collected data. The tolerance for time difference is set at 0.1 s, and the time threshold is
established at 120 s.

Table 1. System configuration.

Component (Manufacturer, City, Country) Specifications

Arduino Mega (ELEGOO, Shenzhen, China) 256 KB Flash Memory, 8 KB SRAM,
4 KB EEPROM, 16 MHz Clock Speed

Raspberry Pi (Raspberry Pi, Cambridge, UK) Quad core Cortex-A72 (ARM v8) 64-bit
8 GB RAM, 1.5 GHz Clock Speed

PIR Sensor (WGCD, Shenzhen, China) Detection range d is 7 m;
Detection distance h is 5 m

Camera (Arducam, Shenzhen, China) Resolution 2592 × 1944, Optical Size 6.35 mm,
Focal Length 2.25 mm, FOV 130°(D) 105°(H)



Future Internet 2024, 16, 296 10 of 20

Table 1. Cont.

Component (Manufacturer, City, Country) Specifications

Edge Server (Foxconn, Zhengzhou, China) 3.1 GHz Dual-Core Intel Core i5,
8 GB RAM, 256 GB Disk

LoRa SX1276 (Dragino, Shenzhen, China) Frequency: 868 MHz, Bandwidth: 7.8 kHz
to 500 kHz, Data Rate: 18 bps to 27.5 kbps

PG1302 Concentrator (Dragino, Shenzhen, China) Tx power up to 27 dBm, Rx sensitivity
down to -139 dBm@SF12, BW 125 kHz

5.1. Experiments and Results
5.1.1. Lora Transmission

We built an end node that consists of PIR sensors, one Arduino Mega microcontroller,
and LoRa Hat with Antenna. LoRa hat was built using LoRa SX1276 IC Transceiver. To
investigate the scheduling capability of the fog node, we connected three end nodes with
one LoRa-enabled gateway (Raspberry Pi with PG1302 LoRaWAN Concentrator), which is
located 3 km away from the field as shown in Figure 7. The end nodes are scheduled in a
round robin fashion by the fog node to avoid the interference of data during simultaneous
communication by the three end nodes.

Agriculture Field

Layout A or B or C

PIR
 Sensors

Camera
with Rpi

LoRa Gateway

LoRa End
Node

COW

25 Meter

25
 M

et
er

PIR sensor data from the
end nodes

Prediction location data from the
fog server to the camera

Figure 7. Experimental setup architecture.

5.1.2. Sensor Placement

To detect animals in a 25 by 25 m field, we used PIR sensors. As described in Section 4.3,
the layouts of the sensors were accurately deployed. The sensors were fixed to a strip and
placed around the perimeter of the field to ensure complete coverage. We used an Arduino
ATMega2560 along with a LoRa hat using LoRa SX1276 IC powered by a lithium-ion battery
to send data to the Gateway for processing and decision-making.

We changed different speeds, directions, and trajectories to simulate 18 different move-
ments (M1-M18 in Figure 8) of an animal (cow) to evaluate the accuracy and effectiveness of
our algorithm. For each of these movements, our system sensed and transmitted PIR sensor
values to the edge server for multiple locations depending on which sensors detected
movements. For example, Table 2 shows the location values received for Movement M2.



Future Internet 2024, 16, 296 11 of 20

These location data collected from 18 different movements formed the ground truth for
our evaluation.

28

D

C

B

A

9
9 8 7 6 5 4 3 2 1

91 2 3 4 5 6 7 8
1
2
3
4
5

6
7
8

9

1
2
3
4
5
6
7
8

M1 M2
M7 M14

M3

M12
M11

M4

M5

M15
M13

M16

M8

M6
M9

M17

M10
M18

Figure 8. Movement trajectories.

Table 2. M2 location values: side—coordinates (x, y).

Layout A Layout B Layout C

1 A—(20, 1.5) A—(20, 3.5) A—(20, 5.5)

2 A—(15, 1.5) A—(15, 3.5) A—(15, 5.5)

3 A—(15, 1.5) A—15, 3.5) A—(15, 5.5)

4 A—(10, 1.5) A—(10, 3.5) A—(10, 5.5)

5 A—(5, 1.5) A—(5, 3.5) A—(5, 5.5)

5.1.3. Position Prediction

We used a PC as a fog server in our experiments. It was placed 10 m above the ground
to increase the transmission speed with end nodes [27]. The prediction algorithm ran
continuously waiting for data. To evaluate our algorithm, we made use of our ground truth
data, wherein the container extracted three sets of location data from a movement, used
the first two sets of data to predict the location for the time corresponding to the third set
of data, and then compared this predicted location with the actual location to assess the
accuracy of the prediction. One measure of accuracy we used is the distance offset, which is
the distance between the predicted location and the actual location. We measured distance
offsets for all movements for which we have at least three location values. For movements
such as M2 (Table 2), for which we have more than three location values, we measured
distance offset for each triplet of location values resulting in 10 distance offsets measured.
Figure 9 shows the average distance offset of each movement.

As we can see, the average distance offset is relatively low (less than 5 m) for most
movements and layouts. We observe that Layout B shows relatively small distance offsets
in most of the movement tests, although in M1, it had a higher offset in prediction than
the other two layouts. However, in M8, Layout B did not have sufficient readings for the
algorithm to make predictions due to the presence of some blind triangles near the boundary
where the sensor cannot detect the animal once it moves there. Layout C produced the
largest distance offsets in most of the tests due to the presence of many blind areas inside the
coverage area, which prevented the animal from being detected quickly and continuously,
resulting in more inaccurate predictions. Layout A performed moderately and without data
loss, which is due to its continuous and extensive coverage area. Based on our experiments
and the analysis in Section 2, we recommend Layout B as the optimal sensor deployment
method, which can be readily applied to rectangular fields of varying dimensions.



Future Internet 2024, 16, 296 12 of 20

Movement trajectories (See Figure 8)

G
ap

 b
et

w
ee

n 
pr

ed
ic

te
d 

an
d 

ac
tu

al
 p

os
iti

on
s 

(m
)

0

5

10

15

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

Layout A Layout B Layout C

Figure 9. Average distance offset between predicted and actual positions for different types of
movements in the three layouts.

5.1.4. Animal Detection

To identify the intrusive animals, we connected a camera to a Raspberry Pi to take
pictures of the animals (area where the predicted location is) and identified them using
computer vision algorithms. The specifications of the Raspberry Pi are shown in Table 1.
We experimented with several popular convolutional neural network (CNN) pre-trained
models to test their speed of processing images. We first trained these models on top of a
computer and then imported the trained models into the Raspberry Pi. These event-driven
models were continuously running on the Raspberry Pi, waiting for images to be taken.

The average detection time (based on 20 runs for each image) is summarized in Table 3.
As we can see, these models take 2 to 5 s to identify an animal, with MobileNet having the
best performance with an average time of 1.64 s.

Table 3. Animal detection experiment results.

CNN Pre-Trained Model Latency (s)

VGG16 2.27

ResNet50 3.75

ResNet50V2 3.34

InceptionV3 4.75

MobileNet 1.64

MobileNetV2 2.74

EfficientNetB0 5.07

5.2. Prediction Accuracy

The goal of predicting location is to be able to rotate the camera in a direction where
the animal is expected to be. Using the distance offset statistics, we can determine the
accuracy of the algorithm by combining the distance between the predicted animal position
and the camera placement. As illustrated in Figure 10, the predicted location is represented
by point P, and the camera (point C) is positioned within the boundary to point towards
the predicted position. The camera has a horizontal field of view of 105 degrees, as shown
in Table 1, and the red shading indicates the current range that the camera can cover. If the
actual animal position falls within the red shading, represented by point Q, the prediction is
considered accurate. Conversely, if the actual animal position falls outside the red shading,
represented by point R, the prediction is considered incorrect. Since we only have the
distance between the predicted location and the actual location, without knowing their
relative positions with respect to the camera, Q could be any place on the red circle which
is centered at point P. We make the assumption that the angle formed by the edge PQ and
the edge CP at point P is a right angle, so that angle β is the maximum value. In this way,
the accuracy of the prediction is the conservative value.



Future Internet 2024, 16, 296 13 of 20

52
.5°

P

52.5°

QR

 D β

C

Sensing boundary

Figure 10. Camera placement.

Based on this validation method, we calculate the prediction accuracy of the three lay-
outs at different distances between the predicted animal position and the camera placement,
as shown in the Table 4. The table shows again that Layout B is the best layout solution.
For Layout B, a placement distance of 5 m can achieve a very accurate prediction. Notably,
Layout C’s low accuracy leads to substantial discrepancies between actual and predicted
positions for the tested movements. This is attributed to our method of representing areas
with central points, which can result in large angles between consecutive line segments.
Consequently, the predicted third point may deviate significantly from the actual third
point, as observed in this case.

The farther the distance, the wider the coverage, and the higher the accuracy. Never-
theless, we must also consider that increasing the distance results in lower image quality of
the animal, which makes animal identification more difficult. We will discuss this further
in Section 6.

Table 4. Camera placement and prediction accuracy.

Distance between Camera
and Animal (m)

Accuracy (%)

Layout A Layout B Layout C

5 66.67% 94.44% 38.89%

10 100% 94.44% 94.44%

15 100% 94.44% 100%

5.3. Imaging Quality and Animal Identification

To fully evaluate the performance of the system, we must also consider the ability
to identify the pictured animals. If the animal image is not clear in the picture, it will be
difficult to identify. This depends on two factors: the number of pixels that the animal
occupies in the image and the pixel requirements of animal recognition algorithms listed in
Table 5 [28]. We calculate the number of pixels occupied by different animals at different
distances between the camera and the animal based on the camera parameters (as shown
in Table 1) and present the results in Table 6.

If the animal is a cow, by comparing these two tables, we can confirm that these
widely used models listed can successfully identify animals when the distance between
the animal and the camera is 40 m, and we can still use the very effective GoogLeNet
and SqueezeNet1_1 when the distance is 80 m. Therefore, to ensure both a large camera
coverage to improve the quality of animal imaging and the tolerance of prediction errors,
we need to control the camera placement and maximum rotation angle. Specifically, we
must ensure that the maximum distance between the camera and the intersection of the
coverage boundary and the sensing boundary (i.e., D in Figure 10) does not exceed 80 m,
with 40 m being the optimal distance. This allows us to adopt MobileNet, which can achieve
the best performance shown in Table 3. Applying the same strategy to other animals, we
need to make similar adjustments to achieve optimal overall performance. This adjustment
should be tailored based on the types of animals most commonly found around the field.
For instance, if elephants or bisons are the animals causing crop damage, then placing



Future Internet 2024, 16, 296 14 of 20

cameras a little further from the boundary might be effective. On the other hand, if the
animals are deer or goats, we need to reduce the distance between the cameras and the
boundary, which will require deploying more cameras.

Table 5. Minimum pixel requirement for CNN models.

Model GoogLeNet SqueezeNet1_1 DenseNet201 VGG16/19 MobileNet

Minimum Pixels 15 × 15 17 × 17 29 × 29 32 × 32 32 × 32

Table 6. Pixels animals occupy at different distances.

Distance (m)
Animal (Size) Elephant (6 m × 3 m) Bison (3 m × 1.9 m) Cow (2 m × 1.5 m) Deer (1.5 m × 1 m) Goat (0.9 m × 0.6 m)

10 453 × 298 227 × 189 199 × 151 113 × 99 68 × 60

20 227 × 149 113 × 94 99 × 76 57 × 50 34 × 30

30 151 × 99 76 × 63 66 × 50 38 × 33 23 × 20

40 113 × 75 57 × 47 50 × 38 28 × 25 17 × 15

50 91 × 60 45 × 38 40 × 30 23 × 20 14 × 12

60 76 × 50 38 × 31 33 × 25 19 × 17 11 × 10

70 65 × 43 32 × 27 28 × 22 16 × 14 10 × 9

80 57 × 37 28 × 24 25 × 19 14 × 12 8 × 7

5.4. System Performance and Cost
5.4.1. System Performance

Based on our experiments, we estimate the total time required to achieve animal intrusion
detection with the current system configuration (as shown in Table 1), which is summarized
in Table 7. It takes approximately 7.11 to 8.61 s for the farmer to receive clear intrusion infor-
mation, including the predicted location and type of the animal. Kindly note that this duration
encompasses both location prediction and animal identification. This is not solely the time it
takes to locate the animal when detected by PIR sensors. Furthermore, the farmer will receive
consecutive messages to fine-tune the animal’s location until the threat is eliminated.

Table 7. System latency.

Step Latency (s)

Transmission of 3 sets of data via LoRa 1

Prediction with proposed algorithm 0.01

Instruction sent to camera via LoRa 1

Camera rotation, image capture and processing 4∼5

Results sent back to fog server via LoRa 1

Alert sent to farmer via LTE 0.1∼0.6 [29]

In total 7.11∼8.61

5.4.2. System Cost

To illustrate the expenses incurred during our experiment in the 25× 25 m2 field, we
have compiled a detailed cost analysis of all the devices used, which is presented in Table 8.
With a total cost of USD 285.36, our system is a cost-effective solution for monitoring animal
intrusions. As the size of the farm increases, the cost will inevitably rise, but the advantage
is that additional expensive equipment, such as a fog server, is not required.



Future Internet 2024, 16, 296 15 of 20

Table 8. System cost.

Device Name Cost (USD)

Arduino Shield for LoRa 6.12/each × 3 = 18.36

Raspberry Pi 4 95

GPS Concentrator 120

PIR Sensor 0.75/each × 36 = 27

Camera 25

In Total 285.36

5.5. Energy Consumption

In terms of energy consumption, we need to conduct measurements in a much larger
field (1000 m× 1000 m) to ensure realism and credibility. We assume that the most common
animal around the farm field is the cow, and we opt for a 40 m distance between cameras
and the sensing boundary so that MobileNet can be used to achieve the best performance.
To verify the energy efficiency of our strategy, we compare it with the most common
and straightforward approach, which is to use cameras only without PIR sensors. In this
comparison, we need to determine the energy consumption difference by only measuring
the energy consumption of the unique components of each approach. We also make the
assumption that 10 animal intrusion detections are performed each day.

In the experiment, we utilized a power meter capable of directly indicating the energy
consumption (measured in milliwatt-hours, mWh) over a specific duration. As depicted
in Figure 11, we inserted one end of the power meter into the outlet providing power to
the device, and then connected the device to the power meter’s outlet. Subsequently, we
recorded the time taken to consume 0.001 kWh (1 Wh) of energy for different components.

Figure 11. Power meter connection.

5.5.1. Our Strategy: Rotating Cameras with PIR Sensors

In our proposed strategy, we need to measure energy consumption for two components
across various scenarios involving different numbers of animal detections (as detailed
in Table 9). The components tested are: (1) One Arduino board, one LoRa hat for the
communication with the edge server, along with PIR sensors; (2) One single rotating
camera and its connected Raspberry Pi. Here, “number of animal detections” refers to
instances where animals intrude into the field and were detected by the PIR sensors and
captured by the cameras. The rotation angle was randomly generated for each image
captured by the rotating camera.

With the data presented in Table 9, we can calculate the power consumed by both
components in one day, as illustrated in Table 10.



Future Internet 2024, 16, 296 16 of 20

Table 9. Time taken to consume 1 Wh for components.

#Detections Arduino Board, LoRa Hat, Camera and
and Nine PIR Sensors Raspberry Pi

0 166 min 40 s 9 min 18 s

1 166 min 40 s 9 min 15 s

3 164 min 23 s 9 min 5 s

5 164 min 23 s 9 min 2 s

10 160 min 8 min 54 s

Table 10. Energy consumed (Wh) by components in one day (24 h).

#Detections Arduino Board, LoRa Hat, Camera and
and Nine PIR Sensors Raspberry Pi

0 8.64 154.839

1 8.64 154.844

3 8.641 154.862

5 8.641 154.867

10 8.643 154.882

Besides determining the power consumption of each component, we also need to
calculate the number of components required to monitor the entire field. As depicted
in Figure 12, since the detection distance of PIR sensors is 5 m (as illustrated in Table 1),
the capture boundary for the camera is also set to be 5 m away from the farm boundary,
aligning with the sensing boundary of the PIR sensors to minimize the number of cameras
used. We positioned all cameras along the boundary to ensure coverage of the entire area
with the fewest number of cameras, leveraging the maximum distance between points A
and B. Since the cameras are rotatable, the angle β can be wider than the field of view as
long as the distance between camera and point B is not greater than 40 m.

Figure 12. Placement of cameras.

For a field of 1000 by 1000 m, the number of cameras required, C1, is

C1 =
1000

39.686× 2
× 4 ≈ 52 (1)

where 39.686 is the distance between points A and B, as marked in Figure 12. Here,
multiplication by four is done to account for the four sides of the farm field.

The number of PIR sensors, S, can be calculated using the following equation:

S =
1000
3.5
× 4 ≈ 1143 (2)

where 3.5 is the distance between two adjacent PIR sensors in Layout B. Thus, the number
of Arduino boards or LoRa hats needed, A, is



Future Internet 2024, 16, 296 17 of 20

A =
S
9
=

1143
9

= 127 (3)

Finally, the total energy consumption (Wh) can be calculated roughly with

P1 = (((C1 − 1)× 154.839 + 1× 154.882)+

((A− 1)× 8.64 + 1× 8.643) = 9148.954 (4)

5.5.2. All-Camera Strategy

This strategy relies solely on cameras without PIR sensors. With this approach, we
must deploy more cameras and fix their positions and directions to ensure the same
seamless coverage as the above strategy, as there are no PIR sensors aiding in positioning.
And all the cameras must be continuously capturing the field, with image processing
running constantly. We measure that it takes 8 min and 2 s to capture and process 36 images,
consuming 0.001 kWh of energy (equivalent to 179.253 Wh per day) for each non-rotating
camera and its connected Raspberry Pi. So, one clear problem with this strategy is that
there is a 13.4 s interval between two captures, which could pose significant issues. Animals
intruding the field during these intervals may not be detected.

In addition to maintaining a distance of 40 m between the cameras and the sensing
boundary, the angle β also needs to be adjusted to match the field of view of the cameras,
as illustrated in Figure 13.

Figure 13. Placement of cameras in an all-camera strategy.

Under this deployment, the number of cameras required, C2, is

C2 =
1000

31.734× 2
× 4 ≈ 64 (5)

where 31.734 is the distance between points C and D, as marked in Figure 13.
Hence, the total energy consumption (Wh) for this strategy is

P2 = (C2 × 179.253) = 11,472.192 (6)

5.5.3. Comparison of Energy Consumption

By leveraging the data measured and calculated above, we can further assess the
energy consumption for both strategies over an extended time period, as depicted in
Table 11. Our strategy showcases remarkable efficiency gains, conserving 2.323 kWh per
day. This translates to substantial long-term savings, amounting to 69.69 kWh per month,
847.895 kWh per year, and an impressive total of 4239.475 kWh over a span of 5 years.
Although our approach inherently increases system complexity compared to an all-camera
strategy, the significant energy efficiency benefits it offers, coupled with the establishment
of a full-time efficient monitoring system, certainly justify this trade-off.



Future Internet 2024, 16, 296 18 of 20

Table 11. Comparison of energy consumption (KWh).

Duration All-Camera Strategy Our Strategy Savings

1 day 11.472 9.149 2.323

1 month
(30 days) 344.16 274.47 69.69

1 year
(365 days) 4187.28 3339.385 847.895

5 years
(1825 days) 20,936.4 16,696.925 4239.475

6. Discussion
6.1. Shape of Farm Field

The evaluation of our system prototype was conducted within the confines of a
rectangular field. However, real-world fields exhibit a predominantly irregular shape,
necessitating a nuanced approach to the placement of PIR sensors. While the established
strategy of aligning sensors along straight boundaries remains consistent and effective,
addressing corners emerges as a significant challenge. The diversity in corner shapes
demands varied coping mechanisms. Two critical considerations come to the forefront:
ensuring an extended detectable distance from the boundary and enhancing seamless
coverage. Achieving a longer detectable distance is facilitated by the horizontal projection
of PIR sensors outward from the corners. Simultaneously, the goal of enlarging seamless
coverage is pursued through the strategic combination of vertically placed sensors or the
exclusive use of horizontally placed ones, contingent on the specific field scenarios.

6.2. Other Options for Communication

In addition to the combination of LoRa and cheap camera sensors, alternatives could
be to use 4G/5G cellular security cameras or wired solutions. However, 4G/5G cellular
security cameras are much more expensive and require a license, making the total cost
much higher. Wired solutions are also undesirable since cables would be inconvenient for
cultivation and prone to corrosion, making maintenance costly.

6.3. Missing an Animal Intrusion

Based on the results presented in Table 4, it is evident that when an animal is very
close to the camera, the success rate of detecting animal intrusion decreases. Naturally,
fast-moving animals pose a challenge for our system, as they can quickly move out of
the camera’s range or get too close, making it difficult to predict their next location. This
increases the likelihood of the camera capturing the wrong area. Nevertheless, it is worth
noting that fast-moving animals are typically not found in close proximity to farm fields.
Lastly, smaller animals that the camera cannot capture clearly are also challenging to detect.

6.4. Multiple Animal Detection and LoRa Transmission Conflict

The proposed system, designed for single animal detection, needs enhancements to
handle real-world scenarios with multiple animals invading simultaneously. To address
this, advanced computer vision techniques and additional sensors, like Radio-frequency
identification (RFID) or acoustic sensors, can be integrated for accurate identification
and tracking. Moreover, LoRa transmission conflicts can be resolved by implementing
time-division or frequency-division multiple access techniques, collision detection, and
retransmission mechanisms, ensuring reliable data transfer and enabling the system to
effectively handle multiple animal detections and simultaneous LoRa transmissions.



Future Internet 2024, 16, 296 19 of 20

7. Conclusions

This paper introduces a fog-based smart agriculture system that addresses challenges
such as high latency and internet connectivity issues by integrating fog computing with
LoRa communication and Raspberry Pi workload distribution. The system employs low-
cost PIR sensors and cameras to detect and predict animal intrusion, offering multiple
sensor layouts and an algorithm for optimal performance. Additionally, the paper conducts
experimental comparisons between these layouts, verifying the algorithm’s effectiveness
and accuracy. Moreover, this paper includes a comprehensive analysis of power consump-
tion and compares the proposed strategy with a camera-only approach, providing insights
into energy efficiency and cost-effectiveness.

Author Contributions: Conceptualization, J.M., D.R., S.M., S.K.N. and R.Y.; Methodology, J.M., D.R.,
S.M., S.K.N. and R.Y.; Project administration, J.M.; Software, J.M.; Supervision, S.M., S.K.N. and R.Y.;
Writing—original draft, J.M. and D.R.; Writing—review and editing, J.M., D.R., S.M., S.K.N. and R.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by TIH-IoT grant number TIH-IoT/2022-07/IC/NSF/SL/
NIUC-2022-04/005 and NSF grant number 13012641.

Data Availability Statement: The study does not report any data.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
2. Miao, J.; Rajasekhar, D.; Mishra, S.; Nayak, S.; Yadav, R. A Fog-based Smart Agriculture System to Detect Animal Intrusion. In

Proceedings of the 2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS), Ocean Flower Island,
China, 17–21 December 2023.

3. Aiswarya, M.; Banu, E.; Gifta, J.J.; Devaraj, S.A. An Intelligent Agricultural Intrusion Detection and Irrigation Control System
Using GSM. Int. J. Adv. Res. Innov. Discov. Eng. Appl. 2018, 3, 8–15.

4. Yadahalli, S.; Parmar, A.; Deshpande, A. Smart Intrusion Detection System for Crop Protection by using Arduino. In Proceedings
of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India,
15–17 July 2020.

5. Radhakrishnan, S.; Ramanathan, R. A Support Vector Machine with Gabor Features for Intrusion Detection in Agriculture Fields.
In Proceedings of the 8th International Conference on Advances in Computing and Communication (ICACC-2018) Procedia
Computer Science, Kochi, India, 13–15 September 2018.

6. Balakrishna, K.; Mohammed, F.; Ullas, C.R.; Hema, C.M.; Sonakshi, S.K. Application of IOT and machine learning in crop
protection against animal intrusion. Glob. Transit. Proc. 2021, 2, 169–174. [CrossRef]

7. Sabeenian, R.S.; Deivanai, N.; Mythili, B. Wild animals intrusion detection using deep learning techniques. Int. J. Pharm. Res.
2020, 12, 1053–1058.

8. Thomas, A.K.; Poovizhi, P.; Saravanan, M.; Tharageswari, K. Animal Intrusion Detection using Deep Learning for Agricultural
Fields. In Proceedings of the 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli,
India, 23–25 January 2023.

9. Kiruthika, S.; Sakthi, P.; Sanjay, K.; Vikraman, N.; Premkumar, T.; Yoganantham, R.; Raja, M. Smart Agriculture Land Crop
Protection Intrusion Detection Using Artificial Intelligence. E3S Web Conf. 2023, 399, 04006.

10. Antônio, W.H.; Da Silva, M.; Miani, R.S.; Souza, J.R. A proposal of an animal detection system using machine learning. Appl.
Artif. Intell. 2019, 33, 1093–1106. [CrossRef]

11. Sahana, K. Farm Vigilance: Smart IoT System for Farmland Monitoring and Animal Intrusion Detection using Neural Network.
In Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 27–29 August 2021.

12. Nikhil, R.; Anisha, B.S.; Kumar, R. Real-Time Monitoring of Agricultural Land with Crop Prediction and Animal Intrusion
Prevention using Internet of Things and Machine Learning at Edge. In Proceedings of the 2020 IEEE International Conference on
Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020.

13. Venkateshkumar, U.; Anirudh, V.; Khanali, D.; Ezhil, B. Farm Intrusion Detection System using IoT. In Proceedings of the 2022
International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022.

14. Jeevitha, S.; Kumar, S.V. A Study on Sensor Based Animal Intrusion Alert System Using Image Processing Techniques. In
Proceedings of the 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
Palladam, India, 12–14 December 2019.

http://doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1016/j.gltp.2021.08.061
http://dx.doi.org/10.1080/08839514.2019.1673993


Future Internet 2024, 16, 296 20 of 20

15. Sharma, P.; Sirisha, C.K.; Gururaj, S.; Padmavathi, C. Neural Network Based Image Classification for Animal Intrusion Detection
System. Int. J. Progress. Res. Sci. Eng. 2020, 1, 1–7.

16. Giordano, S.; Seitanidis, I.; Ojo, M.; Adami, D.; Vignoli, F. IoT solutions for crop protection against wild animal attacks. In
Proceedings of the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018.

17. Vikhram, B.; Revathi, B.; Shanmugapriya, R.; Sowmiya, S.; Pragadeeswaran, G. Animal Detection System in Farm Areas. Int. J.
Adv. Res. Comput. Commun. Eng. (IJARCCE) 2017, 6, 587–591.

18. Mohandass, S.; Sridevi, S.; Sathyabama, R. Animal health monitoring and intrusion detection system based on LORAWAN. Turk.
J. Comput. Math. Educ. 2021, 12, 2397–2403.

19. Geetha, D.; Monisha, S.P.; Oviya, J.; Sonia, G. Human and Animal Movement Detection in Agricultural Fields. SSRG Int. J.
Comput. Sci. Eng. 2019, 6, 15–18.

20. Begum, M.; Janeera, D.A.; Aneesh Kumar, A.G. Internet of Things based Wild Animal Infringement Identification, Diversion and
Alert System. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore,
India, 26–28 February 2020.

21. Saurabh, S.; Milind, J.; Harshita, J.; Mayank, P.; Latif, K.; Amisha, S.; Gautam, A.; Harshal, J.; Jatin S. Self-Intrusion Detection
System for Protection of Agricultural Fields Against Wild Animals. Int. J. Mod. Agric. 2021, 10, 2686–2691.

22. Lora Alliance. Available online: https://www.lora-alliance.org (accessed on 22 July 2024).
23. Alliance, LoRa. A Technical Overview of LoRa and LoRaWAN. White Paper; 20 November 2015. Available online: https:

//www.academia.edu/31617677/A_technical_overview_of_LoRa_and_LoRaWAN_What_is_it (accessed on 20 July 2024).
24. Lora Alliance. 2017. LoRaWAN 1.1 Specification. October 2017. Available online: https://lora-alliance.org/resource_hub/

lorawan-specification-v1-1 (accessed on 22 July 2024).
25. Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. In IEEE Cloud Computing; IEEE: Piscataway, NJ,

USA, 2014.
26. Chen, R.; Li, S.; Li, Z. From Monolith to Microservices: A Dataflow-Driven Approach. In Proceedings of the 2017 24th Asia-Pacific

Software Engineering Conference (APSEC), Nanjing, China, 4–8 December 2017.
27. Mishra, S.; Nayak, S.; Yadav, R. An Energy Efficient LoRa-based Multi-Sensor IoT Network for Smart Agriculture System. In

Proceedings of the IEEE Topical Conference on Wireless Sensors and Sensor Networks, (WisNet 2023), Las Vegas, NV, USA, 22–25
January 2023.

28. Models and Pre-Trained Weights. PyTorch. Available online: https://pytorch.org/vision/0.12/models.html#models-and-pre-
trained-weights (accessed on 22 July 2024).

29. Ilya, G. High Performance Browser Networking: What Every Web Developer Should Know about Networking and Web Performance;
O’Reilly Media, Inc.: Newton, MA, USA, 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.lora-alliance.org
https://www.academia.edu/31617677/A_technical_overview_of_LoRa_and_LoRaWAN_What_is_it
https://www.academia.edu/31617677/A_technical_overview_of_LoRa_and_LoRaWAN_What_is_it
 https://lora-alliance.org/resource_hub/lorawan-specification-v1-1
 https://lora-alliance.org/resource_hub/lorawan-specification-v1-1
https://pytorch.org/vision/0.12/models.html#models-and-pre-trained-weights
https://pytorch.org/vision/0.12/models.html#models-and-pre-trained-weights

	Introduction
	Related Work
	Background
	LoRa and LoRaWAN Protocol
	IoT Devices
	Arduino
	Multi-Channel LoRaWAN GPS Concentrator
	PIR Sensor
	All-Day Camera

	Fog Computing
	Containerization
	Microservices


	Proposed System
	System Architecture
	Animal Intrusion Detection
	Sensor Layouts
	Layout A—Vertical
	Layout B—Horizontal
	Layout C—Hybrid

	Proposed Algorithm

	Evaluation
	Experiments and Results
	Lora Transmission
	Sensor Placement
	Position Prediction
	Animal Detection

	Prediction Accuracy
	Imaging Quality and Animal Identification
	System Performance and Cost
	System Performance
	System Cost

	Energy Consumption
	Our Strategy: Rotating Cameras with PIR Sensors
	All-Camera Strategy
	Comparison of Energy Consumption


	Discussion
	Shape of Farm Field
	Other Options for Communication
	Missing an Animal Intrusion
	Multiple Animal Detection and LoRa Transmission Conflict

	Conclusions
	References

