
Citation: Lawo, D.C.; Abu Bakar, R.;

Cano Aguilera, A.; Cugini, F.; Imaña,

J.L.; Tafur Monroy, I.; Vegas Olmos, J.J.

Wireless and Fiber-Based Post-

Quantum-Cryptography-Secured

IPsec Tunnel. Future Internet 2024, 16,

300. https://doi.org/10.3390/

fi16080300

Academic Editors: Yuezhi Zhou

and Xu Chen

Received: 26 July 2024

Revised: 15 August 2024

Accepted: 20 August 2024

Published: 21 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Wireless and Fiber-Based Post-Quantum-Cryptography-Secured
IPsec Tunnel
Daniel Christian Lawo 1,2 , Rana Abu Bakar 3,4, Abraham Cano Aguilera 1,2, Filippo Cugini 3, José Luis Imaña 5 ,
Idelfonso Tafur Monroy 1,* and Juan Jose Vegas Olmos 2

1 Department of Electrical Engineering, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands; d.c.lawo@tue.nl (D.C.L.); a.c.a.cano.aguilera@tue.nl (A.C.A.)

2 Software Architecture, Nvidia Corporation, Yokneam Illit 2066730, Israel; juanj@nvidia.com
3 Consorzio Nazioinale Interuniversitario per le Telecomunicazioni, 56124 Pisa, Italy;

rana.abubakar@santannapisa.it (R.A.B.); filippo.cugini@cnit.it (F.C.)
4 Istituto di Telecomunicazioni, Informatica e Fotonica, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
5 Department of Computer Architecture and Automation, Universidad Complutense de Madrid,

28040 Madrid, Spain; jluimana@ucm.es
* Correspondence: i.tafur.monroy@tue.nl

Abstract: In the near future, commercially accessible quantum computers are anticipated to revo-
lutionize the world as we know it. These advanced machines are predicted to render traditional
cryptographic security measures, deeply ingrained in contemporary communication, obsolete. While
symmetric cryptography methods like AES can withstand quantum assaults if key sizes are doubled
compared to current standards, asymmetric cryptographic techniques, such as RSA, are vulnerable
to compromise. Consequently, there is a pressing need to transition towards post-quantum cryp-
tography (PQC) principles in order to safeguard our privacy effectively. A challenge is to include
PQC into existing protocols and thus into the existing communication structure. In this work, we
report on the first experimental IPsec tunnel secured by the PQC algorithms Falcon, Dilithium, and
Kyber. We deploy our IPsec tunnel in two scenarios. The first scenario represents a high-performance
data center environment where many machines are interconnected via high-speed networks. We
achieve an IPsec tunnel with an AES-256 GCM encrypted east–west throughput of 100 Gbit/s line
rate. The second scenario shows an IPsec tunnel between a wireless NVIDIA Jetson and the cloud
that achieves a 0.486 Gbit/s AES-256 GCM encrypted north–south throughput. This case represents a
mobile device that communicates securely with applications running in the cloud.

Keywords: post-quantum cryptography; falcon; dilithium; kyber; data processing unit; data center; IPsec

1. Introduction

For several years now, quantum computing has been a focal point of rigorous inves-
tigation ultimately resulting in the creation of a quantum processor [1]. The arrival of a
powerful commercially available quantum computer is expected in the near future, with
prototype systems [2], digital annealers [3], and quantum annealers [4] already being on
the market. This presents a significant challenge to contemporary communication systems
reliant on classical cryptographic infrastructure and methods. The vulnerability of asym-
metric cryptography, such as RSA [5], to quantum processors poses a serious threat to our
communication. Unlike asymmetric cryptography, symmetric cryptography such as the
Advanced Encryption Standard (AES)/Rijndael cipher [6] is said to remain secure against
quantum threats if its key size is doubled [7]. Hence, a shift from AES-128 to AES-256 is
required. However, the urgency to replace current asymmetric cryptography algorithms
with quantum-resistant alternatives, known as post-quantum cryptography (PQC), is
paramount. It is imperative to account for the threat to our digital communications posed
by the arrival of quantum computers. Therefore, in December 2016, the National Institute

Future Internet 2024, 16, 300. https://doi.org/10.3390/fi16080300 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16080300
https://doi.org/10.3390/fi16080300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0001-5966-0682
https://orcid.org/0000-0002-4220-4111
https://doi.org/10.3390/fi16080300
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16080300?type=check_update&version=1

Future Internet 2024, 16, 300 2 of 22

of Standards and Technology (NIST) launched a competition for the standardization of
new, quantum-resilient algorithms that are hard to crack not only by classical computers
but also by quantum computers [8].

Recently, the NIST announced their decision to standardize three PQC signature al-
gorithms and one Key Exchange Mechanism (KEM) [8]. Many different candidates were
submitted to the NIST competition. The security of the candidates is mostly based on
one of the following approaches [9]: multivariate cryptography, hash-based cryptogra-
phy, code-based cryptography, isogeny-based cryptography, or lattice-based cryptography.
Multivariate cryptographic systems base their security on solving multivariate equation
systems. An example for a PQC candidate which is multivariate-based is the PQC signature
scheme Rainbow [10]. Hash-based schemes base their security on the well-known and
well-understood technique of hashing. The NIST candidate SPHINCS+ [11] is a hash-
based signature scheme that was one of the four candidates in the NIST competition
that was announced to be standardized. Code-based schemes are relying on algorithmic
primitives [12]. To name an example, Classic McEliece [13] is a code-based KEM that was
submitted to the NIST competition that was not elected to be standardized. However, three
out of four candidates for PQC standardization, namely Falcon [14], Dilithium [15], and
Kyber [16], are based on cryptographic lattices. The fourth candidate that is going to be
standardized, SPHINCS+ [11], is hash-based. In the literature, extensive comparisons have
been made regarding the performance of SPHINCS+, Falcon, and Dilithium. Notably, stud-
ies such as [17,18] identify certain drawbacks of SPHINCS+ that are particularly relevant to
our work. Specifically, SPHINCS+ produces signatures that are substantially larger in size,
as shown in Table 1. These significantly larger signature sizes pose a concern for our client-
to-data-center application. Additionally, SPHINCS+ is the most computationally intensive
algorithm among the three. Therefore, we have excluded SPHINCS+ from consideration
and are focusing our PQC work on three out of the four algorithms that have been chosen
for standardization: Falcon [14], Dilithium [15], and Kyber [16].

The current digital technologies confirm identities using digital certificates that create
a so-called chain of trust. Figure 1 illustrates how a chain of trust is established using a
sequence of certificates, which can include one or multiple intermediate certificates. A
digital certificate contains the public key and the signature of a certificate authority (CA).
The end-entity certificate includes the certificates within the certificate chain. Therefore,
the sizes of the signatures and the public keys heavily influence the size of the resulting
certificate. Naturally, that holds true for all certificates included in the certificate chain that
need to be validated by the end entity. In Table 1, the signature and public key sizes of
the three PQC signature algorithms chosen by the NIST are shown in bytes. Additionally,
Kyber’s public key and encapsulation sizes in bytes can be seen. For reference purposes,
Table 2 shows the sizes in bytes for the most commonly used classical signature algorithms.
The signature algorithms mentioned in Table 2 are not quantum-safe. Comparing Table 1
with Table 2 shows clearly that the sizes of the PQC algorithms are significantly greater
compared to their classical counterparts. Hence, the size of a PQC certificate is considerably
greater than the size of a certificate that is signed using classical cryptographic algorithms
such as RSA. While PQC algorithms have yet to be standardized and rolled out into
production systems, efforts are being taken to examine so-called hybrid certificates [19,20].
Hybrid certificates are certificates that support the use of multiple algorithms during
the transitional phase where classical algorithms are still in use and PQC algorithms are
being deployed.

Future Internet 2024, 16, 300 3 of 22

Issuing CA's name

Issuing CA's public key

Root CA's public name

Root CA's signature

Root CA's name

Root CA's public key

Root CA's signature

Subject's name

Subject's public key

Issuer's name

Issuer's signatureSigns

Chain Link

Intermediate CertificateRoot CA Certificate End-entity Certificate

Signs

Chain Link

Self-signed

Figure 1. Chain of trust: The root CA signs the intermediate certificate. The end-entity certificate’s
authenticity is confirmed by one or more intermediate CAs. Hence, trust is established.

Table 1. Signature (Sig) and public key (Pub key) sizes of Falcon and Dilithium in bytes for different
NIST security levels (I, II, III, and V). Public key (Pub key) and encapsulation (Encaps) size of Kyber
in bytes. For SPHINCS+, the sizes in bytes are indicated for the use of SHA-256 128-bit (NIST I),
SHA-256 192-bit (NIST III), and SHA-256 256-bit hashing (NIST V).

Algorithm I II III V

Kyber Pub key 800 1184 1568
Kyber Encaps 768 1088 1568

Dilithium Pub key 1312 1952 2592
Dilithium Sig 2420 3293 4595

Falcon Pub key 897 1793
Falcon Sig 666 1280

SPHINCS+ Pub key 32 48 64
SPHINCS+ Sig 17,088 35,664 49,856

Table 2. Public key (Pub key) and signature (Sig) sizes of classical signature algorithms in bytes [19].
Classical signature and public key sizes are considerably smaller compared to the sizes employed in
PQC signature algorithms.

Algorithm Pub Key Sig

RSA 1024 128 128

RSA 2048 256 256

RSA 4096 512 512

SECP384r1 48 96

SECP521r1 65 132

For the transition towards the use of quantum-resilient algorithms, PQC must be
integrated into existing protocols that are used nowadays such as Internet Protocol security
(IPsec). Our work contributes to the goal of integrating PQC into the widely established
IPsec protocol. In this work, we use the reference implementations of Falcon, Dilithium,
and Kyber that were submitted to the NIST competition. We do not use an optimized,
accelerated, or in any form modified version of the algorithms. We benchmark the PQC
algorithms Falcon, Dilithium, and Kyber on our experimental setup. We execute the
algorithms on different processors for reference purposes. The main challenge that we
address in the work we present here is the experimental integration of PQC into the
IPsec protocol for the purpose of quantum-resilient communication. We set up a PQC-
secured IPsec tunnel and implement the tunnel for two scenarios: (1) an intra-data-center
high-speed connection between devices in the data center and (2) a client-to-data-center
connection. With this work, it is our goal to contribute to the state of the art by presenting a
quantum-safe software stack for setting up a high-speed IPsec tunnel. We demonstrate the
use of the IPsec tunnel in a high-performance environment and in an environment with a
mobile, low-power client.

Future Internet 2024, 16, 300 4 of 22

2. Related Works

Since the NIST started the competition for the standardization of PQC algorithms, a lot
of work on the implementation of the presented PQC algorithms has been performed. Those
efforts have not only been focused on Central Processing Unit (CPU) implementations
but also on a variety of platforms such as FPGA [21,22], GPU [23], RISC-V [24,25], or a
combination of different platforms [26] to improve the performance of the computationally
challenging parts of the PQC algorithms. The Number Theoretic Transform (NTT) method,
for example, is a mathematical operation of fundamental importance for Falcon [14],
Dilithium [15], and Kyber [16]. NTT serves for the efficient multiplication of polynomials.
The procedure can be parallelized, and hence, the performance benefits strongly from
implementations on platforms that can provide heavy parallelization such as FPGAs [27] or
GPUs [28]. Other subroutines or functions of PQC algorithms are recursive and therefore
do not benefit from parallelization. As an example, Falcon uses floating point operations
and recursive functions which would require a modification prior to being implemented in
hardware. In [29], the authors state that their implementation of Falcon’s key generation
on a FPGA shows a high latency while having high hardware utilization compared to a
software-based implementation on an Intel I7 CPU.

The IPsec protocol has existed for decades. Therefore, numerous publications with
different implementations on a large variety of platforms have been reported. In [30], the
authors compare IPsec solutions implemented in Data Plane Development Kit (DPDK), in
the Linux userspace, in the Linux kernel, on the Network Interface Card (NIC), and on the
host CPU. They claim a 3.54× improvement in throughput and a 2.54× improvement in
latency with their implementation compared to the existing control plane design. They
achieve a 4.795 Gbit/s throughput. However, they achieve this throughput using 128-bit
AES Galois-counter mode (GCM). For being considered quantum-safe, AES-256 must
be used [7].

In [31], the authors examine the reference implementations of Dilithium and Kyber
on data processing unit (DPU) devices and how the algorithms can be accelerated using
an optimized version for ARM core processors. In [32], the authors use a PQC software
stack similar to the one that we present in this work. They investigate the performance
impact of Falcon and Kyber in the stack and evaluate the advantages and disadvantages
of choosing one over the other. In [33], an IPsec tunnel using Dilithium and Kyber with a
different software stack and a different methodology is established. In the work that we
present here, we apply our knowledge about PQC and focus on establishing a PQC-secured
IPsec tunnel.

In the context of quantum-secure communication, it is necessary to mention Quantum
Key Distribution (QKD). While PQC is based on mathematical challenges, the security of
QKD relies on the physical properties of quantum mechanics to achieve secure communica-
tions. In [34], the authors report on a 10 Gbit/s IPsec tunnel between two JP Morgan Chase
data centers. QKD is a highly important approach to securing future networks against
attackers. However, unlike PQC, QKD requires extensive specialized hardware. Moreover,
the rate at which quantum-safe keys are exchanged is low. Consequently, a key manage-
ment system [35] is required, which increases the overhead and complexity of such systems.
Given the high costs associated with QKD, we expect it to be used primarily in areas with
very high security needs, such as military or government applications. We envision a
co-existence of PQC and QKD systems in the form of hybrid PQC-QKD schemes [35].

Despite extensive research on PQC and IPsec individually, little has been reported on
the integration of PQC with IPsec. In [36], the authors use PQC in a custom protocol and
combine it with IPsec. However, they neither use Falcon [14] nor report on the throughput
achieved with their IPsec implementation. The focus of their work is on integrating
PQC into an encryption daemon used by IPsec. Like us, the authors use strongSwan
as the encryption daemon. However, without the necessary firmware support, IPsec
hardware offloading cannot be used, forcing the device’s CPU to handle all cryptographic
operations for the IPsec tunnel. The authors employ a version of strongSwan that does

Future Internet 2024, 16, 300 5 of 22

not support hardware offloading. This lack of offloading would significantly reduce the
tunnel’s throughput due to the CPU’s increased workload. In our work, we demonstrate
a complete setup of a PQC-secured IPsec tunnel using Dilithium, Falcon, and Kyber,
including hardware offloading of the tunnel’s AES-256 GCM operations, and report on
the performance.

3. IPsec Protocol

IPsec [37] is an OSI layer 3 (network layer) protocol that is part of the IPv4 suite.
For comparison, MACsec is a layer 2 (data link layer) protocol, while TLS acts on layer 4
(transport layer), and SSH operates on layer 7 (application layer) of the OSI model. IPsec is
used to end-to-end encrypt and decrypt data in transit [38]. Multiple different algorithms
are supported. In this work, we use AES GCM, in particular AES-256 GCM, because the
DPU devices allow for hardware offloading of AES GCM. IPsec works in either transport
or tunnel mode. Using the transport mode, the payload of the ip packet is encrypted. The
IP header is not modified nor encrypted. The tunnel mode encrypts the entire IP packet
and authenticates it. Therefore, the original IP packet is encapsulated into a new IP packet
including a new IP header. The tunnel mode is used to create virtual private networks for
network-to-network communications.

Moreover, IPsec can be used in either the Authentication Header (AH) mode or in
Encapsulation Security Payload (ESP) mode [39]. The AH mode serves as a means for
authentication exclusively. It guarantees data integrity, data origin authentication, and
optionally, a replay protection service. Data integrity is maintained through the utilization
of a message digest created by algorithms like HMAC-MD5 or HMAC-SHA. Data origin
authentication is established by employing a shared secret key to generate the message
digest. Replay protection is implemented through a sequence number field within the
AH header. The AH mode verifies the authenticity of IP headers and their payloads,
except for specific header fields that may undergo legitimate alterations during transit,
such as the Time To Live (TTL) field. The ESP protocol offers both data confidentiality
through encryption and authentication, which includes ensuring data integrity, data origin
authentication, and replay protection. ESP can operate solely for confidentiality, solely for
authentication, or for both confidentiality and authentication simultaneously. When ESP
incorporates authentication, it employs identical algorithms to those used in AH, although
with different coverage. AH-style authentication verifies the complete IP packet, including
the outer IP header, whereas the ESP authentication mechanism authenticates only the IP
datagram segment of the IP packet. In this paper, we use IPsec exclusively in the ESP mode.
We do not use the AH mode.

IPsec uses security policies and security associations. Every Security Association (SA)
is identified by an Security Parameter Index (SPI) and a sequence number. Authentication
can be carried out via two different options: with standard public key encryption or with
the so-called pre-shared key method. IPsec supports a variety of public key schemes, such
as RSA [40] or Diffie–Hellman [41]. If, however, the pre-shared key method is used for
establishing the IPsec tunnel, the symmetric key that is used for encryption is already in
possession of the devices. The devices send each other hashes of the pre-shared keys and
hence proof that they are indeed in possession of the correct key. As IPsec does not support
PQC public key encryption, we perform our own PQC-secured authentication and key
exchange and then ultimately set an IPsec connection using the pre-shared key method.
This is possible because both parties have the key that they exchanged before via PQC. An
important parameter when setting up an IPsec connection is the re-keying parameter that
indicates how often a new key is exchanged. As an encryption daemon, we use strongSwan
(https://www.strongswan.org/, accessed on 25 January 2025) version 5.9.10. Since this
version does not support PQC yet, we deactivate re-keying in this work as re-keying would
inevitably employ non-quantum-safe key exchange algorithms. Instead of re-keying, we
run the herein presented software stack again, thus setting up a new connection that uses a
new key. The IPsec rules are installed into the Linux kernel using the ip-xfrm command

https://www.strongswan.org/

Future Internet 2024, 16, 300 6 of 22

that is part of the iproute2 (https://github.com/iproute2/iproute2 accessed on 3 July 2024)
Linux tool set.

IPsec Hardware Acceleration

IPsec is a widely used protocol suite for securing Internet Protocol (IP) communi-
cations by authenticating and encrypting each IP packet in a data stream. BlueField-2
DPUs offer hardware acceleration for IPsec, enabling efficient packet processing and en-
cryption/decryption without burdening the host CPU. The software framework that is
used to program the DPU is called Data Center-on-a-Chip Architecture (DOCA). By design,
DOCA is very similar to NVIDIA’s Compute Unified Device Architecture (CUDA) that
is used for the programming of a Graphic Processing Unit (GPU). Like in CUDA, using
the Application Programming Interfaces (APIs) enables the user to access on-board hard-
ware accelerators of the device. Figure 2 presents the workflow of DOCA IPsec, detailing
the steps involved in setting up IPsec policies and processing network traffic within the
BlueField environment. We configure the NIC similar to the procedure presented on the
NVIDIA DOCA webpage (https://docs.nvidia.com/doca/sdk/nvidia+doca+east-west+
overlay+encryption+application/index.html, accessed on 15 July 2024) regarding the accel-
eration of east–west traffic. Hence, the DPU offloads the complex cryptographic operations
to the hardware accelerators that are accessible via DOCA.

Open DOCA device for secured port

Probe DPDK ports

Initialize DOCA Flow and DOCA Flow
ports

Build DOCA Flow pipes

Create UDS socket and listen for
incoming data

New IPsec policies received?

Parse policy

Create IPSec SA shared resource

Insert encrypt rule to DOCA Flow pipes

Yes
NO

Figure 2. Overview of DOCA IPsec workflow. The sequential steps involved in setting up IPSec
policies and processing network traffic within the BlueField environment are illustrated.

When the IPsec connection is configured, the process begins by initializing the DOCA
device for the secure port. This step ensures that the network interface is ready to handle
incoming and outgoing traffic securely. To prepare the infrastructure for packet processing

https://github.com/iproute2/iproute2
https://docs.nvidia.com/doca/sdk/nvidia+doca+east-west+overlay+encryption+application/index.html
https://docs.nvidia.com/doca/sdk/nvidia+doca+east-west+overlay+encryption+application/index.html

Future Internet 2024, 16, 300 7 of 22

and flow management, DPDK ports are probed to identify available network interfaces.
This is followed by initializing DOCA Flow (https://docs.nvidia.com/doca/archive/doca-
v1.2/flow-programming-guide/index.html accessed on 10 January 2024) and DOCA Flow
ports. DOCA Flow pipes are then constructed to define the flow of packets through various
stages of processing. These pipes facilitate actions such as the filtering, forwarding, and
manipulation of packet headers.

A Unix Domain Socket (UDS) is created to establish a communication channel for
receiving incoming data. This socket serves as the interface for interacting with external
systems and applications. The system periodically checks for new IPsec policies. Upon
receiving a new policy, it is parsed to extract relevant information such as encryption
and decryption rules. If the policy corresponds to an encryption rule, an IPsec SA shared
resource is created. This resource manages encryption parameters and states for packets
matching the specified criteria. The encryption rule is then inserted into the appropriate
DOCA Flow pipes. This ensures that packets matching the encryption criteria undergo the
specified encryption process before further processing or transmission. After processing
the IPsec policy, the system resumes listening for incoming data on the UDS. This allows it
to continue handling network traffic while enforcing the defined security policies.

As shown in Figure 3, the IPsec offload process on BlueField begins with the initializa-
tion and configuration of the DPU. This involves opening and initializing a DOCA device
for the unsecured port and setting up the control pipe as the root for packet processing.
Incoming packets are classified based on the protocol type (TCP or UDP) and IP version
(IPv4 or IPv6). BlueField-2 DPUs use dedicated pipes to match packet headers against
predefined criteria, such as 5-tuple (source/destination IP addresses, source/destination
ports, and protocol). The 5-tuple includes the IP address of the device that sends the packet,
as well as the IP address of the intended recipient device. Additionally, it includes the
source port number used by the application to send data on the source device, as well as
the destination port number used by the application to receive data on the destination
device. Finally, it specifies the type of protocol used for communication, such as TCP or
UDP. Once a packet is classified and matched, it undergoes encryption or decryption based
on the established IPsec policies. BlueField-2 DPUs support hardware-accelerated encryp-
tion/decryption operations, leveraging dedicated cryptographic engines (https://docs.
nvidia.com/doca/sdk/nvidia+doca+ipsec+security+gateway+application+guide accessed
on 10 January 2024) for fast and secure data processing.

Unsecured port

Control pipe as root

Match TCP IPv4 Pipe, Match 5-
tuple, Action: Set meta data

Match TCP IPv6 Pipe, Match 5-
tuple, Action: Set meta data

Match UDP IPv4 Pipe, Match 5-
tuple, Action: Set meta data

Match UDP IPv6 Pipe, Match 5-
tuple, Action: Set meta data

Check if TCP IPv4 match Check if TCP IPv6 match Check if UDP IPv4 match Check if UDP IPv6 match

SW encapsulation

Encapsulation application

Send packet to application

Send to TX queues Send to IP classified

IPv6 encryption,
Match meta, Action: Encrypt,

Optional Encap

Match and encrypt Match and encrypt

Yes

Yes

Yes

IPv4 IPv6

Secure Port

No

No

No

IPv4 encryption,
Match meta, Action: Encrypt,

Optional Encap

Secure Port

Figure 3. DOCA IPsec Flow diagram.

https://docs.nvidia.com/doca/archive/doca-v1.2/flow-programming-guide/index.html
https://docs.nvidia.com/doca/archive/doca-v1.2/flow-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/nvidia+doca+ipsec+security+gateway+application+guide
https://docs.nvidia.com/doca/sdk/nvidia+doca+ipsec+security+gateway+application+guide

Future Internet 2024, 16, 300 8 of 22

Encrypted packets are encapsulated with additional IPsec headers before being for-
warded to the appropriate destination. BlueField-2 DPUs handle encapsulation efficiently,
ensuring minimal overhead and latency in the data transmission process. In the secure
egress domain, BlueField-2 DPUs perform additional processing to ensure proper packet
routing and security enforcement. This may involve IP classification, encryption pipe
selection (IPv4 or IPv6), and the application of IPsec policies based on metadata matching.
Metadata refer to additional information attached to a packet that can provide context
beyond the basic header information. For IPsec, metadata might include details about the
specific SA used for encryption, enabling the DPU to select the appropriate algorithms
and keys. BlueField-2 DPUs seamlessly integrate with the application layer, providing
APIs and interfaces for application developers to define and enforce IPsec policies, monitor
network traffic, and manage security configurations. The hardware acceleration capabilities
of BlueField-2 DPUs significantly enhance the performance and scalability of IPsec imple-
mentations in data center and cloud environments. By offloading intensive cryptographic
operations to dedicated hardware, BlueField-2 DPUs optimize resource utilization and
improve the overall system efficiency.

4. Implementation
4.1. PQC-Algorithms

Falcon [14], Dilithium [15], and SPHINCS+ [11] are the three candidates in the NIST
competition for PQC signature algorithms that are chosen to be standardized [8]. All three
signature algorithms have in common that they execute the same procedural steps: key
generation, verification, and sign. Key generation and signing are performed by the server
machine. The client machine needs to verify the signature.

Unlike Dilithium and Kyber, Falcon offers only two NIST security levels: Falcon 512
(NIST level I), and Falcon 1024 (NIST level V). Falcon’s signature and public key sizes in
bytes for the NIST security level I and V can be seen in Table 1. For research purposes,
Falcon’s reference implementation also includes Falcon 256. However, Falcon 256 is not
considered secure against quantum attacks [14] and is therefore not considered in this
work. The security of the algorithm is based on the theoretical framework developed
by Gentry, Peikert, and Vaikuntanathan for lattice-based signature schemes [42]. This
framework is applied to NTRU lattices utilizing a trapdoor sampler that is called “fast
Fourier sampling”. The fundamental mathematical challenge to solve is the Short Integer
Solution (SIS) problem over NTRU lattices [14,43]. In this work, we use the reference
implementation of Falcon that has been submitted to the NIST competition. During the
key generation process, this algorithm’s implementation utilizes AES-generated pseudo-
random numbers as initial seeds to set up SHAKE-256 for generating random polynomials
following a Gaussian distribution. If the squared norm of these polynomials exceeds the
bounds, or if the norms of orthogonalized vectors deviate, the algorithm rejects them and
generates new polynomials. The Fast-Fourier Transform (FFT) is employed to calculate the
norms of orthogonalized vectors. Leveraging these polynomials, the algorithm produces
a public key polynomial. The key generation module resolves the NTRU equation to
compute the key polynomials [14].

Dilithium offers three NIST security levels: Dilithium 2 (NIST level II), Dilithium 3
(NIST level III), and Dilithium 5 (NIST level V). Signature and public key sizes in bytes
can be seen in Table 1. The implementation of Dilithium that is used in this work employs
SHAKE for matrix expansion, vector masking, and sampling of the secret polynomials.
A Dilithium version that uses AES in counter mode for these steps exists. However, this
specific version requires Advanced Vector Extensions (AVX2) operations which are not
supported by the DPU’s ARM cores. Hence, we employ SHAKE instead of AES for the key
generation of Dilithium. During the signature generation, NTT is used [15].

Initially, many different candidates for possible KEM algorithms were submitted to
the NIST competition. To name an example, other KEM candidates were BIKE (code-
based) [44] or SIKE (isogeny-based) [45]. Regardless, Kyber is the only KEM in the NIST

Future Internet 2024, 16, 300 9 of 22

competition that was chosen for standardization. It thus will most likely become the main
algorithm for the key exchange stage of PQC-based digital communication. As KEM,
the three main procedural steps of Kyber are called key generation, key encapsulation,
and key decapsulation. In the key generation process, a key pair comprising a public
key and a private key is created. The key encapsulation aims to encrypt the key that
is intended for obtaining a shared secret using the public key. Subsequently, the key
decapsulation is employed to recover the key that was encrypted with the public key during
the encapsulation phase. Like Dilithium, Kyber offers three different levels of security:
Kyber 512 (NIST level 1), Kyber 768 (NIST level III), and Kyber 1024 (NIST level V) [16].
Similar to Dilithium, Kyber employs NTT to enhance its security. The algorithm conducts
arithmetic operations on 256-bit polynomials within a polynomial ring. Despite variations
in security levels, the size and modulus of the polynomials remain consistent. The increase
in security level solely leads to a rise in the number of polynomials utilized [16].

4.2. Algorithmic Procedure

We use the procedure shown in Figure 4 to set up the IPsec tunnel that we present in
this work. First, we establish an OpenSSL (https://www.openssl.org/ accessed on 10 January
2024) connection between the two devices. The cipher that we used for the OpenSSL session is
TLS_AES_256_GCM_SHA384. The required certificates are self-signed. In a real-life scenario,
the self-signed certificates would need to be replaced by certificates issued by a certificate
authority. The second step is the exchange of PQC signatures. For this purpose, we use the
reference implementation of Falcon [14] and the reference implementation of Dilithium [15].
After that, we exchange a PQC key using Kyber’s reference implementation [16]. The refer-
ence implementations of the three PQC algorithms used in this work are available online
(https://falcon-sign.info/, https://pq-crystals.org/dilithium/index.shtml, https://pq-
crystals.org/kyber/index.shtml accessed on 10 January 2024). The fourth step is the com-
bination of the OpenSSL key with the PQC key by performing an XOR operation with the
OpenSSL key and the PQC key. This is called key mixing. The resulting key is secure for as
long as at least one of the two mixed keys is not compromised [46]. Ultimately, we use the
ephemeral key resulting from mixing the keys to set up the IPsec connection using the pre-
shared key method. The IPsec connection is protected by AES-256 GCM encryption which
is considered to be secure against quantum attacks [7]. Superuser privileges are required for
the execution. The session key remains active for as long as the IPsec SA is active. In case a
new key needs to be exchanged, the procedure shown in Figure 4 is repeated.

OpenSSL session
self-signed certificates

TLS_AES_256_GCM_SHA384

PQC- authentication
Dilithium / Falcon

PQC key exchange
Kyber

Key mixing: PQC and OpenSSL key

Set up IPsec tunnel using the mixed PQC keys
AES 256 GCM

1.

2.

3.

4.

5.Machine 1

1.

2.

Machine 2

3.

4.

Figure 4. Methodology: First, using self-signed certificates, an OpenSSL session is established. The
used cipher was TLS_AES_256_GCM_SHA384. Then, PQC signatures are exchanged. As a third step,
Kyber is used to exchange a key. Fourthly, the key retrieved by Kyber and the key established by the
OpenSSL session are mixed. Ultimately, an IPsec tunnel is set up using the mixed ephemeral key.

https://www.openssl.org/
https://falcon-sign.info/
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml

Future Internet 2024, 16, 300 10 of 22

We execute the procedure shown in Figure 4 on the server machine’s processor directly,
on the DPU, and on the Jetson. If the cryptographic operations are executed on the server’s
CPU, the DPU is used as simple NIC. The server encrypts the traffic and sends the outgoing
traffic already encrypted to the NIC via PCIe 4. While receiving traffic, the NIC forwards
the encrypted traffic to the host, and the host machine decrypts the traffic on its own CPU.
In this case, the NIC only manages outgoing and incoming connections. It is not used for
processing of any kind. If the cryptographic are executed on the NIC, the server sends the
outgoing and incoming traffic unencryptedly to the NIC. It thus saves valuable CPU cycles
of its own CPU. In this case, the NIC executes all cryptographic operations. It receives
the data as plaintext from its host and sends out the data encryptedly. The receiving DPU
decrypts the incoming packets and forwards them to the host via PCIe 4.

5. Experimental Setup and Methodology

Figure 5 shows the schematical representation of a data center. In a data center,
multiple servers are stashed in several racks. All servers are interconnected via a high-
speed network within the data center. Different applications are running on the servers.
The applications are potentially running a number of virtual machines (VMs) on various
different machines that, hence, are required to communicate with each other. In a data
center, this is called east–west traffic. External users and clients access the services provided
by the applications that are running in the data center via the public internet. This kind of
traffic is referred to as north–south traffic.

Server 1

Server 2

Server N

Rack 1
Server 1

Server 2

Server N

Rack 2
Server 1

Server 2

Server N

Rack X-1 Rack X
NetworkingServer 1

Server 2

Server N

Rack 3
Server 1

Server 2

Server N

Rack 4

VM a1 VM a2

Application a

VM b1 VM b2

Application b

VM z1 VM z2

Application z

East-West Traffic

Data Center

Users/ClientsNorth-South Traffic

Figure 5. Schematic representation of a data center: Multiple racks host many servers, all intercon-
nected via the local intra-data-center network. Different applications are hosted. Traffic within the
data center is referred to as east–west traffic. Incoming/outgoing traffic is called north–south traffic.
External users and clients access the services.

In this work, we present two scenarios for the application of the PQC-secured IPsec tun-
nel that we demonstrate in this work. The first scenario emulates an intra-data-center east–
west communication at line rate. Our experimental setup for this, shown in Figure 6, repre-
sents this scenario: Two Dell PowerEdge 740xd (https://www.dell.com/en-us/shop/dell-
poweredge-servers/poweredge-r740xd-rack-server/spd/poweredge-r740xd/pe_r740xd_
tm_vi_vp_sb accessed on 10 January 2024) servers are each equipped with an NVIDIA Blue-
Field 2 DPU (https://www.nvidia.com/en-us/networking/products/data-processing-
unit/ accessed on 10 January 2024). Each DPU is equipped with eight on-board ARMv8
processors that are clocked with 2750 MHz. The DPUs are connected via optical fiber
with an optical switch. The throughput between DPU and DPU is measured using the

https://www.dell.com/en-us/shop/dell-poweredge-servers/poweredge-r740xd-rack-server/spd/poweredge-r740xd/pe_r740xd_tm_vi_vp_sb
https://www.dell.com/en-us/shop/dell-poweredge-servers/poweredge-r740xd-rack-server/spd/poweredge-r740xd/pe_r740xd_tm_vi_vp_sb
https://www.dell.com/en-us/shop/dell-poweredge-servers/poweredge-r740xd-rack-server/spd/poweredge-r740xd/pe_r740xd_tm_vi_vp_sb
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/

Future Internet 2024, 16, 300 11 of 22

VIAVI [47] traffic generator. The VIAVI traffic generator can achieve throughputs of up to
400 Gbit/s. However, the DPUs that we use are capable of 100 Gbit/s, and therefore, we do
not make use of VIAVI’s full capabilities. In order to test the throughput, the VIAVI traffic
generator is placed in between the two DPUs.

DPU 2 100 GbE

VIAVI

VLAN100

SONiC Whitebox

DPU 1 100 GbE

DPUDPU

VLAN200

Figure 6. Two identical servers are each equipped with an Nvidia BlueField 2 100 G DPU. The DPUs
are connected via optical fiber to an optical switch and IPsec connection established with following
packet header fields. This emulates the east–west traffic in the intra-data-center scenario.

The second scenario that we present in our work is a quantum-safe way for clients to
establish a north–south IPsec connection for accessing the services from outside the data
center. We demonstrate our north–south IPsec tunnel using a wireless connection. Our
setup for this can be seen in Figure 7: a mobile device that seeks to exchange encrypted
information with the cloud. As a mobile device, we use an Nvidia Jetson Nano (https://
developer.nvidia.com/embedded/jetson-nano accessed on 10 January 2024) that is equipped
with a WiFi antenna extension. The Jetson connects to the cloud via a WiFi router. We
measure the throughput between the Jetson and a 25 G DPU in the cloud using the iperf
(https://iperf.fr/ accessed on 15 January 2024) traffic generator and achieve a 0.486 Gbit/s
throughput. We connect the Jetson to a 25 G DPU instead of a 100 G DPU because the WiFi
antenna’s maximum throughput is equal to 1 Gbit/s, and therefore, a 25 G DPU is suitable
to provide the necessary performance.

https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://iperf.fr/

Future Internet 2024, 16, 300 12 of 22

Mobile Device: Jetson Nano
(Sensor Processing, Wireless)

•Kyber KEM
•Falcon
•Dilithium
•AES

0.486 Gbit/s IPsec Tunnel
North-South Traffic

DPU 25G

Internet
Wifi

Server
Rack

VM a1 VM a2

Application a

Rack X
Networking

Users/Clients Data Center

AES 256
offload

Figure 7. Wireless setup: An Nvidia Jetson Nano connects to a WiFi using a WiFi antenna extension.
The Jetson establishes a PQC-secured IPsec tunnel and connects through the network to a server that
is equipped with a 25G DPU.

6. Results
6.1. Signature Algorithms

Figure 4 shows the methodology that we use for setting up the quantum-secure IPsec
tunnel that we present in this work. The server machine and the client machine have to
perform different tasks. As Dilithium and Falcon are signature algorithms, they are part of
step 2 in Figure 4. Hence, the latency introduced by the execution of the algorithms can be
attributed to step 2. While executing a signature algorithm, the server machine needs to
generate a key and create a signature using the sign process. Figure 8 shows the average
required clock cycles while executing Dilithium on the server side on the server directly
(blue background), on the Jetson (red background), and on the DPU (yellow background).
While signing, a security downgrade from Dilithium 5 down to Dilithium 3 comes with a
performance gain between 6 % (server) and 39 % (DPU) in terms of CPU cycles. Further
trading off security for the velocity of execution by using Dilithium 2 instead of 5 yields
a performance boost between 41 % (server) and 89 % (DPU). While generating a key, it is
between 35 % (server) and 40 % (Jetson) faster to use Dilithium 3 instead of Dilithium 5. At
the lowest security level, it consumes 89 % (server, Jetson, and DPU) less CPU cycles to use
Dilithium 2 instead of Dilithium 5.

The cryptographic operations of Dilithium’s client side are shown in Figure 9. The
client needs only to verify the signature. The verification process of a Dilithium 5 signature
takes between 25 % (server) and 43 % (Jetson) longer than the verification of a Dilithium 3
signature. Verifying a Dilithium 2 signature is between 65 % (server) and 83 % quicker than
the equivalent process for a Dilithium 5 signature.

The cryptographic latency introduced by Falcon on the server side can be seen in Figure 10.
Generating a key for Falcon 1024 takes between 89 % (Jetson) and 94 % (server) more clock
cycles in comparison with Falcon 512. It is of note that the key generation of Falcon is
particularly more challenging than Dilithium’s key generation. Falcon’s key generation
requires about two orders of magnitude more clock cycles compared to Dilithium’s key
generation. Signing requires between 63 % (server) and 73 % (DPU) more clock cycles for
Falcon 1024 while comparing it with Falcon 512.

Future Internet 2024, 16, 300 13 of 22

Figure 8. Cryptographic latency introduced by the execution of Dilithium’s keygen and Dilithium’s
sign executed on the server side. The server device was a Dell PowerEdge server, equipped with an In-
tel Xeon CPU, an NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.

The cryptographic latency introduced by Falcon on the client side can be seen in
Figure 11. The client requires between 54 % (Jetson) and 71 % (DPU) more clock cycles to
verify a Falcon 1024 signature compared to a Falcon 512 signature. Falcon’s and Dilithium’s
verification processes are similarly competitive in terms of performance. Dilithium is
slightly faster while Falcon is within the same order of magnitude regarding the required
CPU clock cycles for the execution.

Figure 9. Cryptographic latency introduced by the execution of Dilithium’s verification executed on
the client side. The server device was a Dell PowerEdge server, equipped with an Intel Xeon CPU, an
NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.

Future Internet 2024, 16, 300 14 of 22

Figure 10. Cryptographic latency introduced by the execution of Falcon’s key generation and
Falcon’s sign executed on the server side. The server device was a Dell PowerEdge server, equipped
with an Intel Xeon CPU, an NVIDIA Jetson (the wireless device in our setup), and an NVIDIA
BlueField 2 DPU.

Figure 11. Cryptographic latency introduced by the execution of Falcon’s verification executed on
the client side. The server device was a Dell PowerEdge server, equipped with an Intel Xeon CPU, an
NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.

6.2. Key Exchange Mechanism

Kyber as a key exchange mechanism represents step 3 in Figure 4. The latency added
in this step equals the latency caused by the execution of Kyber. The server machine has
to perform the key generation and the key decapsulation while the client machine has
to execute the key encapsulation. The latency introduced for the server machine can be
seen in Figure 12. Upgrading the security level from Kyber 512 to Kyber 768 comes with
a penalty in terms of CPU cycles between 33 % (DPU) and 40 % (server) during the key
decapsulation. Furthermore, increasing the security level from Kyber 768 to Kyber 1024
costs between 45 % (server) and 57 % more CPU (DPU) cycles while performing the key
decapsulation. The key generation is generally a more expensive operation compared with
key decapsulation. While generating a key for Kyber 512, an additional charge of 32 %
(server) to 34 % (DPU, Jetson) applies. Upgrading the strength from Kyber 768 to Kyber
1024 costs between 28 % (server) and 66 % more CPU clock cycles while generating a key.
The Jetson and the DPU perform very similarly. The server requires more CPU cycles by
almost one order of magnitude regarding only the number of clock cycles that are required
for the execution of the algorithm. This does not take into account the clock frequency the
different processors are operating at.

Figure 13 shows the latency introduced on the client machine. The only operation that
the client has to perform is the key encapsulation. Downgrading the security level from
Kyber 1024 to Kyber 768 boosts the performance by between 37 % (server) and 75 % (Jetson).
Decreasing the security level to Kyber 512 yields a performance gain of 75 % (server) to
113 % (DPU) with respect to Kyber 1024.

Future Internet 2024, 16, 300 15 of 22

Figure 12. Cryptographic latency introduced by the execution of Kyber’s key generation and Kyber’s
key decapsulation executed on the server side. The server device was a Dell PowerEdge server,
equipped with an Intel Xeon CPU, an NVIDIA Jetson (the wireless device in our setup), and an
NVIDIA BlueField 2 DPU.

Figure 13. Cryptographic latency introduced by the execution of Kyber’s key encapsulation executed
on the client side. The server device was a Dell PowerEdge server, equipped with an Intel Xeon CPU,
an NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.

To examine the performance of the individual steps of the various algorithms, we exe-
cute on different processors the main three steps of Falcon and Dilithium (key generation,
verify, and sign), as well the main three steps of Kyber (key generation, key encapsula-
tion, and key decapsulation). The results can be seen in Figure 14 for an AMD Ryzen
7 3700X desktop processor, in Figure 15 for the ARMv8 processor on the DPU, and in
Figure 16 for the Intel Xeon processor that our servers are equipped with. The metric is
executions per second. It is of note here that the Intel Xeon, shown in Figure 16, performs
slightly better than the ARMv8, shown in Figure 16, even though the Intel Xeon requires
a significant amount of CPU cycles more for the execution of the PQC algorithms. This
is due to the higher clock frequency that the Intel Xeon is operating at compared to the
ARMv8 processor.

Future Internet 2024, 16, 300 16 of 22

Figure 14. Falcon’s and Dilithium’s main steps (key generation, verification, and sign) and Kyber’s main
steps (key generation, key encapsulation, and key decapsulation) executed on an AMD Ryzen 7 processor.

Figure 15. Falcon’s and Dilithium’s main steps (key generation, verification, and sign) and Kyber’s main
steps (key generation, key encapsulation, and key decapsulation) executed on an ARMv8 processor.

Future Internet 2024, 16, 300 17 of 22

Figure 16. Falcon’s and Dilithium’s main steps (key generation, verification, and sign) and Kyber’s main
steps (key generation, key encapsulation, and key decapsulation) executed on an Intel Xeon processor.

After the keys have been exchanged successfully, during step 4 in Figure 4, we perform
an XOR operation between the cryptographic key that we retrieved while setting up an
OpenSSL session using classical cryptography and the keys that we have exchanged using
Kyber. Ultimately, we perform step 5 in Figure 4 and set up the IPsec tunnel. We do that
for both scenarios, east–west traffic and north–south traffic.

6.3. IPsec Tunnel

Using the iperf traffic generator, we analyze the performance of the north–south IPsec
tunnel that we set up between the Jetson as a wireless device and the 25 G DPU in the
cloud, shown in Figure 7. We achieve an AES-256 GCM encrypted wireless throughput
of 0.486 Gbit/s. As this scenario emulates a mobile device communicating via the cloud,
the signal travels through a chain of multiple hops. We therefore do not set the maximum
transmission unit (MTU) because every device in the chain between the mobile device and
the 25G DPU in the cloud can modify the MTU size.

In our intra-data-center east–west traffic scenario, however, we do have control over
the MTU size. Thus, after we set up the east–west IPsec tunnel from DPU to DPU, we
characterize the tunnel’s throughput with different MTU sizes using the VIAVI traffic
generator. The results can be seen in Figure 17. The original plots generated by VIAVI
for each MTU can be seen in Figure 18. With small packets, 64 B MTU, we achieve an
encrypted throughput of 34 Gbit/s. This can be seen in Figure 18a. Doubling the MTU
to 128 B yields an encrypted throughput of 58 Gbit/s, as shown in Figure 18b. Setting the
MTU to 256 B in Figure 18c results in an encrypted throughput of 73 Gbit/s. In Figure 18d,
at 512 B MTU, we obtain an encrypted throughput of 95 Gbit/s. Ultimately, in Figure 18e,f,
starting from 1024 B MTU, we observe an encrypted throughput of 100 Gbit/s line rate.
For all MTU sizes that are bigger than, and including 1024 B, the encrypted throughput
converges towards 100 Gbit/s. That holds true for jumbo-sized packets due to the fact that
the on-board hardware accelerators of the DPU support only operation up to 100 Gbit/s.

Future Internet 2024, 16, 300 18 of 22

Figure 17. AES-256 GCM encrypted IPsec throughput between DPU and DPU depending on the set
MTU. We achieve 100 Gbit/s from 1024 B MTU on.

(a) (b)

(c) (d)

(e) (f)

Figure 18. Throughput of the IPsec tunnel with different MTU sizes. The traffic is generated by
VIAVI and passed through the IPsec tunnel that we present in this work. For all MTU sizes equal
to or bigger than 1024 B, we achieve the maximum supported line rate of 100 Gbit/s. (a) 64 B MTU;
(b) 128 B MTU; (c) 256 B MTU; (d) 512 B MTU; (e) 1024 B MTU; (f) 1518 B MTU.

7. Discussion

Kyber [16], being the only remaining KEM in the NIST competition chosen for stan-
dardization, is integral to every version of the encryption stack presented in this work. The
choice of security level for Kyber (NIST levels I, III, or V) can vary based on numerous
factors, including security requirements and the processing power of the devices involved.
This decision is typically made by the application or, ultimately, by the software developer.

Dilithium [15], developed by the same group (https://pq-crystals.org/ accessed 19
March 2024) that submitted Kyber, offers excellent performance in terms of execution speed

https://pq-crystals.org/

Future Internet 2024, 16, 300 19 of 22

when combined with Kyber [16]. However, Dilithium’s signatures are larger compared
to Falcon’s, resulting in larger certificates and more data that need to be transmitted
over networks. This might not be an issue in high-performance environments, such as
data centers, where network bandwidth is abundant, making signature sizes irrelevant.
However, in mobile applications with limited and potentially unstable network connections,
the larger signature size could negatively impact performance.

Falcon’s performance is inferior to Dilithium’s in terms of computation. Falcon re-
quires more CPU clock cycles per execution, and especially its key generation process
is significantly more demanding. Despite this, in scenarios where keys are generated
infrequently, the impact of this disadvantage is minimal. However, in high-performance
environments with numerous sessions, each requiring its own key, this becomes a signifi-
cant drawback of Falcon. The advantage Falcon offers is its smaller signature size, which
may be more suitable for mobile, low-power, and low-performance environments.

8. Conclusions and Future Work

In this work, we present a software stack to establish a fully offloaded, quantum-safe
IPsec tunnel. We first perform a quantum-safe authentication using the PQC signature algo-
rithms Falcon and Dilithium, followed by the key exchange algorithm Kyber. Then, using
the quantum-secure key, we set up an IPsec tunnel that is secured by AES-256 GCM. More-
over, we benchmark the performance of the PQC algorithms on multiple CPUs. Dilithium
outperforms Falcon in terms of execution speed. However, Falcon’s signature is smaller
than Dilithium’s which poses an advantage in environments with low network capacities.

In our experimental setup, we demonstrated an IPsec connection between a mobile
device connected to WiFi and a 25 G DPU in the cloud. We did not modify the MTU,
considering that every device and hop linking the connection between the Jetson and
the DPU could modify the MTU. Using our setup, we achieved an end-to-end encrypted
throughput of 0.486 Gbit/s between the Jetson and the 25 G DPU.

Once the IPsec tunnel was established, NVIDIA’s NIC showed excellent performance
by offloading cryptographic operations to the NIC’s hardware accelerators, effectively
liberating the host machine’s CPU from cryptographic calculations. We confirmed the
IPsec tunnel’s performance relative to the MTU size using the VIAVI traffic generator. With
small packets of 64 B MTU, we achieved a throughput of 34 Gbit/s. With an MTU of 1024 B,
we achieved a full encrypted throughput of 100 Gbit/s line rate, which is the maximum
performance attainable with this NIC model. We observed a 100 Gbit/s line rate for all
MTU sizes larger than 1024 B, including jumbo packets.

To further accelerate the transition to quantum-resistant algorithms, we identify two
major tasks that need to be addressed in the future. First, PQC algorithms must be fully
integrated into existing software stacks, transitioning from research environments into
production code used in real-life applications. Our work represents a first step towards this
direction. Second, the processing power required for PQC algorithms is significantly higher
than that of classical algorithms. We therefore anticipate the development of dedicated
hardware accelerators specifically for PQC algorithms, similar to the hardware accelerators
currently used for classical asymmetric cryptography. This would accelerate the execution
speed and reduce the energy consumption while using PQC algorithms.

Author Contributions: Conceptualization, D.C.L., R.A.B. and F.C.; methodology, D.C.L., R.A.B.,
A.C.A. and F.C.; software, D.C.L., R.A.B. and A.C.A.; validation, D.C.L., R.A.B., A.C.A. and F.C.;
writing—original draft preparation, D.C.L. and R.A.B.; writing—review and editing, F.C., J.L.I., I.T.M.
and J.J.V.O.; visualization, D.C.L. and R.A.B.; supervision, F.C., J.L.I., I.T.M. and J.J.V.O.; All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partly funded by the QUARC project by the European Union Horizon
Europe research and innovation program within the framework of Marie Skłodowska-Curie Ac-
tions with grant number 101073355 and the CLEVER project by the Key Digital Technologies Joint
Undertaking program with grant number 101097560.

Future Internet 2024, 16, 300 20 of 22

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: J.J.V.O. is employed by NVIDIA. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
AH Authentication Header
API Application Programming Interface
AVX2 Advanced Vector Extensions
CA Certificate Authority
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DOCA Data Center-on-a-Chip Architecture
DPDK Data Plane Development Kit
DPU Data Processing Unit
ESP Encapsulation Security Payload
GCM Galois-counter mode
GPU Graphics Processing Unit
IPsec Internet Protocol security
KEM Key Exchange Mechanism
MTU Maximum Transmission Unit
NIC Network Interface Card
NIST National Institute of Standards and Technology
NTT Number Theoretic Transform
PQC Post-Quantum Cryptography
QKD Quantum Key Distribution
SA Security Association
SIS Short Integer Solution
SPI Security Parameter Index

References
1. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al.

Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [CrossRef] [PubMed]
2. Crippa, L.; Tacchino, F.; Chizzini, M.; Aita, A.; Grossi, M.; Chiesa, A.; Santini, P.; Tavernelli, I.; Carretta, S. Simulating Static and

Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers. Magnetochemistry 2021, 7, 117. [CrossRef]
3. Codognet, P.; Diaz, D.; Abreu, S. Quantum and Digital Annealing for the Quadratic Assignment Problem. In Proceedings of the

2022 IEEE International Conference on Quantum Software (QSW), Barcelona, Spain, 10–16 July 2022; pp. 1–8. [CrossRef]
4. Hu, F.; Lamata, L.; Wang, C.; Chen, X.; Solano, E.; Sanz, M. Quantum Advantage in Cryptography with a Low-Connectivity

Quantum Annealer. Phys. Rev. Appl. 2020, 13, 054062. [CrossRef]
5. Sharma, M.; Choudhary, V.; Bhatia, R.S.; Malik, S.; Raina, A.; Khandelwal, H. Leveraging the power of quantum computing for

breaking RSA encryption. Cyber-Phys. Syst. 2021, 7, 73–92. [CrossRef]
6. Dworkin, M.J.; Barker, E.B.; Nechvatal, J.R.; Foti, J.; Bassham, L.E.; Roback, E.; Dray, J.F., Jr. Advanced Encryption Standard (AES).

2001. Available online: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf (accessed on 17 January 2024).
7. Bonnetain, X.; Naya-Plasencia, M.; Schrottenloher, A. Quantum Security Analysis of AES. IACR Trans. Symmetric Cryptol. 2019,

2019, 55–93. [CrossRef]
8. Alagic, G.; Cooper, D.; Dang, Q.; Dang, T.; Kelsey, J.M.; Lichtinger, J.; Liu, Y.K.; Miller, C.A.; Moody, D.; Peralta, R.; et al.

Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process. 2022. Available online:
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf (accessed on 18 January 2024).

9. Bernstein, D.J.; Buchmann, J.; Dahmen, E. (Eds.) Introduction to post-quantum cryptography. In Post-Quantum Cryptography;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–14. [CrossRef]

10. Ding, J.; Schmidt, D. Rainbow, a New Multivariable Polynomial Signature Scheme. In Applied Cryptography and Network Security;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 164–175.

11. Bernstein, D.J.; Hülsing, A.; Kölbl, S.; Niederhagen, R.; Rijneveld, J.; Schwabe, P. The SPHINCS+ Signature Framework.
Cryptology ePrint Archive, Paper 2019/1086. 2019. Available online: https://eprint.iacr.org/2019/1086 (accessed on 20
December 2023).

http://doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/31645734
http://dx.doi.org/10.3390/magnetochemistry7080117
http://dx.doi.org/10.1109/QSW55613.2022.00016
http://dx.doi.org/10.1103/PhysRevApplied.13.054062
http://dx.doi.org/10.1080/23335777.2020.1811384
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
http://dx.doi.org/10.13154/tosc.v2019.i2.55-93
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
http://dx.doi.org/10.1007/978-3-540-88702-7_1
https://eprint.iacr.org/2019/1086

Future Internet 2024, 16, 300 21 of 22

12. Overbeck, R.; Sendrier, N. Code-based cryptography. In Post-Quantum Cryptography; Bernstein, D.J., Buchmann, J., Dahmen, E.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 95–145. [CrossRef]

13. Albrecht, M.R.; Bernstein, D.J.; Chou, T.; Cid, C.; Gilcher, J.; Lange, T.; Maram, V.; Von Maurich, I.; Misoczki, R.; Niederhagen, R.;
et al. Classic McEliece: Conservative Code-Based Cryptography. 2022. Available online: https://inria.hal.science/hal-04288769
/document (accessed on 13 January 2024).

14. Fouque, P.-A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z.
Fast-Fourier Lattice-Based Compact Signatures over NTRU. 2019. Available online: https://falcon-sign.info/ (accessed on 15
January 2024).

15. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium: A Lattice-Based Digital Signature
Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 238–268. [CrossRef]

16. Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS—Kyber:
A CCA-Secure Module-Lattice-Based KEM. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), London, UK, 24–26 April 2018; pp. 353–367. [CrossRef]

17. Fitzgibbon, G.; Ottaviani, C. Constrained Device Performance Benchmarking with the Implementation of Post-Quantum
Cryptography. Cryptography 2024, 8, 21. [CrossRef]

18. Vidaković, M.; Miličević, K. Performance and Applicability of Post-Quantum Digital Signature Algorithms in Resource-
Constrained Environments. Algorithms 2023, 16, 518. [CrossRef]

19. Rubio García, C.; Rommel, S.; Takarabt, S.; Vegas Olmos, J.J.; Guilley, S.; Nguyen, P.; Tafur Monroy, I. Quantum-resistant Transport
Layer Security. Comput. Commun. 2024, 213, 345–358. [CrossRef]

20. Paul, S.; Kuzovkova, Y.; Lahr, N.; Niederhagen, R. Mixed Certificate Chains for the Transition to Post-Quantum Authentication
in TLS 1.3. In Proceedings of the ASIA CCS ’22: 2022 ACM on Asia Conference on Computer and Communications Security,
New York, NY, USA, 30 May–3 June 2022; pp. 727–740. [CrossRef]

21. Karabulut, E.; Aysu, A. A Hardware-Software Co-Design for the Discrete Gaussian Sampling of FALCON Digital Signature.
IACR Cryptol. ePrint Arch. 2023, 2023, 908.

22. Howe, J.; Oder, T.; Krausz, M.; Güneysu, T. Standard Lattice-Based Key Encapsulation on Embedded Devices. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018, 2018, 372–393.

23. Gupta, N.; Jati, A.; Chauhan, A.K.; Chattopadhyay, A. PQC Acceleration Using GPUs: FrodoKEM, NewHope, and Kyber. IEEE
Trans. Parallel Distrib. Syst. 2021, 32, 575–586.

24. Gupta, N.; Jati, A.; Chattopadhyay, A.; Jha, G. Lightweight Hardware Accelerator for Post-Quantum Digital Signature CRYSTALS-
Dilithium. Cryptology ePrint Archive, Paper 2022/496. 2022. Available online: https://eprint.iacr.org/2022/496 (accessed on 16
January 2024).

25. Karl, P.; Schupp, J.; Fritzmann, T.; Sigl, G. Post-Quantum Signatures on RISC-V with Hardware Acceleration. Cryptology ePrint
Archive, Paper 2022/538. 2022. Available online: https://eprint.iacr.org/2022/538 (accessed on 20 January 2024).

26. Yaman, F.; Mert, A.C.; Öztürk, E.; Savaş, E. A Hardware Accelerator for Polynomial Multiplication Operation of CRYSTALS-
KYBER PQC Scheme. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 1–5 February 2021; pp. 1020–1025.

27. Mert, A.C.; Öztürk, E.; Savaş, E. Design and Implementation of a Fast and Scalable NTT-Based Polynomial Multiplier Architecture.
In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August 2019;
pp. 253–260. [CrossRef]

28. Şah Özcan, A.; Savaş, E. Two Algorithms for Fast GPU Implementation of NTT. Cryptology ePrint Archive, Paper 2023/1410.
2023. Available online: https://eprint.iacr.org/2023/1410 (accessed on 20 January 2024).

29. Schmid, M.; Amiet, D.; Wendler, J.; Zbinden, P.; Wei, T. Falcon Takes Off—A Hardware Implementation of the Falcon Signature
Scheme. Cryptology ePrint Archive, Paper 2023/1885. 2023. Available online: https://eprint.iacr.org/2023/1885 (accessed on
20th January 2024).

30. Ullah, S.; Choi, J.; Oh, H. IPsec for high speed network links: Performance analysis and enhancements. Future Gener. Comput.
Syst. 2020, 107, 112–125. [CrossRef]

31. Aguilera, A.C.; Clemente, X.A.I.; Lawo, D.; Monroy, I.T.; Olmos, J.V. First end-to-end PQC protected DPU-to-DPU communications.
Electron. Lett. 2023, 59, e12901. [CrossRef]

32. Lawo, D.C.; Frantz, R.; Aguilera, A.C.; Clemente, X.A.I.; Podleś, M.P.; Imaña, J.L.; Monroy, I.T.; Olmos, J.J.V. Falcon/Kyber and
Dilithium/Kyber Network Stack on Nvidia’s Data Processing Unit Platform. IEEE Access 2024, 12, 38048–38056. [CrossRef]

33. Aguilera, A.C.; Abu Bakar, R.; Alhamed, F.; Garcia, C.R.; Imaña, J.; Monroy, I.T.; Cugini, F.; Olmos, J.V. First Line-rate End-to-End
Post-Quantum Encrypted Optical Fiber Link Using Data Processing Units (DPUs). In Proceedings of the 2024 Optical Fiber
Communications Conference and Exhibition (OFC), San Diego, CA, USA, 26–28 March 2024; pp. 1–3.

34. Alia, O.; Huang, A.; Luo, H.; Amer, O.; Pistoia, M.; Lim, C. Quantum-safe 10 Gbps Site-to-Site IPsec VPN Tunnel over 46 km
Deployed Fibre. In Proceedings of the Optical Fiber Communication Conference (OFC) 2024, San Diego, CA, USA, 24–28 March
2024; Optica Publishing Group: Washington, DC, USA, 2024; p. Th3B.5. [CrossRef]

35. Rencis, E.; Vı̄ksna, J.; Kozlovičs, S.; Celms, E.; Lārin, š, D.J.; Petručen, a, K. Hybrid QKD-based framework for secure enterprise
communication system. Procedia Comput. Sci. 2024, 239, 420–428. [CrossRef]

http://dx.doi.org/10.1007/978-3-540-88702-7_4
https://inria.hal.science/hal-04288769/document
https://inria.hal.science/hal-04288769/document
https://falcon-sign.info/
http://dx.doi.org/10.13154/tches.v2018.i1.238-268
http://dx.doi.org/10.1109/EuroSP.2018.00032
http://dx.doi.org/10.3390/cryptography8020021
http://dx.doi.org/10.3390/a16110518
http://dx.doi.org/10.1016/j.comcom.2023.11.010
http://dx.doi.org/10.1145/3488932.3497755
https://eprint.iacr.org/2022/496
https://eprint.iacr.org/2022/538
http://dx.doi.org/10.1109/DSD.2019.00045
https://eprint.iacr.org/2023/1410
https://eprint.iacr.org/2023/1885
http://dx.doi.org/10.1016/j.future.2020.01.049
http://dx.doi.org/10.1049/ell2.12901
http://dx.doi.org/10.1109/ACCESS.2024.3374629
http://dx.doi.org/10.1364/OFC.2024.Th3B.5
http://dx.doi.org/10.1016/j.procs.2024.06.189

Future Internet 2024, 16, 300 22 of 22

36. Bae, S.; Chang, Y.; Park, H.; Kim, M.; Shin, Y. A Performance Evaluation of IPsec with Post-Quantum Cryptography. In Information
Security and Cryptology—ICISC 2022; Seo, S.H., Seo, H., Eds.; Springer: Cham, Switzerland, 2023; pp. 249–266.

37. Kumar, S.; Dalal, S.; Dixit, V. The osi model: Overview on the seven layers of computer networks. Int. J. Comput. Sci. Inf. Technol.
Res. 2014, 2, 461–466.

38. Hamed, H.; Al-Shaer, E.; Marrero, W. Modeling and verification of IPSec and VPN security policies. In Proceedings of the 13TH
IEEE International Conference on Network Protocols (ICNP’05), Boston, MA, USA, 6–9 November 2005; pp. 10–278. [CrossRef]

39. Dhall, H.; Dhall, D.; Batra, S.; Rani, P. Implementation of IPSec Protocol. In Proceedings of the 2012 Second International
Conference on Advanced Computing & Communication Technologies, Rohtak, India, 7–8 January 2012; pp. 176–181. [CrossRef]

40. Sadikin, M.A.; Wardhani, R.W. Implementation of RSA 2048-bit and AES 256-bit with digital signature for secure electronic health
record application. In Proceedings of the 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA),
Lombok, Indonesia, 28–30 July 2016; pp. 387–392. [CrossRef]

41. Maurer, U.M.; Wolf, S. The Diffie–Hellman Protocol. Des. Codes Cryptogr. 2000, 19, 147–171. [CrossRef]
42. Gentry, C.; Peikert, C.; Vaikuntanathan, V. Trapdoors for Hard Lattices and New Cryptographic Constructions. Cryptology

ePrint Archive, Paper 2007/432. 2007. Available online: https://eprint.iacr.org/2007/432 (accessed on 20 January 2024).
43. Soni, D.; Basu, K.; Nabeel, M.; Aaraj, N.; Manzano, M.; Karri, R. Hardware Architectures for Post-Quantum Digital Signature

Schemes. In Hardware Architectures for Post-Quantum Digital Signature Schemes; Springer International Publishing: Cham,
Switzerland, 2021. [CrossRef]

44. Aragon, N.; Barreto, P.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.C.; Gaborit, P.; Ghosh, S.; Gueron, S.; Güneysu, T.; et al.
BIKE: Bit Flipping Key Encapsulation. 2022. Available online: https://bikesuite.org/ (accessed on 15 January 2024).

45. Jao, D.; Azarderakhsh, R.; Campagna, M.; Costello, C.; De Feo, L.; Hess, B.; Jalili, A.; Koziel, B.; LaMacchia, B.; Longa, P.; et al.
SIKE: Supersingular Isogeny Key Encapsulation. 2017. Available online: https://static1.squarespace.com/static/5fdbb09f31d7
1c1227082339/t/5ff378bdac5ecf06b683b05b/1609791681245/2017-ECCinvitedtalk.pdf (accessed on 15 January 2024).

46. Meher, K.; MidhunChakkaravarthy, D. New Approach to Combine Secret Keys for Post-Quantum (PQ) Transition. Indian J.
Comput. Sci. Eng. 2021, 12, 629–633.

47. Suzuki, T.; Kim, S.Y.; Kani, J.i.; Yoshida, T. Low-latency PON PHY implementation on GPUs for fully software-defined access
networks. IEEE Netw. 2022, 36, 108–114.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICNP.2005.25
http://dx.doi.org/10.1109/ACCT.2012.64
http://dx.doi.org/10.1109/ISITIA.2016.7828691
http://dx.doi.org/10.1023/A:1008302122286
https://eprint.iacr.org/2007/432
http://dx.doi.org/10.1007/978-3-030-57682-0_3
https://bikesuite.org/
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff378bdac5ecf06b683b05b/1609791681245/2017-ECCinvitedtalk.pdf
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff378bdac5ecf06b683b05b/1609791681245/2017-ECCinvitedtalk.pdf

	Introduction
	Related Works
	IPsec Protocol
	Implementation
	PQC-Algorithms
	Algorithmic Procedure

	Experimental Setup and Methodology
	Results
	Signature Algorithms
	Key Exchange Mechanism
	IPsec Tunnel

	Discussion
	Conclusions and Future Work
	References

