a .
E@ future internet

Article

The Digital Footprints on the Run: A Forensic Examination of
Android Running Workout Applications

Fabian Nunes 1

check for
updates

Citation: Nunes, F; Domingues, P.;
Frade, M. The Digital Footprints on
the Run: A Forensic Examination of
Android Running Workout
Applications. Future Internet 2024, 16,
304. https://doi.org/10.3390/
116090304

Academic Editors: Filipe Portela and
Dino Giuli

Received: 25 July 2024
Revised: 11 August 2024
Accepted: 19 August 2024
Published: 23 August 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Patricio Domingues >*(and Miguel Frade 13

School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena—Alto do Vieiro,
2411-901 Leiria, Portugal; miguel.frade@ipleiria.pt (M.F.)

Instituto de Telecomunicagdes, Morro do Lena—Alto do Vieiro, 2411-901 Leiria, Portugal

Computer Science and Communication Research Centre (CIIC), Polytechnic of Leiria,

Morro do Lena—Alto do Vieiro, 2411-901 Leiria, Portugal

* Correspondence: patricio.domingues@ipleiria.pt

Abstract: This study applies a forensic examination to six distinct Android fitness applications
centered around monitoring running activities. The applications are Adidas Running, MapMyWalk,
Nike Run Club, Pumatrac, Runkeeper and Strava. Specifically, we perform a post mortem analysis
of each application to find and document artifacts such as timelines and Global Positioning System
(GPS) coordinates of running workouts that could prove helpful in digital forensic investigations.
First, we focused on the Nike Run Club application and used the gained knowledge to analyze the
other applications, taking advantage of their similarity. We began by creating a test environment and
using each application during a fixed period. This procedure allowed us to gather testing data, and,
to ensure access to all data generated by the apps, we used a rooted Android smartphone. For the
forensic analysis, we examined the data stored by the smartphone application and documented the
forensic artifacts found. To ease forensic data processing, we created several Python modules for the
well-known Android Logs Events And Protobuf Parser (ALEAPP) digital forensic framework. These
modules process the data sources, creating reports with the primary digital artifacts, which include
the workout activities and related GPS data.

Keywords: Adidas Running; Android; DFIR; MapMyWalk; Nike Run Club; Pumatrac; Asics Runkeeper;
Strava; ALEAPP

1. Introduction

Nowadays, smartphones and smart wearables are becoming more prevalent and pow-
erful. One of the areas that saw considerable growth with mobile devices is the fitness
industry Silva et al. [1], Yeoh et al. [2]. Wearable devices such as smartbands are oriented
for fitness purposes as they pack a significant set of sensors, such as heart rate monitor,
step counter, Oxygen Saturation (SpO;), and sleep monitoring, to name just a few. The
functionalities of wearables often depend on and are augmented by smartphones, like, for
example, a smartband paired with a specially developed mobile application, communicat-
ing through Bluetooth Low Energy (BLE). This companion application interfaces between
the device and the smartphone, providing services such as data visualization, geolocaliza-
tion, access to the Internet for cloud storage and firmware updates. Another crucial role of
companion applications is to serve as a bridge between the wearable device and its con-
nected smartphone, facilitating the transfer of fitness data from the wearable to the phone.
Subsequently, the phone uploads these data to the application’s cloud server. Frequently, a
companion application is specifically designed by a fitness brand, making it exclusively
compatible with wearables produced by that brand. An example is Garmin Connect (https:
/ /play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile (ac-
cessed on 8 August 2024)), which is the companion application for Garmin devices such

Future Internet 2024, 16, 304. https:/ /doi.org/10.3390/£i16090304

https:/ /www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090304
https://doi.org/10.3390/fi16090304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-5195-0178
https://orcid.org/0000-0002-6207-6292
https://orcid.org/0000-0002-4405-7696
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://doi.org/10.3390/fi16090304
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090304?type=check_update&version=1

Future Internet 2024, 16, 304

2 0f 23

as smartbands and smartwatches. Another example is the Fitbit application, which in-
teracts with Fitbit fitness devices. Furthermore, these applications extend their reach
and functionality by providing APIs that can be used by independent fitness applica-
tions to send/receive data from the associated companion application. For example,
through the proper Application Programming Interface (API), the diet application MyFit-
nessPal (https:/ /play.google.com/store/apps/details?id=com.myfitnesspal.android (ac-
cessed on 8 August 2024)) can receive the number of burnt calories from companion
applications, providing in return the amount of ingested calories by the users. The Strava
(https:/ /play.google.com/store/apps/details?id=com.strava (accessed on 8 August 2024))
application is another example, as it can synchronize data from a running activity tracked
by a Garmin smartband.

As they often couple precise GPS-based locations with date/time, fitness applications
can provide valuable digital forensic data, allowing one to locate the whereabouts of the
device bearer at a given date and time [3]. Additionally, if other metrics are available, such
as heart rate, it is possible to infer the activity state of the device bearer: idle, normal or
high. This might prove of paramount importance in criminal and fraud investigations [4].

An actual illustration of the benefits of smartwatch data in assisting with a criminal
investigation is evident in a murder case. The Fitbit data of the victim played a crucial
role in securing the husband’s conviction, as the Fitbit timeline demonstrated movements
within the house and the distance travelled, conclusively placing the husband at the crime
scene and refuting his alibi [5]. In 2015, the police used GPS coordinates and step pace,
which were stored in a Garmin smartwatch, to help bring charges to a man for a double
homicide, correlating the time/date of the homicides with the coordinates stored in the
smartwatch to draw the suspect’s escape route [6]. Another publicly known case is the use
of Strava in running mode to identify and convict a man of hitting and injuring a cyclist
in Virginia, USA [7]. A final example is a case where the fitness application Apple Health
data were used to convict a man of rape and murder: the police apprehended the man’s
iPhone, extracted the data and correlated them with the time and location of the murder [8].
Therefore, fitness applications can provide valuable data in digital forensics as they store
a wealth of private information related to the user in specific companion applications
such as Garmin Connect [9]. They can store health data, GPS data, sleep data and more.
However, a type of application that is also interesting to analyze is running applications.
The focus of these applications is related to outdoor running and other types of physical
activities. Usually, these applications also function as fitness-tracking social networks,
where one connects with other users and shares their running activities, sometimes to
compare performances. The difference between these and companion applications is that
they do not require the user to wear a smartwatch or smartband, as it is sufficient to use a
smartphone with GPS and step counter capabilities. As running applications store data such
as GPS coordinates and the date/time of run workouts, they can be instrumental in digital
forensic analysis. Because of all their benefits, fitness applications have grown in numbers
and users in recent years. In 2019, the major app stores featured over 350,000 healthcare
and fitness applications, resulting in an annual download count of 3.7 billion [10]. This
prevalence increases the likelihood of their relevance in a criminal investigation.

The high volume makes these types of applications a target for cybercriminals intend-
ing to steal valuable private data related to the applications’ users. Since these applications
handle private data, security and privacy should be their top priority, considering the
number of regulations and legislation that they must follow. However, this is not always
the case. Various studies have shown failures and shortcomings in the security and privacy
of these applications. Scott et al. [11] studied fitness applications, showing that most stored
data are in plain text and do not encrypt their communication. These facts made health
and fitness apps a target of attacks that could cause the leak of millions of users” data.

Another issue is the poor privacy features implemented in some of these applications,
which could be exploited by users with malicious intent, such as stalking another person
by studying their GPS activities. A famous example is the Strava application, where a man

https://play.google.com/store/apps/details?id=com.myfitnesspal.android
https://play.google.com/store/apps/details?id=com.strava

Future Internet 2024, 16, 304

30f23

used it to stalk his ex-partner [12]. In 2022, it was revealed that Strava harbored a security
vulnerability capable of enabling user tracking, even for the ones who had set the strictest
privacy settings allowed by the application. The failure could be exploited by uploading
fake running segments, allowing malicious users to learn the identities and past routes
of Strava’s users in the area [13]. In recent years, applications claim to have significantly
evolved in security and privacy concerns by adding various privacy features, often due to
discovered failures. However, some of these problems remain, and many applications still
store a large amount of sensitive data, making them vulnerable to data leaks.

In this work, we conduct a forensic analysis of six running applications. As demon-
strated later, Android applications were selected due to their widespread popularity, indi-
cated by download numbers in the millions. All running applications except Strava are
linked to well-known and popular sportswear brands. Strava, while not affiliated with a
sportswear brand, is a highly regarded sports application. It allows users to record work-
outs and share their achievements on social networks, and it is favored by top professional
runners and cyclists, contributing significantly to its popularity Couture [14].

The main contributions of this work are (i) the analysis and findings of forensic
artifacts in post mortem scenarios for the Android version of the studied applications;
(ii) the development of 12 modules for the framework Android Logs Events And Protobuf
Parser (ALEAPP) to ease the extraction of forensic artifacts and creation of reports for
further analysis; (iif) two new functionalities incorporated into ALEAPP: the capability
to handle Flexible and Interoperable data Transfer (FIT) files and the introduction of a
timeline plugin.

The remainder of this paper is organized as follows. Section 2 discusses related work
while Section 3 describes the materials and methods of this study. Section 4 studies the
Nike Run Club application, explaining the process and the main analysis tools. In Section 5,
we focus on the peculiar analysis of Strava, as the results and artifacts differ from the other
applications. In Section 6, we present the methodology gathered from the Nike Run Club
and apply it to the other studied applications. Section 7 focuses on our open-source Python
3 modules developed for ALEAPP and the added timeline feature. Finally, Section 8
concludes the paper.

2. Related Work

We begin by defining two important concepts in digital forensics—forensic artifacts
and data extraction—before examining related work. Forensic artifacts are data elements
that provide reliable evidence to support or refute hypotheses about user activities, system
operations or network communications on digital devices. Data extraction, within the
context of digital forensics, involves retrieving data from digital devices in a sound manner,
maintaining the integrity and authenticity of data, a crucial step in the preservation phase
of digital investigations [3].

Forensic research on fitness applications is nothing new. However, most of the studies
focus on companion applications such as Fitbit (https://play.google.com/store/apps/
details?id=com.fitbit.FitbitMobile (accessed on 8 August 2024)) and Garmin Connect (https:
/ /play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile (ac-
cessed on 8 August 2024)), analyzing the application with the coupled fitness tracker. Next,
we review the main works involving the digital forensic analysis of fitness applications.

Scott et al. [11] examined 20 health apps, primarily concentrating on security and
privacy aspects but not targeting specific apps under our scope. While the analysis may
lack relevance due to subsequent updates received by the applications, their methods
remain pertinent for current post mortem analysis.

Hassenfeldt et al. [4] analyzed nine Android fitness apps. Some of these applications—
Runkeeper (from Asics), Strava and Runtastic (now designated Adidas Running)—are also
the focus of our work. The authors created their testing environment by collecting data and
extracting them from the smartphone to the forensic computer through Android Debug
Bridge (ADB) and the commercial XRY (https://www.msab.com/product/xry-extract

https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile
https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://www.msab.com/product/xry-extract

Future Internet 2024, 16, 304

40f23

(accessed on 8 August 2024)) tool. In their analysis, they found (i) account data, (i7) personal
information and (iii) GPS data. The authors also developed a Python tool to extract potential
artifacts from the Extensible Markup Language (XML) and database files of the applications’
private directory.

Sinha et al. [15] performed forensic analysis of six fitness applications with an interest-
ing focus on the application Nike Training Club, from the same developers as Nike Run
Club, and MapMyFitness, whose developers also developed MapMyWalk, two applica-
tions studied in our research. The data found for each application are quite similar: (i) user
profile data, (ii) health and exercise data, (iii) captured device data and (iv) GPS data.

Hutchinson et al. [16] performed a forensic analysis of three companion applications using
different devices: Amazon Halo, Garmin Connect and Mobvoi. Their comprehensive analysis
unveiled the following forensic artifacts: (i) health data; (ii) profile information; (iii) phone
notifications; (iv) exercise data; (v) GPS data; (vi) steps data. The in-depth study enabled us to
grasp how fellow analysts establish their data collection and analysis environments.

Donaire-Calleja et al. [17] studied the forensic analysis of wearable devices, specifically
smartwatches. The paper focuses on the challenges that forensic analysts face in this area,
such as the lack of standardized procedures and the use of private communication protocols.

In prior research [9], we analyzed the Garmin Connect application paired with the
Garmin Vivosmart 4 smartband. Our developed open-source tools can extract several
artifacts, such as (i) daily summary data; (ii) GPS data; (iii) response cache data; (iv) network
logs; (v) Facebook API tokens; (vi) device synchronization cache; and (vii) SpO; reading
charts. These results motivated us to delve deeper into Android applications, focusing on
applications to monitor running activities.

Several papers study wearable and smartphone accuracy in physical activity measure-
ments such as step count and walking distances [18-20]. van Zandwijk and Boztas [21]
reported that the iPhone has a low 2% error in step count reporting but can diverge up
to 40% for walking distance measurement. Goh et al. [22] documented that smartphones
overestimated step counts when assessed on a 3-day free-living condition, with precision
affected by factors such as walking style and phone-wearing location. Precision assessment
is beyond the scope of this work.

To summarize this section, Table 1 shows a comparison between our work and the
ones presented above, focusing on the different goals of the analysis, applications targets
and major findings.

Table 1. Comparative analysis of forensic research on fitness applications.

Study

Applications/Devices Analyzed

Focus of Analysis

Key Forensic Artifacts Found

Scottetal. [11]
Hassenfeldt et al. [4]

Sinha et al. [15]
Hutchinson et al. [16]

Donaire-Calleja et al. [17]

Nunes et al. [9]

van Zandwijk and Boztas
[18]
Goh et al. [22]

Our Work, 2024

20 health apps (general, not app-specific)

Android fitness apps (Runkeeper, Strava,
Runtastic/Adidas Running)

Fitness apps (Nike Training Club, Nike
Run Club, MapMyFitness, MapMyWalk)

Companion apps (Amazon Halo, Garmin
Connect, Mobvoi)

Wearables (smartwatches)

Garmin Connect with Garmin Vivosmart 4

Wearables, smartphones
Smartphones (general)

6 running apps (Strava, Adidas Running,
Nike Run Club, etc.)

Security and privacy analysis

Forensic analysis of fit-
ness apps

Forensic analysis of fit-
ness apps

Forensic analysis of compan-
ion apps

Forensic challenges with
wearables

Forensic analysis of fitness
companion apps

Accuracy in physical activity
measurements

Validation of smartphone ac-
tivity measurement

Forensic analysis of Android
running apps

Security flaws, privacy concerns

Account data, personal info, GPS data

User profile data, health/exercise data,
device data, GPS data

Health data, profile info, notifications,
exercise data, GPS data, steps data

N/A—Focus on challenges, not spe-
cific artifacts

Daily summary, GPS data, response
cache, network logs, Facebook API to-
kens, sync cache, SpO; charts

Step count error rates, distance measure-
ment discrepancies

Overestimated steps, affected by walk-
ing style, phone location

Post mortem artifacts, 12 ALEAPP mod-
ules, FIT file handling, timeline plugin

Future Internet 2024, 16, 304

50f23

3. Materials and Methods

This section outlines the materials employed in this research, encompassing both
hardware and software, and subsequently details the process of populating the device with
data and conducting the analysis.

3.1. Hardware

We employed a Samsung A40 smartphone running Android 11 (API 30) as our primary
tool for app analysis. These fitness apps typically interact with wearable devices like
smartbands. Our objective was to gather GPS, speed and heart rate data. However,
smartphone sensors alone cannot provide heart rate data. Hence, we utilized both the
smartphone and a Garmin Vivosmart 4 smartband. It is worth noting that the Garmin
Connect app is the native companion for this smartband. Nevertheless, utilising this
smartband to gather data for other applications is also possible. Table 2 details the hardware
and OS versions used.

Table 2. List of devices used in the study and their respective OS versions.

Device OS Version

Vivosmart4 V5.40
Samsung A40 Android 11 (API 30)

Retrieving data from devices without root access can be a challenging task due to the
security measures implemented by manufacturers. These measures restrict data access,
particularly to the private directories of applications, where most digital forensic artifacts
are stored. As a result, forensic experts frequently find themselves resorting to exploits or
alternative methods to gain access to data on non-rooted devices [23]. This approach is
time-consuming and does not guarantee success, potentially leading to limitations in the
amount or type of data that can be acquired or, in the worst-case scenario, data loss. Given
the intricate and device-specific nature of this process, obtaining data from non-rooted
devices falls outside the scope of this study. However, it is worth noting that, in some
digital forensic scenarios, obtaining root access to the companion smartphone may not
be feasible or suitable. Our chosen method is not a standard method used in real-world
investigations. However, it can be applied in research, eliminating the need for commercial
tools or other methods, such as complete forensic copies.

3.2. Software

We utilized the most recent versions of each examined application, which were acces-
sible on the Google Play Store at the start of our research. Table 3 provides data gathered
from the Play Store for each application, including the version utilized, the developer’s
information, the total download count and the release date. Our analysis is divided into
(1) post mortem analysis and (i7)) module creation. For each part, we used different tools
that we succinctly describe next.

Table 3. List of analyzed applications, corresponding versions and Google Play stats.

Application Developer Version #of Downloads Release Date
Adidas Running Adidas Runtastic 13.6 50M+ 14 March 2023
MapMyWalk MapMpygFitness, Inc. 23.5.2 10M+ 21 March 2023
Nike Run Club Nike, Inc. 4.21.0 10M+ 2 March 2023
Pumatrac PUMA SE 4.19.9 1M+ 18 September 2022
Runkeeper ASICS Digital, Inc. 14.3 10M+ 17 March 2023
Strava Strava Inc. 299.19 50M+ 22 March 2023

3.2.1. Post Mortem Software

We employed different tools for our forensic analysis to extract data. Among these
tools, we utilized the ADB (https://developer.android.com/studio/command-line/adb

https://developer.android.com/studio/command-line/adb

Future Internet 2024, 16, 304

6 of 23

(accessed on 8 August 2024)), which provides access and command-line interaction with a
connected mobile device. ADB is the standard approach for data extraction from Android
mobile devices. However, it does have specific requirements, such as the device being in
debugging mode and authorized when the system shows a dialogue asking whether to
accept an RSA key that allows debugging through the connected computer. While these
conditions are ideal, they may not always be feasible in real-world scenarios.

Additionally, we created a set of Python 3 scripts as part of our automation efforts
for various analysis tasks. These scripts included one specifically designed for automating
data acquisition. We used the PyCharm (https:/ /www.jetbrains.com/pycharm/ (accessed
on 8 August 2024)) Integrated Development Environment (IDE) to develop these scripts.

Analyzing the contents of an Android application’s database is a pivotal aspect of a
forensic investigation. We employed the widely recognized open-source tool DB Browser
for SQLite (https:/ /sqlitebrowser.org/ (accessed on 8 August 2024)) to facilitate this pro-
cess. To better understand individual databases and their table relationships, we utilized
schemacrawler (https:/ /www.schemacrawler.com /weak-associations.html (accessed on 8
August 2024)) to generate database diagrams. These diagrams were further enhanced using
DBDiagram.io (https:/ /dbdiagram.io/home (accessed on 8 August 2024)).

3.2.2. Module Development

We resorted solely to standard programming tools for developing the ALEAPP mod-
ules, namely the above-referenced Pycharm as IDE. Table 4 lists all tools used for this
project, their versions and their usage.

Table 4. Software tools.

Tool Name Version Usage
ADB 33.0.1 Data access
ALEAPP 3.1.6 Framework to generate report
DBDiagram.io online tool Create database diagrams
DB Browser for SQLite 3.122 Database analysis and queries
Magisk 243 Root the device
Odin 3.14.4 Flash the patched boot image
Pycharm 2022.3 Python Development
Python 3.10 Module and script development
schemacrawler 16.19.5 Generate database diagrams

This method uses (i) a rooted smartphone device and (ii) open-source tools. Although
police forces and forensic practitioners most likely have access to commercial tools that
automate most of the work presented here, our approach gives researchers an insight into
how to obtain the data manually, thereby enabling a deeper understanding of the Android
operating system that can be applied to study other applications.

The rooting process has various steps. The two main ones are the installation and
configuration of Magisk (https:/ /github.com/topjohnwu/Magisk (accessed on 8 August
2024)) and Odin (https://odindownload.com/ (accessed on 8 August 2024)). Magisk is
an open-source software suite developed by the XDA community to customize Android,
supporting devices with versions higher than Android 6.0. Magisk achieves device root-
ing through a boot image patching method, providing comprehensive root access to the
Android OS without making any alterations or modifications to the /system partition.
Subsequently, we employed Odin, a flashing tool designed for Samsung smartphones
and tablets, to install the patched ROM. We followed the guides from both Magisk (https:
/ /topjohnwu.github.io/Magisk/install.html (accessed on 8 August 2024)) and Odin (https:
/ /www.droidwin.com/root-samsung-magisk-odin/ (accessed on 8 August 2024)). This
procedure varies depending on the device’s brand, model and Android version.

https://www.jetbrains.com/pycharm/
https://sqlitebrowser.org/
https://www.schemacrawler.com/weak-associations.html
https://dbdiagram.io/home
https://github.com/topjohnwu/Magisk
https://odindownload.com/
https://topjohnwu.github.io/Magisk/install.html
https://topjohnwu.github.io/Magisk/install.html
https://www.droidwin.com/root-samsung-magisk-odin/
https://www.droidwin.com/root-samsung-magisk-odin/

Future Internet 2024, 16, 304

7 of 23

3.3. Method

Applications monitoring running activities have a growing user base and popularity
[24]. In this paper, we study six popular applications: Adidas Running (https:/ /play.google.
com/store/apps/details?id=com.runtastic.android (accessed on 8 August 2024)), Asics
Runkeeper (https:/ /play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.
pro (accessed on 8 August 2024)), MapMyWalk (https://play.google.com/store/apps/
details?id=com.mapmywalk.android2 (accessed on 8 August 2024)), Nike Run Club (https:
/ /play.google.com/store/apps/details?id=com.nike.plusgps (accessed on 8 August 2024)),
Pumatrac (https:/ /play.google.com/store/apps/details?id=com.pumapumatrac (accessed
on 8 August 2024)), and Strava (https://play.google.com/store/apps/details?id=com.
strava (accessed on 8 August 2024)). The criteria for choosing these applications were
(i) having millions of downloads; (ii) recording running activities with GPS coordinates;
(iii) being free or providing a freemium model; (iv) having the ability to execute without an
always-on Internet connection; (v) having availability for the Android platform. Note that
hundreds of applications could fit these criteria. We selected the most used and reviewed
applications, rounding our selection to these six. As stated earlier, Table 3 summarizes the
main stats of the studied applications from the Google Play Store.

We initiated by configuring a rooted smartphone with the requisite applications
installed to gather ample data for our research. Subsequently, we established user accounts
and meticulously documented identical outdoor activities within each application. This
methodology facilitated the accumulation of data, enabling us to conduct a comparative
analysis of the variations in data across different applications. To thoroughly examine
each application, we undertook a month-long data-gathering process, during which we
monitored a varied set of 20 workouts. These workouts were evenly distributed between
indoor running and outdoor walks, spanning a total distance of 3 km and lasting over
30 min each. Furthermore, we conducted these activities across various locations within
the city to capture a broad spectrum of data. Additionally, we thoroughly explored the
distinctive features of each application, augmenting them with additional information and
integrating them with companion apps and other relevant platforms.

In our analysis, we adhered to the methods outlined in NIST’s publication 800-86,
which incorporates forensic techniques and incident response plans [25]. In short, the
analyst is advised to guide the investigation with the following steps in a post mortem
analysis: (i) identify all relevant features of the application and use them to generate data;
(ii) collect data using forensic tools or manual methods from a rooted phone or emulator;
(iii) preserve the data in a secure location and make sure that the data are not altered or
tampered with; (iv) examine the data using forensic or non-forensic tools and methods;
(v) analyze the respective findings; (vi) report and present the results of the investigation.

As the applications are similar and the data-gathering processes were equal, we
decided to employ the same analysis method for each application as depicted in Figure 1.

The analyst proceeds through these steps: (i) extract both public and private data
(access to private data requires root access or the use of a forensic tool able to bypass
Android security); (if) analyze the public directory, knowing that, in most cases, it will not
yield meaningful results; (iif) find and analyze the main database of the application in the
private directory; (iv) analyze the Shared Preferences folder to obtain user’s data that might
not be found within the databases.

We document and display the complete method for the application Nike Run Club
and implement it on the rest of the applications to extract and analyze their artifacts.

https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
https://play.google.com/store/apps/details?id=com.mapmywalk.android2
https://play.google.com/store/apps/details?id=com.mapmywalk.android2
https://play.google.com/store/apps/details?id=com.nike.plusgps
https://play.google.com/store/apps/details?id=com.nike.plusgps
https://play.google.com/store/apps/details?id=com.pumapumatrac
https://play.google.com/store/apps/details?id=com.strava
https://play.google.com/store/apps/details?id=com.strava

Future Internet 2024, 16, 304 8 of 23

Data Generation .
Download application

Configure account and
generate data

Data Extraction

Extract the data via ADB
Script

Analyze Public and

5 Y ! "
Root Access? es—> Private Directory

No

¥

Analyze Public Directory

Did it contain
any artifacts?

ALEAPP Module

Create ALEAPP modules |-¢—No-

he application?,

Yes

End analysis

Figure 1. Analysis method.

4. Post Mortem Analysis

This section presents the post mortem analysis of each application. This kind of
analysis focuses on extracting all data generated by the applications (after one month of
usage) and analyzing them in a dedicated computer. After gathering the data, we followed
a structured approach to retrieve the information from the device.

By default, application-generated data are stored in the internal storage, which re-
mains private to the application and inaccessible to other apps or users unless root access
is granted. As implied by its name, internal storage is a suitable location for storing appli-
cation data that users do not directly interact with, such as database files, application logs
and related data. Also, Android devices support a shared “external storage” space where
developers can save files. Files saved to external storage are accessible and modifiable
by the user when they enable USB mass storage to transfer files to a computer. Foren-
sic practitioners aim to extract data stored in both the internal and, if available, external
storage systems. The extraction process can be accomplished using commercial forensic
tools, like Cellebrite (https://cellebrite.com/ (accessed on 8 August 2024)). However,
because our device was rooted, we utilized ADB. ADB, or Android Debug Bridge, is a
command-line tool for communicating with Android devices connected to a computer via
USB or wirelessly (since Android 11). ADB facilitates various device actions, such as app
installation and debugging, and provides access to a Unix shell for executing commands
on the device (https:/ /developer.android.com/studio/command-line/adb (accessed on
8 August 2024)). The procedure for extracting data using ADB is the same across all
studied applications:

https://cellebrite.com/
https://developer.android.com/studio/command-line/adb

Future Internet 2024, 16, 304

9 of 23

Access the device via ADB;

Navigate to the public or private directory (requires sudo privileges);
Locate the application folder;

Archive and compress the folder, storing it in external storage;
Transfer the archived data from the device to the analyst’s workstation.

AR

The following steps were undertaken to initiate the extraction process using ADB.
Initially, we extracted data from the public folder located at

/storage/emulated/0/Android/data/<package name>

Subsequently, the most relevant part was extracting the application’s private folder.
However, unlike the public directory, accessing the private directory requires root access.
In a rooted device, the user must only execute the su command to enter the privileged
mode and access the private directory, which resides in the following path:

/data/data/<package name>

The binaries of the installed application can also be important in studying their
behavior. Their location is

/data/app/<package name>

Since Android 8, app folders have been named using a random string in base64 to
enhance privacy and security, making it more difficult for unauthorized users or malicious
applications to access sensitive app data [26]. To identify the correct path, the following
command was executed:

adb shell pm path <package name>

This command outputs the path to the application’s APK file location. That file can
then be extracted using ADB with the corresponding path. Extracting data from all locations
can be time-consuming. Therefore, we developed a Python script named ADB-Extractor to
automate the process. The script allows users to select what data they want to extract (public
directory, private directory or application binary file) from the chosen device (Android
emulator or physical device). The usage of the script is as follows:

python3 acquisition.py —a <package name> -d [emulator | physical] -t [public | private | apk]

A graphical interface is also available, where users can select the device, what to
extract and where to save it. Additionally, users can select the desired package name from
a list of all installed applications. Figure 2 displays the tool’s graphical interface.

Maintaining forensic integrity is critical to the credibility and admissibility of digital
evidence. To ensure that digital evidence remains authentic, unaltered and verifiable
from the point of collection through to its presentation in legal or investigative contexts,
investigators compute the hash of extracted files prior to analysis to guarantee that the
data are not tampered [27]. Our tool calculates the SHA256 hash for each extracted file and
directory, storing the results in an output file for subsequent integrity verification.

Future Internet 2024, 16, 304 10 of 23

ADB Extractor

ADB Extractor

Device ® Physical @ Emulator

Type ¥ private ® Public ¥ APK

Output Folder ~ /Users/fabiannunes/testADB

Packages Installed Output

com.garmin.android.apps.connectmobile
com.callapp.contacts

com.badoo.mobile

pt.sibs.android.mbway
com.sec.android.app.voicenote
com.samsung.android.email.provider
com.nike.plusgps
com.samsung.android.app.watchmanager
com.microsoft.bing

Get Packages com.myvitale.fitnesshut

Figure 2. Graphical interface of ADB extractor.

As mentioned previously, our study examines six distinct run-tracking applications.
They all have the same goal—to record running routes, times and performances—and thus
exhibit many similarities. To prevent redundancy, we will provide an in-depth analysis of
one of the applications, specifically Nike Run Club, which is the most feature-rich among
the set. Our methodology for analyzing Nike Run Club is then applied to the remaining
fitness applications.

4.1. Nike Run Club

Nike Run Club has 10M+ downloads in Google Play Store (see Table 3) and focuses on
preparing athletes for competitions by mixing virtual personal training with a gamification
system and social network. Users can connect with friends through the club feature, which
acts as a small community. Within this community, they can engage in challenges, compete
with each other and collectively work toward enhancing their overall fitness levels.

Nike Run Club lacks a built-in authentication method. During login request or account
creation, the application opens a webview for the URL https:/ /accounts.nike.com/ (accessed
on 8 August 2024), where the browser will display the authentication form. This fact means
that the authentication is performed in the browser and is exposed to possible website
vulnerabilities, which is vital for future forensic dynamic analysis. The registration form
asks for (i) the email (where the verification code is sent); (ii) password; (iii) name; and
(iv) birth date. After successfully creating an account, the user returns to the application,
where the application asks for (v) gender, (vi) height and (vii) weight.

Upon login, the authenticated user lands on the main dashboard, featuring a live
Google Maps display of their current location, shown in Figure 3a. Here, users can track
their activity, with metrics such as distance, calories burned and duration showcased
alongside the activity’s route on the map. This run-tracking dashboard is standard, comple-
mented by extras like training plans and audio-guided runs accessed by swiping. The app
includes a side menu with options like an activity summary screen detailing stats and a log
of past activities. Users can delve into individual activities for detailed statistics like pace,
duration, calories burned, heart rate and GPS route, as shown in Figure 3b. Although all
studied running applications are unique, we identified similar points, such as the activity
screen and the challenges page. This fact is essential from a forensic standpoint because it
helps us to identify the possible data commonly stored in all of them.

https://accounts.nike.com/

Future Internet 2024, 16, 304

11 of 23

2148 MM & N QO Fulal 65% 8 2149 MM o N Zeall 65% 1

= Run ¢ Nike Run Club <

Start a Run Guided Runs Training Plans , 42
o

Get Started Collection Kilometers
First Run
20 Min - Run 13'04" 18:40 64

Pace Time

Leiria, Leiria

\ \
~NA
£+ START 01 -)
\
Set a Goal \\
. \
1 @] < 1 @] <

(a) (b)
Figure 3. Comparison between two screens. (a) Main screen of Nike Run Club. (b) Nike Run Club
activity summary.

Data Synchronization

As standard in modern applications, Nike Run Club can synchronize data between
different devices. After analyzing its main database, as will be explained in Section 4.4, we
discovered that the application can store, in its local databases, the data from the devices
that are synchronizing in the same account.

In addition, the Nike Run Club application can import activities from the cloud of
companion applications. We had previously used the Nike Run application on an iOS
device, and all activities from Apple’s Healthkit were seemingly imported into the Android
database. To test this venue further for collecting data, we installed the application on
an Android emulator, resorting to Android Studio. After installing the application and
logging into the Nike Run account, we extracted the application’s private directory. Again,
all previous activities were stored in the databases. This finding is relevant from a forensic
standpoint since digital practitioners are not bound to using a rooted device to access data.
Indeed, with access to the account credentials, one can install the application on an emulator
and collect all data. Moreover, suppose that the Nike Run Club account is connected to a
companion application such as Garmin Connect or Fitbit. In that case, one can potentially
access activities recorded by devices running under iOS, resorting to Healthkit.

4.2. Android Permissions

Upon accessing the Play Store, one can observe the permissions that the application
requests during installation: Play Store — About this app — permissions (at the bottom of
the page) — view details. Table 5 displays the permissions requested by Nike Run Club,
which include several high-level permissions. It is important to note that these permissions
are typical for this category of applications, and the other apps in our study also request
similar permissions.

Future Internet 2024, 16, 304 12 of 23

Table 5. Nike Run Club permissions.

Permission Function

Wi-Fi connection information ~ View Wi-Fi connections

Device ID & call information ~ Read phone status and identity
Camera Take pictures and videos

Read your contacts

Contacts Find accounts on the device
Storage Read the contents of your USB storage
& Modify or delete the contents of your USB storage
Photos,/Media/Files Read the contents of your USB storage

Modify or delete the contents of your USB storage
Wearable sensors/Activity data Body sensors (like heart rate monitors)
Add or remove accounts
Identity ~ Read your own contact card
Find accounts on the device
Phone Read phone status and identity
Microphone Record audio

Approximate location (network-based)
Precise location (GPS and network-based)
Read sync statistics and receive data from Internet
Download files without notification
View network connections
Change network connectivity
Pair with Bluetooth devices
Create accounts and set passwords
Toggle sync on and off
Other Control vibration
Read sync settings
Google Play licence check
Prevent device from sleeping
Access Bluetooth settings
Run at startup
Full network access
Use accounts on the device

Location

4.3. Extraction of data

We used ADB to extract both public and private data from each application. This
process can be time-consuming since it requires finding the data, compressing them, storing
them in the phone’s public storage and then pulling them from the device to the forensic
practitioner’s computer. Therefore, we created a Python 3 script to automate the process
with the following syntax:

python3 acquisition.py <package_name> -d <emulator|physical> -t <private|public|apk>

The acquisition.py script runs on Linux, Mac OS and Windows systems. The script
is open-source and hosted on GitHub (https:/ /github.com/labcif/ ADB-Extractor (accessed
on 8§ August 2024)).

Next, we analyze the data generated by the Nike Run Club app. We start with the
so-called public data and then analyze the private data.

4.3.1. Public Data

The directory structure of the public data is shown in Figure 4, which holds 2 subdi-
rectories and 11 files. However, as expected, the data in these directories do not hold much
forensic value, as all stored files are cache files related to maps. Nonetheless, there was one
specific application whose public directory held relevant forensic data: Strava. This will be
discussed later on.

/sdcard/Android/data/com.nike.plusgps/
cache/
L— debug/

Figure 4. Directories inside the public folder of Nike Running Club.

https://github.com/labcif/ADB-Extractor

Future Internet 2024, 16, 304

13 of 23

4.3.2. Private Data

Applications typically store most data in their private folders, which holds for the
applications under examination in this study. Unfortunately, accessing private data requires
root privileges, meaning that such data can only be retrieved when the mobile device is
rooted. Consequently, using a rooted device was essential for conducting this study.

The private directory structure, up to two sub-levels, is depicted in Figure 5. This struc-
ture is notably more extensive than the public directory, encompassing 182 subdirectories
and 411 files.

/data/data/com.nike.plusgps/

— cache/

— apiCache/

— com.google.android.gms.maps.volley/
— imageCache/

— messageImages/

— code_cache/

— databases/

— files/

— analytics-storage/

— com.nike.persistence/

— dropship/

— phenotype/

— no_backup/

— com.urbanairship.databases/
— dropship/

— urlmanager/

'— shared_prefs/

Figure 5. Directories inside the private folder of Nike Run Club.

Examining all these files can be a daunting task. However, obtaining a clear idea of
where the most crucial information is stored is feasible by leveraging prior knowledge of
the Android operating system and understanding how private data are organized [28]. The
files/ folder typically contains cache or temporary files and log files. In the case of the
Nike Run Club, there are no forensic relevant data in this folder. The database/ folder
usually holds the most meaningful forensic artifacts, as it holds databases, usually SQLite
3 ones. Applications such as Nike Run Club have many SQLite databases, yet most of
the relevant data are stored in just a few databases. The remaining databases are usually
related to several services, such as Google APIs, integration with other applications of the
same developer or even features related to premium features.

The shared_prefs/ is another folder where relevant forensic data can be found. It
usually holds several XML files that store key-value data. It is common for applications to
store data such as user account credentials and other information related to hardware and
interactions with authentication services, such as Facebook and Google. This folder can
also hold API keys if developers are not careful enough to protect them. Next, we focus on
the databases of the Nike Run Club application.

4.4. Databases

The Nike Run Club application keeps 15 different SQLite 3 databases in its private
directory. The most relevant ones, from a digital forensic perspective, are (i) com.nike.nrc.
room.database, which acts as the main database, and (ii) ns_inbox.db, which holds the
application notifications.

4.4.1. com.nike.nrc.room.database

The database com.nike.nrc.room.database is the core storage of the application,
holding 53 tables. The main elements stored by the database are (i) user activities; (ii) user
weight; (iif) training plans; (iv) challenges; (v) audio runs; and (vi) achievements.

User Activities

Nike Run Club splits data related to the activities into eight different tables. The main
table activity stores the basic information, such as start and end time. Each subsequent

Future Internet 2024, 16, 304

14 of 23

table is connected to this table from where the data came: directly from the application
or from a companion application. An activity can have multiple records related to it in
other tables. Table 6 explains the different tables and their forensic value. Indeed, the
application stores a large amount of information related to an activity. We could extract
information like the timespan of the run, duration, distance, heart rate, calories burned
and more by analyzing the data. The database diagram, which highlights relationships
among the tables listed in Table 6, is shown in Figure 6. This diagram was carried out with
the aid of schemacrawler and DBDiagram.io, the first to create a base diagram enhanced
with the second tool. Since the diagram is quite large, we only highlight relationships
between tables in Figure 6 related to a fraction of the database. A more detailed version
of the diagram and the code used to generate it in DBDiagram. io is available in a GitHub
repository (https://github.com/labcif/Running-Databases (accessed on 8 August 2024)).
This repository contains the diagrams and code for each diagram presented in this study.

Table 6. Most important tables of com.nike.nrc.room.database.

Table f/(;iigsm Description
activity fair Base data of an activity (duration and source)
activity_metric_group low Metrics used in the activity
activity_moment high Updates during activity (start, pause and stop)
activity_polyline high Stores the polyline of the activity
activity_raw_metric high Stores the metrics for specific timestamps
activity_summary high Stores the summary data of the activity
activity_tag fair Stores tag data of the activity (title, type, location, etc.)
fullpower_activity_link low Stores various ids related to the activity

activity_metric_group activity_moment activity_polyline
1

1

as2_sa_id int —— as2_mg_id int as2_m_id int as2_p_id int
text < as2_mg_activity_id int E as2_m_activity_id int —2 as2_p_activity_id int
text o text text
as2_s_id int fullpower_activity_link
as2_s_activity_id int d as2_t_id int fpal_id int as2_rm_id int
text _2 as2_t_activity_id int —*é fpal_local_activity_id int —2 as2_rm_metric_group_id int

text - text text

Figure 6. Simplified diagram of the com.nike.nrc.room.database.

One of the most relevant artifacts found is the activities” GPS coordinates. Nike Run
Club stores these coordinates in a unique polyline format in the table activity_polyline.
Polyline is a string of characters that encode coordinates used by Google Maps to draw
the route line on the map [29] as shown in Figure 3b.

The coordinates bear crucial forensic significance as they precisely identify the user’s
whereabouts during a specific timeframe. According to Google’s documentation, revers-
ing a polyline back into grouped coordinates is feasible. Utilizing the Python library
polyline (https:/ /pypi.org/project/polyline/ (accessed on 8 August 2024)), we devised
a Python script to decode Google’s polylines into coordinates and store them in an XLSX
file. This file hosts the activity’s coordinates. Additionally, employing the geopy library
(https:/ /pypi.org/project/geopy/ (accessed on 8 August 2024)), our script enriches these
coordinates with additional details such as the corresponding road, city, postcode and
country. This file aims to facilitate the analysis of GPS coordinates and streamline the
identification of potential locations of interest. Subsequently, utilizing these coordinates,
we generate a file showcasing the user’s traveled route as exemplified in Figure 7. The
script allows for the export of this file in either HTML or Keyhole Markup Language (KML).
The Polyline2GPS (https:/ /github.com/labcif/Polyline2GPS (accessed on 8 August 2024))

https://github.com/labcif/Running-Databases
https://pypi.org/project/polyline/
https://pypi.org/project/geopy/
https://github.com/labcif/Polyline2GPS

Future Internet 2024, 16, 304

15 of 23

script is available as a standalone tool after the functions described were initially developed
for the ALEAPP framework.

&

¢a¢2 EurBTJeu
o

<coi
a1 peceira P2

Figure 7. Map with a route overlay from a decoded polyline.

Another forensic relevant table of the com.nike.nrc.room.database database is
activity_raw_metric. It stores specific actions during the activity, such as the user paus-
ing, resuming or ending the activity. The table stores the action that occurred and times-
tamps it. This can be useful if the need arises to accurately determine an activity’s sequence
of events. For instance, cross-referencing data allows one to detect when a user stopped
walking for a given period and when the stop happened.

4.4.2. ns_inbox.db

The ns_inbox.db database holds only one relevant table that stores notifications
received through the applications inbox. These messages could be the application’s news
or notifications from other users. This database stores the notifications’ contents and the
date/time that the message was sent. Note, however, that Nike Run Club does not have
an integrated message system; hence, all messages are system-generated. Thus, no user
messages are stored in this database.

5. Strava

The Strava application notably diverged from the others. In contrast to the other
applications, no artifacts were discovered within Strava’s private directory. This divergence
can be attributed to the exposure of certain Strava features that could be misused in inferring
locations. These issues received substantial media attention, as reported by sources like
the BBC News [30] and Gritten [13]. As a result, Strava took significant measures to bolster
its security, which likely led to the absence of artifacts in its private directories. Therefore,
this absence of meaningful data in private directories is understandable. Our surprise
came from a set of FIT files in the public directory. These files were stored in a subfolder
called files that was the only subfolder inside the public directory. FIT is a binary file
format developed by Garmin to store and share fitness data. FIT’s capacity to encompass
diverse fitness metrics, including workout details, heart rate and GPS location, has led to
widespread adoption by fitness applications and trackers [31]. It is widely used by fitness
enthusiasts, athletes and trainers to track and analyze their performance and progress over
time [32].

We developed the Python 3 script decode. py (https://github.com/labcif /FIT2GPS
(accessed on 8 August 2024)) to ease the processing of FIT files. It resorts to the fitdecode

https://github.com/labcif/FIT2GPS

Future Internet 2024, 16, 304

16 of 23

Python library to decode FIT files, extracting GPS coordinates and producing as output,
just like our polyline script, either an HTML file with a map or a KML compressed file
(KMZ) file.

6. Remaining Applications

To preserve space, we grouped the remaining applications into a single section, as the
process used for Nike Run Club could be applied to all of them.

6.1. Public Directory

Except for Strava, as detailed in Section 5, the public directory of the analyzed ap-
plications did not yield any relevant data. Except for a few audio files linked to workout
instructions within the ASICS Runkeeper application, the publicly accessible files closely
resembled those found in Nike Run Club. These files predominantly comprised cache data
related to GPS maps.

6.2. Private Directory

Next, we analyze the directories under the private directory, focusing on databases
and XML files where relevant artifacts exist.

6.3. Databases

As before, the primary artifacts came from the application’s databases. In all four
applications, we found data related to activities and, in some cases, user information. Each
application handled activities differently, especially the GPS coordinates of the run, as we
next explore.

6.3.1. Adidas Running

The Adidas Running application has several databases, with two having meaningful
forensic data: db and user.db. The former has 30 tables, although most are empty. Table
session is the largest—90 fields—and the most relevant one, as it records all activity data,
namely distance, duration and calories, to name just a few. The GPS coordinates are stored
in polyline format, just as in Nike Run Club. The user.db database keeps user-related data,
such as height, weight, email and which companion applications are connected. Knowing
which companion applications are connected to the account can prove helpful in a digital
forensic investigation.

6.3.2. MapMyWalk

MapMyWalk has a database for each feature, such as workout plans, activities and user
data. The workout.db database stores the user’s activities, mainly in the timeSeries table.
The application periodically collects date/time, distance, heart rate and GPS coordinates,
yielding many data records. In a forensic analysis, this requires the aggregation of data to
interpret them correctly. The application also stores account data in the mmdk_user database.
It stores email, name, location, birthdate, height, weight, etc., in the user_entity table.

6.3.3. Pumatrac

Pumatrac has two databases in its database folder: pumatract-db and OneSignal.db.
Only the former is forensically relevant. It holds 27 tables, with only a select few ones
keeping meaningful forensic data: (i) calendar; (if) completed_exercises; (iii) completed_
workouts; (iv) positions; (v) heart_beat. All records are linked to a user account through
the users table. Activity data such as timestamps, duration, calories burned, distance
and GPS location are kept in the completed_exercises table. A simplified diagram of the
pumatract-db database is given in Figure 8.

Future Internet 2024, 16, 304

17 of 23

1

e CONPIEER (RO
id id id

integer —< id text j—o— text text
*
completedWorkoutld text —10—— completedWorkoutld text text —01— completedExerciseld text

text text text

heart_beats

id text

completedExerciseld text 4/

Figure 8. Simplified diagram of the pumatrac-db.

6.3.4. Runkeeper

Although the ASICS Runkeeper application has a few database files, all essential data
are kept in the RunKeeper.sqlite database, with 53 tables. Although most tables remain
empty, the database stores information about activities realized, challenges, training plans
and user weight. The activity information is stored in the trips table, holding timestamps,
distance, calories and duration. GPS coordinates are stored in the points table, recording
each point as a pair of text-based latitude and longitude values, the altitude, time spent in
that spot, the current speed and the distance from the last recorded point. Figure 9 portrays
the RunKeeper.sqlite database, focusing on the forensic artifacts.

id int 4 id int status_id int id int
N * * * . . * P
activity_type text C trip_id int :—< trip_id int ——— trip_id int

*
uuid text text text text

text

L int : 4 int
. i 1 X l * .
_id int activity_type int route_id

1

_id int

*
int —— route_id int
trip_uuid text text . text text

text
Figure 9. Simplified diagram of the RunKeeper.sqlite.

6.4. Shared_Prefs

The shared_prefs folder holds XML files storing key-value data. Often, there are
user-account-related data. Surprisingly, only the ASICS Runkeeper application keeps
content in the shared_prefs folder, namely the file com.fitnesskeeper.runkeeper.pro_
preferences.xml. This file stores user account data, such as email, height and weight.

6.5. Synopsis

Utilizing identical analysis methods employed for the NikeRunClub application, we
extracted the main digital forensic artifacts from each application. The sole application
necessitating adaptation was Strava. The scripts devised to parse the distinct data sources
for each application are summarized in Table 7.

The most significant digital evidence found in the examined applications consists
of timestamp and location data pairs, with GPS coordinates linked to specific dates and
times. These data points enable us to determine, with GPS accuracy, the movements and
locations of the smartphone’s primary user over a specific period. The data can be used
to confirm/refute an alibi, identify patterns of behavior and reconstruct crime scenes. For
example, an individual under investigation might state that he/she never has been in a
given place, just to be refuted by the forensic artifacts found in the running application that
he/she has used. Obviously, the contrary can also happen, with the forensic data attesting
his/her alibi. It is important to note that while such data can provide relevant leads, they
should be used in conjunction with other evidence to build a solid case. Obviously, it is

Future Internet 2024, 16, 304

18 of 23

the responsibility of the forensic team to respect and properly address the legal and ethical
requirements when handling such sensitive information. These requirements depend on
the jurisdiction under which they are serving. Table 8 summarizes the main digital forensic
artifacts of the six studied applications.

Table 7. List of modules developed for ALEAPP and the sources employed for parsing data. Except for
Strava, the folders for all other data sources are located as subfolders within Android’s /data/data/.

Application Module Data source
adidasActivities.py com.runtastic.android/databases/db
Adidas Running adidasGoals.py com.runtastic.android/databases/goals

adidasUsers.py com.runtastic.android/databases/user.db

MapMyWalk MMWActivities.py com.mapmywalk. andro::LdQ/databases/workout .db
MMWUsers .py com.mapmywalk.android2/databases/mmdk_user
NikeAMoments.py com.nike.plusgps/databases/com.nike.nrc.room

. NikeActivities.py com.nike.plusgps/databases/com.nike.nrc.room

Nike Run Club NikeNotifications.py com.nike.plusgps/databases/ns_inbox.db
NikePolyline.py com.nike.plusgps/databases/com.nike.nrc.room
PumaActivities.py com.pumapumatrac/databases/pumatrac-db
Pumatrac

PumaUsers.py com.pumapumatrac/databases/pumatrac-db

com.fitnesskeeper.runkeeper.pro/databases/
RunkeeperActivities.py < RunKeeper.sqlite

Runk T
unkeepe RunkeeperUser.py com.fitnesskeeper.runkeeper.pro/shared_prefs/
< com.fitnesskeeper.runkeeper.pro_preferences
Strava StravaGPS.py /sdcard/Android/data/com.strava/files/*

Table 8. Main digital forensics artifacts per application.

Application Databases Digital Forensic Artifacts

GPS (polyline), duration, distance, calories,
user’s data (height, weight, email,...)

GPS, date/time, distance, heart rate,

user’s data (height, weight, email,...)
com.nike.nrc.room.database GPS (polyline), duration, distance, heart rate,

Adidas Running db, user.db

MapMyWalk workout.db

Nike Run Club ns_inbox.db notifications
Pumatrac pumatract-db GPS, timestamps, duration, calories, distance
GPS (text-based latitude and longitude),
Runkeeper RunKeeper.sqlite timestamps, duration, distance, calories,
user’s data in XML file.
Strava None. FIT files (public directory)

7. ALEAPP Modules

To ease and automate the analysis of the six studied run-tracking apps for digital
forensic practitioners, we provide several modules for the ALEAPP forensic framework
created by Alex Brignoni (https://github.com/abrignoni/ALEAPP (accessed on 8 August
2024)). ALEAPP is an open-source Python-based tool created specifically for digital foren-
sics investigations of Android devices. It is used to parse and analyze various types of
data extracted from Android devices, including logs, events and protocol buffer (Protobuf)
files, a common data format used in mobile applications. By automating some of the
repetitive tasks in Android forensics, ALEAPP allows digital forensics examiners to save
time. Figure 10 shows the graphical user interface of ALEAPP.

ALEAPP was conceptualized with scalability and modularity in mind. Developers
can seamlessly integrate their contributions into the framework by creating a single Python
3 file, which acts as an ALEAPP module. An ALEAPP module is a single Python 3 script
(also known as a plugin) within the ALEAPP framework, created to process and analyze a
particular type of forensic artifact found on Android devices. Data parsing occurs from
previously extracted Android files, with the results being presented in the HTML report
generated by ALEAPP. An ALEAPP module reads the specified file, extracts relevant data
and presents them to the user. Although this is a primary function, additional features have
been incorporated into ALEAPP to improve its reporting features.

https://github.com/abrignoni/ALEAPP

Future Internet 2024, 16, 304

19 of 23

[srowse Foder

|
m ;DeselectAII Load Profile | | Save Profile ‘

u
|
v
|
v
|
|
|
|
|
u
|
u
o |

Figure 10. ALEAPP interface.

The decision to target ALEAPP stems from its ease of use, the platform’s open-source
nature and its popularity and transparent integration in the also-open-source Autopsy
forensic software [33].

To deal with the forensic artifacts of the six applications, we developed 14 new modules
for ALEAPP and a new ALEAPP’s feature that we named timeline. Table 7 lists all
14 created scripts that have been added to ALEAPP’s GitHub repository (https://github.
com/abrignoni/ALEAPP/).

7.1. Timeline

Our addition to the core of ALEAPP was the creation of a timeline plugin. The plugin
displays, in a timeline format, events in chronological order. This plugin was developed us-
ing the open-source components timeline. js (https://github.com/squarechip/timeline
(accessed on 8 August 2024)). The plugin is utilized to showcase data from the activity_
moment table of the NikeRunClub database. This table stores specific moments for each activ-
ity, such as pausing, stopping and the completion of each additional kilometre. These data
are read by the special NikeAMoments . py module, which resorts to the timeline plugin to
render the run activity, as shown in Figure 11.

Note that any ALEAPP module can use the timeline plugin, as it was designed to be
application-agnostic. In Listing 1, we exemplify how it is possible to generate a timeline
using this feature.

https://github.com/abrignoni/ALEAPP/
https://github.com/abrignoni/ALEAPP/
https://github.com/squarechip/timeline

Future Internet 2024, 16, 304 20 of 23

Timeline Data

15:31:35 %

Run started

15:36:57 M
Split KM -1

15:37:05 P

Run resumed

15:37:05 @

Run ended

Figure 11. ALEAPP timeline.

Listing 1. Code snippet for implementing the timeline feature on ALEAPP.

timeline_arra

-

{'"time': '15:22:00', 'text': 'Run Started', 'type': 'f on-running'},
{'"time': '15:32:00', 'text': 'Run Stopped', 'type': ' chg'},

]

<

report.add_section_heading ("Timeline Data™)

id = timeId

report.add_timeline(id, timeline_array)

report.add_timeline_script ()
report.end_artifact_report ()

7.2. Specific ALEAPP Modules for Running Applications

Although it is possible to extract all data from an application using a single Python 3
script for each module, the ALEAPP community suggests developing separate modules for
each parsed data source. This strategy simplifies module maintenance because the analyzed
running applications often share common features and stored data. The individual modules
created for parsing each application’s data demonstrate high similarity.

The Activities modules (e.g., MMWActivities.py) are responsible for extracting and
presenting information regarding running activities. These modules handle data such as
(i) the duration of the run; (ii) calories burned; and (iif) distance travelled. Additionally, they
utilize a functionality previously developed by us for ALEAPP to display the user’s route
on an OpenStreetMap. The same approach applies to the Users modules (e.g., adidasUsers.
py). These modules process data related to user accounts, including (i) gender, (i7) email,
(iif) height and (iv) weight.

The module NikePolyline.py contains the visual representation of each activity
stored by the application shown in OpenStreetMap. The reason for placing it in a separate
module stems from the fact that the activities module already contained a sizable amount of
data, and the aim was to streamline it and reduce bloat. The module NikeNotification.py
contains the notifications that the application sends.

The module adidasGoals.py extracts data related to the user-defined goals inside
Adidas Running. Lastly, although the output delivered by the StravaGPS.py module is
similar to the Activities modules, its approach is entirely different as it extracts data from
FIT files.

Future Internet 2024, 16, 304

21 0f23

8. Conclusions

In this work, we developed a post mortem forensic analysis of six popular fitness
applications for Android focusing on outdoor running: Adidas Running, MapMyWalk, Nike
Run Club, Pumatrac, Runkeeper and Strava. We resorted to a rooted Android smartphone
and a Garmin Vivosmart 4 smart band to generate, collect and analyze data in search of
meaningful forensic artifacts.

As all applications were similar in nature and structure, we focused on one application—
NikeRunClub—and then used the process and knowledge learned to adapt the analysis
methodology to the other applications.

The NikeRunClub application stores forensically meaningful data—activities, GPS
coordinates and account data—in SQLite 3 databases in its private directory, mainly in the
databases directory. Related work has already demonstrated the high value of accessing
data from applications that track running workouts as they frequently merge locations
with date/time. These can yield critical proof for refuting or, on the contrary, confirming
someone’s alibi.

We analyzed the remaining applications based on NikeRunClub and, by using the
same methods, we acquired similar information in their respective files. The main findings
are as follows:

- The applications do not store data in their public directory. The exception is Strava.

- Workout activities are stored in SQLite 3 databases, with the most significant forensic
data being GPS coordinates, timestamps and duration. Strava is again the exception,
resorting to the FIT file format to store workouts.

- The format for GPS coordinates depends on the applications, with some encoding
geolocation coordinates using the polyline format and others relying on a text-based
pair of latitude/longitude values.

- User’s account data are often stored in a database, although they can also be in XML
format in the shared_prefs folder.

To decode FIT files, we developed the decode_FIT Python script. It extracts activity
data and formats them for rendering on an OpenStreetMap map or generates a KMZ
file for visualization in Google Earth. Additionally, we created a set of modules for the
ALEAPP framework to parse application data and generate a case report for streamlined
data interpretation. We further enhanced the ALEAPP report with a new timeline feature,
previously incorporated into the ALEAPP repository. As ALEAPP is integrated with the
Windows version of the Autopsy forensic software, our modules will also be seamlessly
incorporated into this forensic application.

As future work, we plan to assess the privacy and security features of the applications,
analyzing the data collected and sent to their respective cloud servers. For this purpose,
one needs to resort to dynamic analysis techniques of mobile applications, intercepting
and analyzing the HTTPS traffic between applications and their cloud servers, to decode
and map their APIs [34]. Another task for future work is to assess the performance of
our methodologies, looking for possible optimization. Finally, we also plan to analyze
the iOS version of the studied applications and see if the same or even more data can
be obtained so that we can adapt our ALEAPP modules to the iOS Logs, Events, And
Plists Parser iLEAPP) framework focused on, which is similar to ALEAPP but focused on
iOS applications.

Author Contributions: Conceptualization, EN., PD. and M.F,; software, EN.; Validation, P.D. and
M.E; writing: EN., P.D. and M.E. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Fundagdo para a Ciéncia e a Tecnologia grant number UIDB
04524 /2020 and by European Union grant number UIDB/EEA 50008 /2020.

Data Availability Statement: Data are not available due to privacy concerns.

Conflicts of Interest: The authors declare no conflicts of interest.

Future Internet 2024, 16, 304 22 of 23

Abbreviations

The following abbreviations are used in this manuscript:

ADB Android Debug Bridge
ALEAPP Android Logs Events And Protobuf Parser
API Application Programming Interface
BLE Bluetooth Low Energy
FIT Flexible and Interoperable data Transfer
GPS Global Positioning System
IDE Integrated Development Environment
iLEAPP iOS Logs, Events And Plists Parser
KML Keyhole Markup Language
KMZ KML compressed file
SpO, Oxygen Saturation
XML Extensible Markup Language
References
1. Silva, A.G.; Simdes, P.; Queirds, A.; P Rocha, N.; Rodrigues, M. Effectiveness of Mobile Applications Running on Smartphones to

10.

11.

12.

13.

14.

15.

16.

17.

Promote Physical Activity: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2251. [CrossRef]
[PubMed]

Yeoh, R.; Kim, HK.; Kang, H; Lin, Y.A.; Ho, A.D.; Ho, K.F. What Determines Intentions to Use Mobile Fitness Apps? The
Independent and Joint Influence of Social Norms. Int.]. Hum.—Comput. Interact. 2024, 40, 121-130. [CrossRef]

Reiber, L. Mobile Forensic Investigations A Guide to Evidence Collection, Analysis, and Presentation, 2nd ed.; McGraw-Hill Education:
New York, NY, USA, 2019; p. 560.

Hassenfeldt, C.; Baig, S.; Baggili, I.; Zhang, X. Map My Murder! A digital forensic study of mobile health and fitness applications.
In Proceedings of the 14th International Conference on Availability, Reliability and Security, Canterbury, UK, 26-29 August 2019.
[CrossRef]

Watts, A. Police Use Murdered Woman’s Fitbit Movements to Charge Her Husband—CNN. 2017. Available online: https:
/ /edition.cnn.com /2017 /04 /25/us/fitbit-womans-death-investigation-trnd /index.html (accessed on 8 August 2024).

Ganjoo, S. GPS Data from Garmin Smartwatch Helps Police Catch a Man Convicted of Two Murders. 2019. Available
online: https://www.indiatoday.in/technology/news/story /how-a-garmin-smartwatch-helped-police-catch-a-man-convicted-
of-two-murders-1435570-2019-01-21 (accessed on 8 August 2024).

Moyer, J. Police Used a Fitness App to Find a Man Accused of Knocking a Bicyclist to the Ground in Virginia—The Washington
Post. 2018. Available online: https://www.washingtonpost.com/local/public-safety /police-used-a-fitness-app-to-find-a-man-
accused-of-knocking-a-bicyclist-to-the-ground-in-virginia /2018 /05 /18 / 0a4ac6{8-5ab6-11e8-a3d1-b39671d2371e_story.html (ac-
cessed on 8 August 2024).

Cole, S. Apple Health Data Is Being Used as Evidence in a Rape and Murder Investigation. Available online: https://www.vice.
com/en/article/43q7qq/apple-health-data-is-being-used-as-evidence-in-a-rape-and-murder-investigation-germany (accessed
on 8 August 2024).

Nunes, E; Domingues, P.; Frade, M. Post-mortem digital forensic analysis of the Garmin Connect application for Android.
Forensic Sci. Int. Digit. Investig. 2023, 47, 301624. [CrossRef]

Byambasuren, O.; Beller, E.; Glasziou, P. Current Knowledge and Adoption of Mobile Health Apps Among Australian General
Practitioners: Survey Study. JMIR Mhealth Uhealth 2019, 7, €13199. [CrossRef] [PubMed]

Scott, K.; Richards, D.; Adhikari, R. A review and comparative analysis of security risks and safety measures of mobile health
apps. Australas.]. Inf. Syst. 2015, 19, 1-18. [CrossRef]

Wylie, K. Stalked via Strava: ‘Heartbroken” Man Refused to Believe Romance Was Over. 2022. Available online: https://www.
pressandjournal.co.uk/fp/news/crime-courts /5170075 /heartbroken-boyfriend-stalked-woman/ (accessed on 8 August 2024).
Gritten, D. Strava App Flaw Revealed Runs of Israeli Officials at Secret Bases—BBC News. 2022. Available online: https:
/ /www.bbc.com/news/world-middle-east-61879383 (accessed on 8 August 2024).

Couture, J. Reflections from the ‘Strava-sphere”: Kudos, community, and (self-)surveillance on a social network for athletes. Qual.
Res. Sport. Exerc. Health 2021, 13, 184-200. [CrossRef]

Sinha, R.; Sihag, V.; Choudhary, G.; Vardhan, M.; Singh, P. Forensic Analysis of Fitness Applications on Android. Commun.
Comput. Inf. Sci. 2022, 1544, 222-235. [CrossRef]

Hutchinson, S.; Mirza, M.M.; West, N.; Karabiyik, U.; Rogers, M.K.; Mukherjee, T.; Aggarwal, S.; Chung, H.; Pettus-Davis, C.
Investigating Wearable Fitness Applications: Data Privacy and Digital Forensics Analysis on Android. Appl. Sci. 2022, 12, 9747.
[CrossRef]

Donaire-Calleja, P.; Robles-Gémez, A.; Tobarra, L.; Pastor-Vargas, R. Forensic Analysis Laboratory for Sport Devices: A Practical
Use Case. Electronics 2023, 12,2710. [CrossRef]

http://doi.org/10.3390/ijerph17072251
http://www.ncbi.nlm.nih.gov/pubmed/32230769
http://dx.doi.org/10.1080/10447318.2022.2111040
http://dx.doi.org/10.1145/3339252.3340515
https://edition.cnn.com/2017/04/25/us/fitbit-womans-death-investigation-trnd/index.html
https://edition.cnn.com/2017/04/25/us/fitbit-womans-death-investigation-trnd/index.html
https://www.indiatoday.in/technology/news/story/how-a-garmin-smartwatch-helped-police-catch-a-man-convicted-of-two-murders-1435570-2019-01-21
https://www.indiatoday.in/technology/news/story/how-a-garmin-smartwatch-helped-police-catch-a-man-convicted-of-two-murders-1435570-2019-01-21
https://www.washingtonpost.com/local/public-safety/police-used-a-fitness-app-to-find-a-man-accused-of-knocking-a-bicyclist-to-the-ground-in-virginia/2018/05/18/0a4ac6f8-5ab6-11e8-a3d1-b39671d2371e_story.html
https://www.washingtonpost.com/local/public-safety/police-used-a-fitness-app-to-find-a-man-accused-of-knocking-a-bicyclist-to-the-ground-in-virginia/2018/05/18/0a4ac6f8-5ab6-11e8-a3d1-b39671d2371e_story.html
https://www.vice.com/en/article/43q7qq/apple-health-data-is-being-used-as-evidence-in-a-rape-and-murder-investigation-germany
https://www.vice.com/en/article/43q7qq/apple-health-data-is-being-used-as-evidence-in-a-rape-and-murder-investigation-germany
http://dx.doi.org/10.1016/j.fsidi.2023.301624
http://dx.doi.org/10.2196/13199
http://www.ncbi.nlm.nih.gov/pubmed/31199343
http://dx.doi.org/10.3127/ajis.v19i0.1210
https://www.pressandjournal.co.uk/fp/news/crime-courts/5170075/heartbroken-boyfriend-stalked-woman/
https://www.pressandjournal.co.uk/fp/news/crime-courts/5170075/heartbroken-boyfriend-stalked-woman/
https://www.bbc.com/news/world-middle-east-61879383
https://www.bbc.com/news/world-middle-east-61879383
http://dx.doi.org/10.1080/2159676X.2020.1836514
http://dx.doi.org/10.1007/978-981-16-9576-6_16/COVER
http://dx.doi.org/10.3390/app12199747
http://dx.doi.org/10.3390/electronics12122710

Future Internet 2024, 16, 304 23 of 23

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

van Zandwijk, J.P,; Boztas, A. Digital traces and physical activities: Opportunities, challenges and pitfalls. Sci. Justice 2023,
63, 369-375. [CrossRef] [PubMed]

van Zandwijk, J.P.,; Boztas, A. The phone reveals your motion: Digital traces of walking, driving and other movements on iPhones.
Forensic Sci. Int. Digit. Investig. 2021, 37, 301170. [CrossRef]

Jennings, L.; Sorell, M.; Espinosa, H.G. Interpreting the location data extracted from the Apple Health database. Forensic Sci. Int.
Digit. Investig. 2023, 44, 301504. [CrossRef]

van Zandwijk, J.P.; Boztas, A. The iPhone Health App from a forensic perspective: Can steps and distances registered during
walking and running be used as digital evidence? Digit. Investig. 2019, 28, 5126-S133. [CrossRef]

Goh, CM.].L.; Wang, N.X,; Miiller, A.M.; Yap, R.; Edney, S.; Miiller-Riemenschneider, F. Validation of Smartphones and Different
Low-Cost Activity Trackers for Step Counting Under Free-Living Conditions. J. Meas. Phys. Behav. 2023, 6, 79-87. [CrossRef]
Fukami, A.; Stoykova, R.; Geradts, Z. A new model for forensic data extraction from encrypted mobile devices. Forensic Sci. Int.
Digit. Investig. 2021, 38, 301169. [CrossRef]

Business Research Insights. Running Apps Market Size, Trend, Growth and Overview 2023 to 2030. 2023. Available online:
https:/ /www.businessresearchinsights.com/market-reports/running-apps-market-103263 (accessed on 8 August 2024).

Kent, K.; Chevalier, S.; Grance, T.; Dang, H. Special Publication 800-86 Guide to Integrating Forensic Techniques into Incident
Response Recommendations of the National Institute of Standards and Technology 2006. Available online: https://csrc.nist.gov/
pubs/sp/800/86/final (accessed on 8 August 2024).

Developers, A. Android 8.0 Behavior Changes—Android Developers. 2023. Available online: https://developer.android.com/
about/versions/oreo/android-8.0-changes#security-all (accessed on 8 August 2024).

Muraina, I.; Alobaedy, M.; Ibrahim, H. A Framework for Preserving Data Integrity during Mobile Device Forensic in Open
Source Software Environment. In Proceedings of the Free and Open Source Software Conference (FOSSC), Muscat, Oman, 14-15
February 2017; pp. 22-26.

Skulkin, O.; Tindall, D.; Tamma, R. Learning Android Forensics: Analyze Android Devices with the Latest Forensic Tools and Techniques,
2nd ed.; Packt Publishing: Birmingham, UK, 2018.

Google. Encoded Polyline Algorithm Format. 2023. Available online: https://developers.google.com/maps/documentation/
utilities /polylinealgorithm (accessed on 8 August 2024).

BBC News. Fitness App Strava Lights Up Staff at Military Bases. 2018. Available online: https://www.bbc.com/news/
technology-42853072 (accessed on 8 August 2024).

Song, K.; Oh, D. Bike computer forensics: An efficient and robust method for FIT file recovery. Forensic Sci. Int. Digit. Investig.
2023, 46, 301606. [CrossRef]

Mehmood, N.Q.; Culmone, R. An ANT+ Protocol Based Health Care System. In Proceedings of the 29th International Conference
on Advanced Information Networking and Applications Workshops, WAINA 2015, Gwangju, Republic of Korea, 24-27 March
2015; pp. 193-198. [CrossRef]

Wau, T.; Breitinger, F.; O’Shaughnessy, S. Digital forensic tools: Recent advances and enhancing the status quo. Forensic Sci. Int.
Digit. Investig. 2020, 34, 300999. [CrossRef]

Brown, J.; Onik, A.R.; Baggili, I. Blue Skies from (X’s) Pain: A Digital Forensic Analysis of Threads and Bluesky. In Proceedings of
the 19th International Conference on Availability, Reliability and Security, ARES "24, Vienna, Austria, 30 July 2024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.scijus.2023.04.002
http://www.ncbi.nlm.nih.gov/pubmed/37169462
http://dx.doi.org/10.1016/j.fsidi.2021.301170
http://dx.doi.org/10.1016/j.fsidi.2023.301504
http://dx.doi.org/10.1016/j.diin.2019.01.021
http://dx.doi.org/10.1123/jmpb.2022-0022
http://dx.doi.org/10.1016/j.fsidi.2021.301169
https://www.businessresearchinsights.com/market-reports/running-apps-market-103263
https://csrc.nist.gov/pubs/sp/800/86/final
https://csrc.nist.gov/pubs/sp/800/86/final
https://developer.android.com/about/versions/oreo/android-8.0-changes#security-all
https://developer.android.com/about/versions/oreo/android-8.0-changes#security-all
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://www.bbc.com/news/technology-42853072
https://www.bbc.com/news/technology-42853072
http://dx.doi.org/10.1016/j.fsidi.2023.301606
http://dx.doi.org/10.1109/WAINA.2015.45
http://dx.doi.org/10.1016/j.fsidi.2020.300999
http://dx.doi.org/10.1145/3664476.3670904

	Introduction
	Related Work
	Materials and Methods
	Hardware
	Software
	Post Mortem Software
	Module Development

	Method

	Post Mortem Analysis
	Nike Run Club
	Android Permissions
	Extraction of data
	Public Data
	Private Data

	Databases
	com.nike.nrc.room.database
	ns_inbox.db

	Strava
	Remaining Applications
	Public Directory
	Private Directory
	Databases
	Adidas Running
	MapMyWalk
	Pumatrac
	Runkeeper

	Shared_Prefs
	Synopsis

	ALEAPP Modules
	Timeline
	Specific ALEAPP Modules for Running Applications

	Conclusions
	References

