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Abstract: Real-world problems often exhibit complex relationships and dependencies, which can be
effectively captured by graph learning systems. Graph attention networks (GATs) have emerged as a
powerful and versatile framework in this direction, inspiring numerous extensions and applications
in several areas. In this review, we present a thorough examination of GATs, covering both diverse
approaches and a wide range of applications. We examine the principal GAT-based categories,
including Global Attention Networks, Multi-Layer Architectures, graph-embedding techniques,
Spatial Approaches, and Variational Models. Furthermore, we delve into the diverse applications
of GATs in various systems such as recommendation systems, image analysis, medical domain,
sentiment analysis, and anomaly detection. This review seeks to act as a navigational reference for
researchers and practitioners aiming to emphasize the capabilities and prospects of GATs.

Keywords: graph attention networks; graph neural networks; graph convolution networks

1. Introduction

In the last decade, the graphical representation of data has gained widespread promi-
nence in multiple fields, ranging from social networks to molecular biology. Complex
systems are everywhere, from societal structures demanding collaboration between billions
of individuals to the harmonious functioning of billions of neurons in our brains. As a
result, the graphical representation of data has emerged as a pivotal technique for capturing
the complexity of these systems, allowing us to represent them as networks of entities and
their interactions [1]. By depicting a complex system as a network comprising entities
and their interactions, we can scrutinize their relationships, enabling us to acquire a more
profound insight into the foundational structures and patterns that govern them [2].

Graph neural networks (GNNs), designed specifically to handle graph-structured data,
play a crucial role in unlocking the full potential of such representations. In the last decade,
a plethora of graph neural network (GNN) subcategories have been proposed to address
the unique challenges of learning on graph-structured data. These subcategories include
the graph convolutional networks (GCNs), which leverage convolutional operations on
graph data to capture local neighborhood information; GraphSAGE, an inductive learning
framework that generates embeddings for nodes by sampling and aggregating information
from their local neighborhoods; ChebNets, which utilize Chebyshev polynomial spectral
filters for efficient graph convolutions in the spectral domain; and Graph Isomorphism
Networks (GINs), designed to capture the structural information of a graph by considering
both node features and graph topology through a learnable aggregation function. These
diverse architectures reflect the ongoing research efforts to enhance the performance and
versatility of GNNs across various applications.

Graph attention networks (GATs) are a promising subcategory of graph neural net-
works (GNNs). They introduce the attention mechanism to GNNs, allowing them to
dynamically weigh the importance of neighboring nodes during the aggregation process,
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which helps capture complex relationships and dependencies in graph-structured data. This
adaptability enables GATs to learn local patterns while preserving global graph structure
information, enhancing their performance in various tasks across multiple domains.

In this review, we present a concise yet thorough exploration of graph attention
networks (GATs), a key area in graph-based deep learning. Our paper is organized to guide
readers through the core concepts and recent advancements in this field. We start with
the basics of graph convolution networks (GCNs) in Section 2, where we also introduce
graph attention networks and their advanced form, GATv2. This section aims to clarify the
fundamental principles and functionalities of these networks.

Following this, Section 3 delves into the main categories of GATs, highlighting their
flexibility and effectiveness in various settings. In categorizing the various types of graph
attention networks (GATs) for this review, a deliberate and strategic approach was taken to
ensure that the categories reflect both the distinct mechanisms employed by these networks
and their specific applications in diverse domains. The primary objective was to offer a
comprehensive yet organized framework that facilitates a deeper understanding of how
different GAT architectures are optimized for particular challenges within graph-structured
data. The categories were carefully chosen to highlight the unique contributions of each
GAT variant, emphasizing the specific mechanisms they utilize, such as global attention,
multi-layer stacking, or spatial considerations, which directly influence their effectiveness
in capturing complex patterns and relationships within graphs. This categorization is
essential for providing clarity in a rapidly evolving field, where the proliferation of GAT
models can otherwise lead to confusion or overlap in understanding their capabilities
and limitations.

The selection of these specific categories—Global Attention GATs, Multi-Layer GATs,
graph-embedding GATs, spatial GATs, Variational GATs, and Hybrid GATs—was driven
by the need to encapsulate the broad spectrum of techniques and methodologies that have
emerged within the GAT framework. Each category represents a distinct approach to
enhancing the core graph attention mechanism, tailored to address specific challenges such
as the need for global context, multi-layer feature abstraction, or spatial awareness. For
instance, Global Attention GATs were categorized separately to underscore their ability
to capture overarching patterns across an entire graph, which is crucial for tasks where
understanding distant node relationships is vital. Similarly, Multi-Layer GATs were dis-
tinguished for their capacity to aggregate and refine information through multiple layers,
facilitating the learning of higher-order features. By organizing the review into these tar-
geted categories, we aim to provide readers with a clear, structured, and detailed roadmap
of the various GAT techniques, enabling them to more effectively select and apply the
appropriate GAT model for their specific research needs or application domains. Then,
in Section 4, we showcase the practical applications of GATs in different domains, illus-
trating their real-world impact. The paper concludes with a “Discussion” Section 5 that
critically examines the current challenges and future directions for GAT research, offering a
forward-looking perspective.

This review stands out for its clear and accessible language, making complex concepts
understandable. Figure 1 below visually summarizes the key areas and applications of
GAT-based tools covered in our paper. Our aim is to provide a valuable resource for both
newcomers and seasoned researchers in the field, contributing a fresh and comprehensive
view of the dynamic and evolving world of graph attention networks.
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Figure 1. The applications and categories of GAT-based tools analyzed in this work.

2. Graph Neural Networks

Graph neural networks (GNNs) are a class of deep learning models that have been
developed specifically to process data represented in the form of graphs or networks.
Graphs are powerful data structures that encode relationships between objects, and GNNs
enable one to leverage these relationships to extract meaningful features to perform tasks
such as node classification, edge prediction, and graph-level inference. GNNs aim to learn
embeddings that capture both the structural information of the graph and the features
of the nodes as can be seen in Figure 2 below. They achieve this by passing messages
between nodes in a graph, aggregating information from neighboring nodes and updating
each node’s representation. These message-passing and updating steps are repeated
over multiple layers, allowing the network to capture increasingly complex relationships
between nodes. The final node embeddings can then be used for downstream tasks [2]. In
a simple GNN, the vector representation hA for a node A with neighbors NA is computed
as follows:

hA = ∑
i∈NA

xiWT

where W is the weight matrix of the neural network and xi is the input vector of the
neighbors of A. Since we are talking about neural networks, such operations are converted
to matrix multiplications for convenience and higher efficiency. Therefore, the above
relation in matrix multiplication form is as follows:
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H = ÃTXWT

where H is the vector representation matrix for all nodes, Ã = A + I (where I is the unit
matrix such that self-loops are included) is the adjacency matrix of the input graph, and X
is the matrix of nodes.

Figure 2. Illustration of the input graph (left) and the corresponding computation graph (right)
depicting the process by which a graph neural network (GNN) computes the vector representation of
node E by aggregating information from its neighboring nodes.

2.1. Graph Convolution Networks

The graph convolutional network (GCN) architecture serves as a fundamental paradigm
for graph neural networks (GNNs), which was introduced in [3]. The primary objective of this
architecture is to develop a computationally efficient version of convolutional neural networks
(CNNs) for graph-based data. Specifically, it aims to approximate the graph convolution
operation in graph signal processing. The GCN has emerged as a widely used and flexible
architecture in various scientific domains, and it is frequently employed as a benchmark for
graph data analysis. In comparison to tabular or image data, graph data exhibit varying
numbers of neighbors for each node, rendering traditional graph neural networks inadequate.
This discrepancy in neighborhood size poses a significant challenge that must be addressed.
One solution involves dividing node embeddings by their respective degrees, i.e., the number
of edges incident to each node. This process, known as degree normalization, ensures a fair
comparison of nodes despite their differing numbers of neighbors. Degree normalization
is accomplished via matrix multiplication, whereby each node embedding in the graph is
multiplied by the degree matrix raised to the power of −1/2 as can be seen in Figure 3. The
resulting normalized graph representation accounts for the variability in neighborhood size
and enables effective analysis. The mathematical relation for computing vector representations
for the nodes of a graph is now as follows:

H = D̃−1/2 ÃT D̃−1/2XWT

where D̃ = D + I with D being the degree matrix for each node.
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Figure 3. Visualization of graph convolutional network (GCN) layers. Unlike classical graph neural
networks (GNNs), GCNs incorporate the degree of each node to enable effective normalization
during the aggregation process.

2.2. Graph Attention Networks

Graph attention networks (GATs) [2,4] mark a significant theoretical progression from
graph convolutional networks (GCNs). At the heart of GATs is the principle that certain
nodes are more crucial than others. This idea, while not entirely novel and somewhat
reflected in GCNs, is advanced in GATs. In GCNs, nodes with fewer neighbors gain more
importance due to a normalization coefficient that depends primarily on node degrees.
However, the limitation of this GCN approach is its sole dependence on node degrees for
determining node importance.

In contrast, GATs aim to create weighting factors that consider not just the node
degrees but also the significance of node features. This is where GATs diverge from
GCNs: their method of assigning scale factors during the aggregation of neighborhood
information. GCNs use a non-parametric scaling factor derived from a normalization
function, whereas GATs employ an attention mechanism to allocate scaling factors. This
attention-based approach allows GATs to assign greater weights to more important nodes
during neighborhood aggregation. This key difference grants GATs a finer degree of control
over how information flows within intricate graph structures, making them more adaptable
for handling complex data. On the other hand, GCNs are generally more effective in
scenarios where the graph’s structure is clearly defined, and the significance of each node
is more or less uniform.

To realize this functionality, the graph attention layer in GATs performs several opera-
tions on graph-structured data. Initially, each node undergoes a joint linear transformation
through a weight parameter matrix W, setting the stage for further processing and analysis.

Following the initial transformation in graph attention networks (GATs), the process
continues with the computation of attention coefficients. These coefficients represent the
non-normalized attention weights calculated pairwise between neighboring nodes. At this
stage, the z embeddings of two adjacent nodes are concatenated, forming a combined vector.
This concatenated vector is then subjected to a dot product operation with a learnable
weight vector, effectively integrating the node features into the attention mechanism.

Subsequently, to introduce nonlinearity into the model, the LeakyReLU activation
function is applied to the result of this dot product operation. The next step involves
normalizing the attention coefficients to maintain consistency across all nodes. This is
achieved through the application of the softmax function, ensuring that the coefficients are
comparable and appropriately scaled.
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In the aggregation phase, the model combines embeddings from various neighbors,
guided by the calculated attention weights. However, an important consideration in GATs
is the potential instability of self-attention. To address this issue, the concept of multi-head
attention is employed. This approach involves creating multiple attention mechanisms
or ’heads,’ each with its distinct parameters. These multiple heads operate in parallel,
enhancing the model’s capacity and stability. Each head computes its own output, which
is subsequently integrated to form the final output. Typically, the outputs of these heads
are concatenated in intermediate layers of the network, while averaging is used in the
final layer to consolidate the information gleaned from different perspectives. In GATs,
attentional weights are determined implicitly by comparing inputs to each other (a process
known as self-attention) as can be seen in Figure 4. The above mathematical relation
concerning the computation of vector representations of nodes is transformed as follows:

hi = ∑
j∈Ni

aijWxj

where aij are the attention weights calculated dynamically by the network.

Figure 4. Illustration of the multi-head attention mechanism with three attention heads. Each arrow
is color-coded to represent independent calculations of attention weights. The aggregated features
from each head are subsequently merged or averaged to produce the final vector representation of
a node.

2.3. Graph Attention Network Version 2 (GATv2)

GATv2 [2,4] is an extension of graph attention networks that addresses the issue of
static attention observed in the original GATs. Static attention refers to a condition where
the ranking of attention for the primary nodes is identical for all query nodes. GATv2
resolves this issue by introducing dynamic attention, which allows for the flexibility of
attention weights to vary according to the query node. This is achieved by altering the
attention coefficient calculation process. Specifically, the embeddings of the two nodes
are concatenated and then subjected to a nonlinear Leaky ReLU activation function. The
resulting output is then multiplied by a learnable weight vector through a dot product
operation. This approach enables GATv2 to better model the graph structure and capture
important node interactions by allowing for dynamic adjustments in attention weights.
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3. Graph Attention Network Categories

In this section, we present six distinct categories of graph attention networks (GATs),
which are differentiated by their core methodological approaches, the application of atten-
tion mechanisms, the nature of features captured, and the techniques utilized to address
particular challenges in graph learning. In our assessment, these six categories represent an
appropriate classification for the diverse range of GAT methodologies. We believe that this
taxonomy effectively captures the different approaches in graph learning. In parallel, we
have compiled a table (which can be found in Section 3.6) featuring the most cited studies
in this field, providing a clear and organized overview of the influential and impactful
research on GAT methodologies (see Table 1).

3.1. Global Attention Networks

Global Attention Graph Neural Networks represent a sophisticated approach in the
field of graph-based deep learning, designed to capture and utilize both local and global
contextual information within graph-structured data. These networks enhance traditional
graph neural networks by introducing attention mechanisms that allow the model to focus
on the most relevant parts of the graph, thereby improving its ability to capture intricate
patterns and relationships. By leveraging global attention, these networks are capable of
understanding the broader context in which nodes and edges exist, which is crucial for
tasks where the relationships between distant nodes or the overall structure of the graph
play a significant role. This ability to aggregate information from across the entire graph,
rather than just from immediate neighbors, enables Global Attention GATs to produce
more accurate and robust node embeddings, leading to better performance in a wide range
of applications, from recommendation systems to sentiment classification and beyond.

The CGAT model (Contextualized Graph Attention Network) [5] successfully captures
both local and non-local contexts in knowledge graphs for enhanced recommendation
methods. By combining a user-specific graph attention system, a biased random walk
process, and an item-specific attention system, CGAT demonstrates superior performance
compared to existing approaches. Addressing the challenges of global sequence contexts
and structural syntax in aspect–category sentiment classification, the BiGAT model [6]
employs graph attention networks, Biaffine modules, and aspect-specific mask opera-
tions. This method improves the capture of relations between words, resulting in better
classification and outperforming existing methods.

The HFGAT framework (hybrid framework based on GAT) [7] offers a novel approach
to predicting metabolic pathways by combining global and local characteristics of com-
pounds. This method outperforms traditional machine learning and graph convolutional
network-based methods, providing valuable insights for drug discovery. GAT_SCNet [8]
showcases its effectiveness in recognizing various categories of road markings using point
clouds from Mobile Laser Scanning systems. With impressive results exceeding 91% across
three criteria, this method sets a new state-of-the-art standard, particularly for linear road
markings. The RA-AGAT model [9] addresses stock prediction and recommendation tasks
by exploiting intercorrelation and temporal features. When tested on the Chinese A-share
market, RA-AGAT outperformed existing approaches. A learnable feature map filtration
module and an influence-based graph attention network [10] were introduced for visual
position recognition in environments with extreme appearance changes. This approach
yielded better results than existing methods, demonstrating its adaptability and effective-
ness. Furthermore, the hierarchical graph attention network (HGAT) [11] addresses the
challenge of obtaining full global information in semi-supervised node classification. Tests
on four datasets revealed state-of-the-art results, with a sensitivity analysis further high-
lighting HGAT’s ability to collect global structure information and transfer node features
effectively. The model makes predictions according to the following formula:

Hout = softmax

(
1
K

K

∑
k=1

αkWk H∗
l

)
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where Hout ∈ R|V|×|Y| is the prediction of nodes belonging to the class yi ∈ |Y|, and H∗
1 is

the concatenated node representation of H1 and H2l+1.
The category of Global Attention Networks also includes the Holistic Graph Neu-

ral Network (HGNN), a two-fold architecture that introduces a global-based attention
mechanism for learning and generating node embeddings [12]. By incorporating global
features that summarize the overall behavior of the graph, in addition to local semantic
and structural information, the HGNN ensures that each individual node is aware of the
global behavior of the graph outside its local neighborhood. A more sophisticated hierar-
chical global feature extraction mechanism is also proposed as a variant of HGNN, further
exploring diverse global pooling strategies to derive highly expressive global features.
This approach exemplifies the continuous innovation in the field, as researchers strive to
develop more effective methods for leveraging both local and global information within
graph-structured data.

In summary, the category of Global Attention Networks showcases the versatility and
effectiveness of these models across a wide range of applications. The studies presented
demonstrate how these networks have been successfully employed to tackle diverse chal-
lenges, such as recommendation systems, sentiment classification, drug discovery, road
marking recognition, stock prediction, and visual position recognition. The consistent im-
provements and state-of-the-art results achieved in each application highlight the potential
of Global Attention Networks in capturing and utilizing complex relationships and global
features within graph-structured data. As research in this area continues to advance, we
can expect further enhancements in model performance and an expansion of applications
that benefit from these innovative approaches.

3.2. Multi-Layer Graph Attention Networks

Multi-Layer Graph Attention Networks (Multi-Layer GATs) are a subcategory of graph
attention networks (GATs), which involve stacking multiple attention layers to capture
complex higher-level features in graph-structured data. Multi-Layer GATs stack multiple
layers of attention to further enhance their ability to learn from graph-structured data.
In this architecture, each layer learns a new set of node features based on the features of
neighboring nodes, with the output from one layer being fed as input to the next layer.
This enables Multi-Layer GATs to learn more abstract, higher-level features by aggregating
information from a larger neighborhood of nodes in the graph.

Towards this direction, FinGAT [13] is a deep learning-based model that leverages
Multi-Layer GATs for stock recommendations, capturing short- and long-term temporal
patterns from stock price timelines using fully connected graphs among stocks and sectors.
In a related work, sparse graph attention networks (SGATs) [14] were designed to identify
and sparse out irrelevant or noisy edges in graph-structured data by learning sparse atten-
tion coefficients. Another study introduced HGHAN [15], which identified hacker groups
using a heterogeneous graph attention network (HAN), outperforming other heteroge-
neous graph node embedding algorithms. A graph-based circRNA–disease association
prediction method [16] was also presented, showing improved performance compared to
existing methods. The DuGa-DIT model [17] is a dual gated graph attention model with
dynamic iterative training, addressing problems in traditional entity matching techniques
and validating its effectiveness on benchmark datasets and a cross-lingual personalized
search case. A three-channel approach, including a Heterogeneous Edge-enhanced graph
ATtention network (HEAT) [18], was proposed to improve the decision-making and plan-
ning modules of autonomous vehicles by accurately predicting multiple agent trajectories.
Robust Representation Learning (RRL-GAT) [19] was developed for more accurate multi-
label image characterization, employing a Class Attention Graph Convolution Module
(C-GAT) and an Adaptive Graph Attention Convolution Module (A-GAT) to detect the com-
munication structure of categories and assess the dynamic connection between objects. A
deep learning model based on the hierarchical graph attention network for miRNA–disease
associations (HGANMDA) [20] was developed to predict miRNA–disease associations, out-
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performing existing methods. A virtual sensor-based imputed graph attention network [21]
was proposed to improve anomaly detection in complex equipment with incomplete data.
The MV-GAN model [22] was developed for travel recommendation, incorporating user
and product representations from multiple sources and applying a view-level attention
mechanism for efficient combining of node representations. The CellVGAE model [23]
is a graph autoencoder model for studying scRNA-seq data, outperforming other deep
learning architectures in terms of training times. GAT-LI [24] is a graph learning and
interpretation system that utilizes GAT2 and GNNExplainer to better understand autism
spectrum disorders and the underlying biological mechanisms.

The MDGAT architecture and matcher [25] applied an attention method to 3D point
clouds, improving data association between 3D points for LiDAR-based SLAM systems
and mapping. An innovative topology-adaptive, high-speed transient stability assessment
(HSTSA) scheme using a novel multi-graph attention network with a residual structure
(ResGAT) and a new piece-wise transient stability index (PSI) [26] was proposed, showing
superior accuracy and resistance to different scenarios when tested on an IEEE 39-bus
system and IEEE 300-bus system. HGATMDA [27] is a new method for predicting miRNA–
disease associations, using a heterogeneous graph to extract features and applying a
neural network for predictions. The method outperformed current approaches in terms
of prediction performance, and three case studies validated its efficacy with 50 validated
miRNA–disease pairs. An innovative graph neural network-based system for short text
categorization [28] utilized both limited labeled data and large unlabeled data, outper-
forming existing state-of-the-art methods in both transductive and inductive learning. In
another study [29], graph attention was proposed for expression comprehension to identify
objects in images based on their descriptions in natural language. Node attention and edge
attention were used to capture information related to the objects and their relationships
with their environment, revealing a superior method compared to other solutions.

The above-mentioned papers demonstrate the versatility and robustness of Multi-
Layer Graph Attention Networks (GATs) in addressing a wide range of complex problems
across various domains. The innovative approaches and models presented in these studies
highlight the ability of GATs to efficiently handle graph-structured data, extract meaningful
features, and improve performance compared to traditional techniques. These advance-
ments in graph-based deep learning have the potential to drive further research and
development in diverse fields, including finance, cybersecurity, healthcare, transportation,
and natural language processing.

3.3. Graph-Embedding GATs

Graph-embedding GATs, a subcategory of graph attention networks, focus on learning
latent coordinates or embeddings for each graph node, effectively capturing the underlying
graph structure. By combining the strengths of graph-embedding techniques and atten-
tion mechanisms, these networks can efficiently represent and process graph-structured
data, enabling them to address a wide range of problems across various domains. Graph-
embedding techniques transform the graph structure into a low-dimensional continu-
ous space that retains the essential properties of the original graph. GATs, on the other
hand, use attention mechanisms to weigh the importance of neighboring nodes when
aggregating features.

In graph-embedding GATs, the attention mechanism is combined with graph-embedding
techniques to learn more expressive node representations, capturing both the local and global
structure of the graph. Graph-embedding GATs have been successfully applied in various
domains, showing promise in improving the performance of graph-based machine learning
models and driving further advancements in graph deep learning research.

Towards this direction, MS-GAT (Multi-relational Synchronous Graph Attention Net-
work) leverages graph-embedding techniques to capture subtle interactions in traffic sys-
tems, such as data coupling between spatial and temporal dimensions [30]. By learning
node embeddings that encapsulate these intricate relationships, MS-GAT is able to provide
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enhanced traffic analysis and prediction. Tested on five real-world datasets, this model
demonstrates the power of graph-embedding GATs in handling complex graph data, achiev-
ing better results than existing solutions. Similarly, a novel heterogeneous graph neural
network framework with a hierarchical attention mechanism is introduced to manage multi-
relational data with large amounts of entities and relations [31]. This framework utilizes
graph-embedding GATs to learn expressive node representations that effectively capture
the underlying structure of heterogeneous graphs. The approach, tested on a variety of
heterogeneous graph tasks, further highlights the potential of graph-embedding GATs in
various graph-based applications, as it outperforms existing state-of-the-art models.

HFGAT [7], a novel hybrid framework, integrates global and local characteristics of
compounds for predicting their metabolic pathways. This approach has proven valuable
for drug discovery, outperforming traditional machine learning methods and graph con-
volutional network-based techniques in multi-class classification accuracy and F1 scores.
Similarly, MKGAT [32] is a computational framework designed to predict miRNA–disease
correlations, with successful validation for three human cancers. Graph4Web [33] is a
relation-aware graph attention network for web service classification. By parsing web
service descriptions into a dependency graph and leveraging pre-trained BERT embed-
dings, Graph4Web demonstrates improved classification performance compared to seven
baseline methods. Another unified framework for graph attention networks [34] combines
graph context information and node representations to achieve better performance in semi-
supervised node classification. A new framework for explainable recommendation using a
knowledge graph attention network model [35] achieves high recommendation accuracy
and provides interpretable visual explanations. DTIHNC [36] integrates heterogeneous
networks and cross-modal similarities to better understand drug-target interactions, out-
performing existing methods. A GAT model in a study [37] accurately predicts Parkinson’s
disease (PD) by combining morphological, structural, and functional features, identifying
regions with the greatest PD impact. A novel source code model [38] combines abstract
syntax trees (ASTs) and control flow graphs (CFGs) with a graph attention mechanism-
based neural network, improving program classification and defect prediction. A system
using heterogeneous graphs, self-enhanced graph attention networks, and tri-aggregator
neural networks [39] identifies drug–virus associations, outperforming existing models
and identifying potential SARS-CoV-2 treatments.

GANLDA (graph attention network for lncRNA–disease associations) [40] predicts
lncRNA–disease associations by combining lncRNA and disease heterogeneous data, show-
ing significant improvement over current methods. CAMT (Context-Aware method to learn
invocations patterns and descriptions for Mashup Tagging) [41], a context-aware mashup
tagging algorithm, leverages neural networks to consider high-level linkages in two graphs
and a multi-head attention mechanism to differentiate adjoining mashups’ significance.
SGANM (self-adaptation graph attention network via meta-learning) [42], a self-adaptive
graph attention network, employs meta-learning to quickly recognize new fault types with
few samples, outperforming other few-shot learning algorithms. GATrust [43], a trust
assessment framework for online social networks, integrates information from different
aspects and uses graph attention and convolutional networks to generate accurate trust
predictions, showing improvements of 4.3% and 5.5%. GSCS [44] employs graph attention
networks, an RNN-based sequence model, and a transformed embedding layer to generate
high-quality Java method summaries. In predicting drug–drug interactions (DDIs) for
poly-drug treatments, DGAT-DDI [45] encapsulates information from drug sources, targets,
and self-roles, outperforming state-of-the-art models. The Attention-Gated Conditional
Random Fields (AG-CRF) model [46] learns and fuses representations for pixel-level predic-
tion, achieving state-of-the-art performance in monocular depth estimation, object contour
prediction, and semantic segmentation. GAT_SCNet [8] is a graph attention network for
recognizing road markings from point clouds generated by Mobile Laser Scanning systems.
With results exceeding 91% under three criteria, GAT_SCNet sets a new state-of-the-art in
linear road marking recognition. MV-GAN [22], a travel recommendation model, incorpo-
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rates user and product representations from multiple sources and efficiently combines node
representations to capture user and product patterns. To capture the latent embeddings of
both users and products, the model incorporates an embedded propagation layer linking
the user and product entities. The embedding update mechanisms for users and products
are governed by propagation-based and pooling-based rules, which can be formulated
as follows:

u0,l+1
i = σ

(
Wl+1 ×

(
u0,l

i + AGG
(

v0,l
j | j ∈ Nui

)
+ bl+1

))
, (1)

v0,l+1
j = σ

(
Wl+1 ×

(
v0,l

j + AGG
(

u0,l
i | i ∈ Nvj

)
+ bl+1

))
, (2)

where u0,l
i ∈ RD×1 is the free embedding of user ui on the l-th layer, and v0,l

j ∈ RD×1 is the

free embedding of product vj on the l-th layer. D is the embedding size. Wl+1 ∈ RD×D

and bl+1 ∈ RD×D are the learned weight and learned bias at step l + 1. σ is a nonlinear
activation function, specifically LeakyReLU. Nui represents the travel products clicked by
user ui, and Nvj denotes the users that click item vj. AGG(·) is the aggregation function,
such as averaging or max-pooling operation.

AR-KGAN [47] jointly embeds fact triplets and logical rules to complete knowl-
edge bases with enhanced accuracy, outperforming existing methods on three benchmark
datasets. GAT-GO (Graph Attention Networks for Gene Ontology) is a graph attention
network (GAT) method designed to substantially improve protein function prediction by
leveraging predicted structure information and protein sequence embedding. Traditional
computational methods for protein function prediction can be fast, but they often lack
satisfactory accuracy. GAT-GO aims to address this limitation by taking advantage of
recent breakthroughs in protein structure prediction and protein language models. The
GAT-GO method [48] integrates both structural information and sequence embedding to
better predict protein functions. By combining these two sources of information, GAT-GO
is able to capture both local and global features of proteins, which, in turn, enhances its
predictive power. The graph attention mechanism in GAT-GO helps the model to focus
on the most relevant parts of the protein structure and sequence, effectively improving
the accuracy of the predictions. The KGANCDA (Knowledge Graph Attention Network
for CircRNA–Disease Association) model [49] presents a novel computational approach to
predicting circRNA–disease connections, capturing both low-level and high-level neighbor
information from diverse associations. Its performance surpasses existing methods, as
demonstrated by cross-validation results and a case study. In the HGATLDA (Heteroge-
neous Graph Attention Network for lncRNA–Disease Association) framework [50], the
authors leverage node features, relationships in the network, heterogeneous topological
structures, and semantic information from metapaths to accurately predict lncRNA–disease
associations, showcasing the framework’s effectiveness. The study [51] proposes a novel
Heterogeneous Relational Graph (HRG) and a Multiplex Relational Graph Attention Net-
work (MRGAT), along with a connecting embedding (ConnectE) model for the Knowledge
Graph Entity Typing (KGET) task. This approach leads to improved entity type predictions
and better integration of entity typing tuple with entity relation triples for enhanced entity
classification. Finally, MGA-Net [52] introduces a novel few-shot learning (FSL) model that
combines data augmentation, embedding network, and graph attention network to address
the issue of insufficient data for Synthetic Aperture Radar (SAR) target classification.

3.4. Spatial GATs

Spatial graph attention networks (spatial GATs) are specialized graph neural networks
designed to focus specifically on the spatial relationships between nodes in a graph. Unlike
traditional GATs that may consider general node connections, spatial GATs emphasize the
importance of spatial proximity and spatial dependencies in the graph structure. They em-
ploy an attention mechanism to dynamically prioritize the influence of neighboring nodes
based on their spatial relevance, allowing the model to effectively capture spatial patterns
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and local interactions. This makes spatial GATs particularly useful in applications like ur-
ban planning, traffic flow prediction, and remote sensing, where understanding the spatial
context and relationships between entities is crucial for accurate analysis and prediction.

In video anomaly detection, deep learning-based models such as the Spatial–Temporal
Graph Attention Network (STGA) [53] have been developed to capture the spatial and tem-
poral relationships in video data. STGA leverages spatial and temporal attention to capture
local information from the graph, achieving state-of-the-art results on popular benchmarks.
Another recent work in graph neural networks is the SA-GAT model [54], which introduces
a Substructure Interaction Attention module to improve graph classification performance.
The SA-GAT outperformed existing graph kernel and graph neural network approaches,
demonstrating its effectiveness for complex graph analysis.

In the domain of multi-domain dialogue systems, a multi-task learning framework that
incorporates graph attention networks (GATs) was proposed to tackle cross-domain slot
sharing and dialogue act temporal planning. The study demonstrated superior performance
compared to existing methods on the MultiWOZ 2.0 and 2.1 datasets [55]. A graph-based
VCA model employing graph attention networks was proposed to simulate land use change
by quantifying spatial interaction between urban entities. The proposed model was tested
with data from Queensland and showed superior performance compared to existing CA
models. The study also highlighted the importance of tuning discrete topological orders to
improve calibration efficiencies [56].

The model employs a high-order neighborhood extension to iteratively explore the
neighbors of each node by utilizing the original adjacency matrix A. This process col-
lects all identified neighbors to form a new high-order adjacency matrix. The kth-order
(k = 1, 2, 3, . . .) adjacency matrix Ak is defined to represent the nodes connected through
k hops. Mathematically, Ak is derived by multiplying matrix A by itself k − 1 times, such
that A1 = A, A2 = A × A, and, in general, Ak = A × A × . . . × Ak (k times).

To capture the cumulative neighborhood information up to K hops, the K-order adja-
cency matrix ÃK is introduced, which includes all neighbors from one hop to K hops. This
matrix is computed by summing all adjacency matrices from each order: ÃK = ∑K

k=1 Ak,
where K is a hyperparameter representing the maximum order of the neighborhood consid-
ered in the model.

In the field of Smart Enterprise Management System (EMS) knowledge graphs, a
Tensor-based Graph Attention Network called MR-GAT was proposed to enhance the
accuracy and depth of the fusion of dense and multi-relational knowledge graphs. A
Relation Attention Mechanism and joint Entity and Relation Alignment Framework were
used to enhance Knowledge Fusion accuracy. The study of three datasets demonstrated the
superiority of the proposed MR-GAT in representation learning for Knowledge Fusion on
Smart EMS [57].

A method combining a graph-level attention network and a graph neural network
(GNN) has been presented to predict lncRNA–disease associations. The proposed method,
called gGATLDA, outperformed other methods and demonstrated its efficacy in identifying
lncRNAs associated with different types of cancer such as breast cancer, gastric cancer,
prostate cancer, and renal cancer [58]. A hybrid framework called HFGAT was introduced,
which combined both global and local characteristics of a compound to predict its metabolic
pathways. The framework leveraged Spatial graph attention networks and provided a
valuable method for drug discovery by determining all the metabolic reactions involved in
the decomposition and synthesis of pharmaceutical compounds. The proposed method
outperformed traditional machine learning methods and graph convolutional network-
based methods in terms of multi-class classification accuracy and F1 scores [7].

TrajGAT is a deep learning-based system that integrates spatial and temporal data
from GPS trajectories to recover missing observations [59]. It splits the problem into
two parts: trajectory prediction based on existing data, and substitution of the missing
observations. A rule-based graph attention network and a vectorized lane-level map were
used to analyze dynamic spatial patterns, while an encoder–decoder structure extracted
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and fused temporal features. TrajGAT showed superior performance compared to other
models with a strong resilience and wide range of missing trajectory rates. In EEG analysis,
a deep learning-based approach was proposed for automated epileptic seizure detection,
utilizing spatial and temporal data from EEG channels [60].

A deep spatial–temporal convolutional graph attention network was proposed to cap-
ture traffic dependencies among different regions, leveraging multi-resolution transformer
networks combined with attentive graph neural networks and convolutional networks [61].
Additionally, a channel-aware recalibration residual network was designed to inject spatial
contextual signals into the framework, resulting in a 5% performance improvement.

MetaSTGAT [62] was introduced as a meta-learning system for efficient management
of traffic signals in urban transportation systems and public transportation. The dynamic
weight generation system could detect changing features of graph nodes, enabling the
system to adjust to dynamic intersection traffics, leading to a reduction in travel time
by up to 19.30%. An attention-based spatiotemporal graph attention network [63] was
proposed for traffic flow forecasting, which could accurately capture past, current, and
future temporal relationships. The model was evaluated against traditional and prevalent
methods, demonstrating superior performance when predicting medium to long-term
traffic flow forecasting.

An attention-based spatiotemporal graph attention network [63] was proposed and
evaluated for traffic flow forecasting, achieving accurate computation of past, present,
and future temporal relationships. Comparing the results to traditional and prevalent
methods, this model outperformed the baselines when predicting medium- to long-term
outcomes. EvoSTGAT [64] is a Changing Spatiotemporal Graph Attention Network that
was introduced for predicting approaching pedestrian paths, using a fluctuating and dy-
namic attention strategy to account for the social impact of current procedural pedestrians.
The model was tested on two intricate datasets, verifying its proficiency.

FTPG uses a graph attention network (GAT) to accurately and sturdily predict traffic
information at intersections [65]. In addition, an approach for estimating the position of the
starting point of the queue was proposed, and a spatiotemporal residual graph attention
network (ST-RGAN) was employed to further improve prediction precision. GAT_SCNet,
ref. [8] was designed for recognizing various categories of road markings from point clouds
produced by Mobile Laser Scanning systems (MLSs). Tests were conducted on a total of
100km captured by different MLS systems, with results exceeding 91% under three criteria
(average precision, recall, and F1).

ASTGAT [66] is an adaptive spatial GAT that simultaneously discovers dynamic graph
structures and spatial–temporal associations for traffic flow prediction. It outperformed
existing models on the METR-LA and PEMS-BAY datasets, as demonstrated by both numer-
ical and visual evaluations of forecasted traffic flow. For predicting pedestrian trajectories in
unpredictable environments, a graph attention-based model called PTPGC was introduced
in [67]. It leverages TCN and ConvLSTM in a dynamic graph to capture pedestrian features
and spatial connections. Results on two datasets demonstrate PTPGC’s improved trajectory
prediction performance over existing baselines. A novel self-adaptive graph attention
network, SGANM, is introduced for quick recognition of new fault types with limited data
samples. SGANM utilizes meta-learning strategies for enhanced meta-knowledge learning
ability, resulting in improved few-shot learning performance on benchmark datasets and
a practical platform [42]. A mutually supervised few-shot segmentation network was
proposed in [68] for image segmentation. The model utilizes feature maps from the mid-
dle convolution layers and merges the support image and query image into a two-sided
graph, using graph attention network for graph reasoning for segmentation. Experimental
results demonstrate the effectiveness of the proposed model. KGANCDA is introduced for
predicting circRNA–disease connections. The model utilizes a knowledge graph attention
network to capture low-level and high-level neighbor information from diverse associa-
tions. The KGANCDA model outperforms existing methods in cross-validation and a case
study demonstrates its effectiveness for predicting circRNA–disease connections [49]. A
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scheduling algorithm based on graph attention networks was proposed for controlling
multiple robots in a warehouse, which outperformed existing methods when trained with
imitation learning. The approach required no expert knowledge and was applicable to
large-scale problems [69].

The Spatiotemporal Gated Graph Attention Network (STGGAT) [70] model was intro-
duced for predicting traffic flow by utilizing License Plate Recognition (LPR) records to
calculate average travel times and volume transition relationships. The model combined a
gated recurrent unit layer, a graph attention network layer with edge features, a bidirec-
tional long short-term memory, and a residual structure. Validation with the LPR system
of Changsha, China showed that STGGAT was more accurate and reliable than existing
baseline models and was capable of inductive learning and fault tolerance.

EGAT [71] was created for object detection in high spatial resolution remote sensing
imagery (HSRI). The network was able to access important information of the rationale
graphs to distinguish between different spatial–semantic correlations by introducing a long
short-term memory (LSTM) device into EGAT. The experiments showed that the strategy
provided state-of-the art results and was an effective method for object detection in HSRI.

SSGAT [72], a novel model for HSI classification, was designed to combine information
of labeled and unlabeled samples in an unsupervised manner in order to address the issue
of the insufficiency of labeled samples. Evaluation results showed its effectiveness and
superiority over existing approaches. A self-adaptive graph convolution network (GCN),
an encoder–decoder network, and a conditional random field (CRF) algorithm were utilized
to enhance the semantic segmentation of laser scanning (LS) data. Promising results were
achieved for multiple objects using the ParisLille-3D, Semantic3D, and vKITTI datasets [73].
TAGAT [74] is designed to consider type-related information during the embedding process
and used a hierarchical attention mechanism to increase interpretability of the embedding
space and improve reasoning performance.

A unique air temperature forecasting system was created using graph attention
networks and gated recurrent units, resulting in better predictions than existing bench-
mark models [75]. HLGAT was introduced as a novel deep graph model for person
re-identification tasks. By using the attention mechanism to aggregate local features, it
captured both intra- and inter-local relations and outperformed current state-of-the-art
methods [76]. A graph-based deep learning framework has been proposed to model de-
pendencies between objects and triplets in Visual Relationship Detection. By leveraging
graph attention network and encoding prior knowledge in graph generation, the frame-
work improved the performance of VRD over existing state-of-the-art models [77]. Graph
attention has also been proposed for expression comprehension by identifying objects in
images based on their descriptions in natural language. By utilizing node and edge atten-
tion to capture and utilize information related to objects and their relationships with their
environment, the approach showed superior performance compared to other methods [29].

3.5. Variational GATs

Variational Graph Attention Networks (VGAT) represent an advanced architecture
within the domain of graph neural networks, designed to handle the complexities inherent
in various types of data. They integrate the principles of graph attention mechanisms with
variational inference, enabling it to effectively capture and leverage intricate relationships
between nodes in a graph. This approach is particularly useful in scenarios where data
are heterogeneous or multimodal, as it can seamlessly integrate and analyze diverse
data types, such as in the fields of power systems, drug–target interactions, and medical
image processing.

A VGAT-based [78] approach was proposed to distinguish between transient rotor
angle instability and short-term voltage instability in power systems. A label-smoothing
technique was incorporated to address the issue of label inaccuracy. The approach was
tested on an eight-machine 36-bus system and Northeast China Power System, showing
improved performance over GCNs and other machine learning methods.
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A VGAT has been proposed for integration of heterogeneous networks and cross-
modal similarities of drugs, proteins, diseases, and side effects to better understand drug–
target interactions [36]. A denoising autoencoder and VGAT were used to reduce the
feature dimensionality, while a multiple-layer convolutional neural network was used to
further enhance the results. Experiments had shown that the DTIHNC method yielded
better results than other state-of-the-art methods. In the field of medical image processing
a VGAT has been trained on a dataset of 302 CT scans in order to distinguish complicated
Pneumonia-Related PPE from uncomplicated PPE and normal cases achieving a high
accuracy of 86.7% [79]. QPGAT [80] combined quantum probability and graph attention
mechanisms to accurately map the relationship between pieces of text and model each
text node as a particle in a superposition state. It was applied to two complex NLP tasks:
emotion–cause pair extraction and joint dialog act recognition and sentiment classification,
and the network was found to be competitive with other methods on both tasks.

PSCR [81], was developed, to create FBN structures in order to diagnose autism
spectrum disorder (ASD). The PSCR and VGAT framework achieved an accuracy of 72.40%
in diagnosing ASD, exceeding the results from other FBN construction methods and
classification frameworks.

A seizure detection method that utilizes graph attention networks to detect epilepsy
through EEG data has been proposed [82]. The method employs a graph structure to
leverage the positional correlations between different EEG signals and addressed data
imbalance through the focal loss in its loss function. It achieved an accuracy, sensitivity,
and specificity of 98.89%, 97.10%, and 99.63%, respectively. MGAT was introduced [83]
as a graph-embedding approach that utilized an attention mechanism to capture various
types of relationships within multi-view networks. The model showed its effectiveness
in outperforming existing baselines on several real-world datasets. An MGAT has also
been proposed for personalizing recommendations based on user interaction data from
different sources [84]. The method utilized a gated attention mechanism to refine personal
interests according to the modality, allowing it to recognize complex patterns and generate
better-targeted recommendations than current methods. Experimental results on the Tiktok
and MovieLens datasets showed that MGAT outperformed existing methods.

In this model, both users and items are associated with unique IDs. A common
approach to representing this ID information is through embedding, where the ID is
transformed into a vectorized representation. Specifically, a user u and an item i are
projected into vectors eu and ei, respectively, which encapsulate their general characteristics.
Additionally, within individual interaction graphs, each item i is associated with a pre-
existing feature, denoted as emi, that emphasizes its characteristics in the m-th modality.
Furthermore, an additional embedding emu is assigned to each user u to capture the user’s
preference within the m-th modality. The complete set of embeddings is summarized
as follows:

E = {eu, ei, em,u, em,i | u ∈ U, i ∈ I, m ∈ M}

where eu, em,u ∈ R|U|×d and ei, em,i ∈ R|I|×d, N and M denote the numbers of users and
items, respectively, and d is the embedding size. It is worth noting that ei, eu, and em,u
are randomly initialized and trained during optimization, while em,i is derived from fixed
features via a trainable neural network.

3.6. Hybrid GATs

Hybrid Graph Attention Networks (GATs) are a type of computational framework
that combine multiple technologies to perform optimally in diverse tasks. These networks
have been used in various applications, including miRNA–disease connection discovery,
multi-agent dynamic traffic control, knowledge graph completion, character representation,
and session-based recommendation.

GATMDA [85], is a computational framework that applied graph attention network
and multi-source information to uncover miRNA–disease connections. GATMDA achieved
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an average AUC of 0.9566 and identified a high percentage of verified candidates. DQ-
GAT [86] is a graph attention-based deep Q learning model that was proposed for multi-
agent dynamic traffic scenarios. DQ-GAT yielded higher success rates and better balancing
between safety and efficiency than previous deep learning and traditional rule-based
approaches in both seen and unseen scenarios. A multi-relational graph attention network
(MRGAT) was proposed for knowledge graph completion [87]. Experimental results
demonstrated the superiority of MRGAT compared to other models. In the field of character
representation, a polymorphic grapheme attention network has been presented [88] to
dynamically capture the relevance between characters and their corresponding words. This
improved the performance of character representation in all four dimensions and resulted
in significant performance improvements in experiments.

CKSR is a knowledge-aware session-based recommendation model, proposed in [89],
that combined a cross-session graph and a knowledge graph to create a cross-session
knowledge graph. The CKSR model used this graph to capture transition patterns among
interacted items and outperformed other SBR methods in experiments on two benchmark
datasets. A multi-view framework for anomaly detection of Internet routing traffic has
been presented [90]. It utilizes seasonal and trend decomposition combined with a graph
attention network to recognize relationships among multiple features and correlations
in time. The framework achieved improved anomaly detection performance, with an F1
score of 96.3% and 93.2% on balanced and imbalanced datasets, respectively. Moreover, the
proposed framework could be extended to detect unseen anomalous events. GTGenie [91]
was proposed as a computational model for discovering biomarker–disease associations.
The model made use of graph attention networks and pre-trained BERT-based models and
achieved competitive performance on a variety of benchmark datasets. OmicsGAT [92]
is a graph attention network, designed for analyzing RNA-seq data to identify deeper
relationships between gene expression and network structure for cancer subtype analysis,
patient stratification, and cell clustering. The algorithm’s multi-head attention mechanism
gave attention coefficients to a sample’s neighbors, allowing the capture of information
related to a sample more effectively and giving visibility into the importance of particular
neighbors in any specific sample’s cancer subtype analyses.

An RVTR [93] graph attention network-based RNA virus transmission network repre-
sentation model made use of natural language processing and a graph context loss function
to more accurately train the model in detecting asymptomatic propagators of COVID-
19. GTGAT [94] is a gated tree-based graph attention network that improved upon the
success of graph attention networks (GAT) for transductive and inductive reasoning in
generalized knowledge graphs. The approach was successful in transductive tests and
outperformed existing methods when applied to medical knowledge graphs in inductive
tasks. GANet [95], is a deep learning-based model, which was proposed to obtain point cor-
respondences from two-view images, resulting in improved mean Average Precision (mAP)
by up to 1.5% and 0.6% on the YFCC and SUN3D datasets, respectively. GCHGAT [96]
is a group-constrained hierarchical graph attention network that has been presented for
predicting pedestrian trajectories, incorporating pair-wise and group-wise interactions
between individuals. GCHGAT achieved superior performance with the smallest pre-
diction error when compared to other methods on the ETH and UCY datasets. In the
field of fake news detection, a graph attention network-based approach was created to
identify potential fake news on social networks by analyzing user–user connections and
content graphs. The method demonstrated improved accuracies and F1 scores compared
to existing methods, as demonstrated through experiments conducted on two datasets [97].
TGAT [98] is a multi-relational graph attention network framework that was introduced
to bridge the gap between IoT data and intelligent applications and services. TGAT can
capture rich interactions between mixed triples, entities, and relationships, while the Tucker
model was employed to reduce storage and calculation consumption. TGAT achieved
up to 7.6% improvement in the hits@1 accuracy compared to other models on real-world
heterogeneous graphs. A model [99] that combined convolutional neural networks and
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a graph neural network was presented for predicting crowd flow in cities partitioned
into irregular regions based on road networks and functionality. The model utilized a
location-aware and time-aware graph attention mechanism called Semantic Graph At-
tention Network (Semantic-GAT) that relied on dynamic node attribute embedding and
multi-view graph reconstruction. Experimental results showed that the model effectively
reduced the prediction error.

A heterogeneous graph attention network was proposed to detect and forecast food
safety risks based on various variables. The proposed risk profile was tested on a dataset
from China and was found to be accurate [100]. GraphReg [101] is a deep learning technique
that models the effect of non-coding genetic variations on target gene expression. It uses
3D interactions from chromosome conformation capture tests to predict gene expression
and is better than current state-of-the-art deep learning approaches. It can also predict
direct transcription factor targets by in silico deletion of other transcription factor binding
motifs. In the field of autonomous driving, DRL-GAT-SA [102] has been proposed. It is an
autonomous driving safety system that combines graph attention reinforcement learning
and dynamic safety assurance for efficient driving in uncertain conditions. A deep semantic
information propagation method [103] was proposed for aligning a single labeled source
domain and multiple unlabeled target domains. Experiments on four public datasets
showed that this method outperformed other prominent domain adaptation methods. A
virtual sensor-based imputed graph attention network [21] that could improve anomaly
detection in complex equipment with incomplete data by combining real signals and
simulated signals with a graph attention network has also been presented. A Learning
from Demonstration (LfD) approach using graph attention networks (GATs) was presented
in [104]. The approach demonstrated how a robot could learn non-interactive, interactive,
and uni- or bi-manipulative operations from a human by receiving human hand paths
and goal object poses. It was tested on simulated data and through real-life experiments,
and the results showed that the robot could successfully learn the tasks. EGRET [105]
is a transfer learning-based approach, which had yielded increased evidence of protein–
protein interaction sites over alternate methods. EGRET was available on open-source
GitHub, and the network behavior had been studied to explain how the decisions were
made. A single-pixel compressive direction of arrival (DoA) estimation technique has been
proposed [106]. It uses a graph attention network (GAT)-based deep-learning framework
that leveraged metasurface antenna-based coded aperture to reduce the physical layer
dimension. This approach excited the far-field sources incident on the aperture using a set
of spatio-temporally incoherent modes to encode and compress the spectrum of the sources
into a single channel, eliminating the need for a reconstruction step. In a low signal-to-noise
ratio (SNR) environment, the proposed GAT integrated a single-pixel DoA framework that
could accurately retrieve the DoA information.

RelMN [107], is a deep sparse graph attention network for object recognition and
relationship categorization in visual scenes. It classified object pairs from denser graphs
into foreground and background groups, utilized sparse graphs with message passing, and
surpassed state-of-the-art results on multiple benchmark datasets. PGAT [108] is a path-
enhanced bidirectional GAT that accurately predicts quality indices of a manufacturing
process. It utilized graph attention networks to learn the relationships between the different
machines in the multistage process and incorporated dependency path information into
the machine features. A masked loss function was used to address the label noise problem
and batch training could be used for improved efficiency. Experiments on a real-world
production line dataset validated the effectiveness of the proposed approach compared
to existing methods. PD-RGAT [109] is a model that has been proposed for aspect-based
sentiment analysis, which considered phrase information and direction of dependency
when constructing the graph. It was able to effectively capture long-range dependencies
and investigate aspect–sentiment polarities, with similar effectiveness to state-of-the-art
models.
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In addition, a graph attention network model for predicting potential miRNA–disease
associations from existing data outperformed the state-of-the-art models [110]. It poten-
tially provides a better understanding of numerous biological processes relevant to human
disease. Value Decomposition with Graph Attention Network (VGN) [111], is an approach
that factored the joint reward function into individual reward functions. Two graph neu-
ral network-based algorithms, VGN-Linear and VGN-Nonlinear, were developed and
tested on the StarCraft Multiagent Challenge (SMAC) benchmark. VGN methods sur-
passed existing value-based multi-agent reinforcement simulations in difficult tasks. GATs
and ADFP-AC [112] were used for PBT chemical screening and eight new classes of PBT
chemicals were identified from the Inventory of Existing Chemical Substances in China.
AL-NEGAT [113] is an adversarial learning-based node edge GAT that has been designed
for the identification of autism spectrum disorder (ASD) based on multimodal MRI data.
This model achieved higher accuracy and better generalizability than existing state-of-
the-art methods, making it a promising tool for the identification of brain disorders. The
combination of a convolutional neural network (CNN) and graph neural network (GNN)
in WFCG for HSI (hyperspectral image) classification has been proposed [114]. It utilized
a GAT and CNN to create a weight fusion of their respective features, achieving compa-
rable results to state-of-the-art methods. ASEGAT, is a brain cortical surface parcellation
method [115] that employed a graph attention module and a squeeze-and-excitation mod-
ule to recognize node features and incorporated anatomical prior information to improve
the accuracy of region labeling. Experiments on a public dataset showed that ASEGAT
outperformed other methods, achieving an accuracy of 90.65% and a dice score of 89.00%.
CGAT was presented for ground-based remote sensing cloud classification [116]. It made
use of Context Attention Coefficients and two transformation matrices to enhance the
discrimination of aggregated features (AFs). Additionally, a new GCD was published, and
experiments were conducted to prove the effectiveness of the model. GNNImpute, is a
single-cell dropout imputation method, that was introduced and tested on various real
datasets [117]. It was found that GNNImpute provided accurate and effective imputation
of dropouts and reduced dropout noise. It also produced good metric results on clustering,
with ARI and NMI reaching 0.8199 and 0.8368, respectively. HGAT-AMR, a deep graph
learning method, was proposed to predict anti-TB drug resistance [118]. This method
enabled the consideration of incomplete phenotypic profiles and provided attention scores
to identify genes and SNPs associated with drug resistance.

The Hierarchical Graph Attention Network (HGAT) [119] was proposed to accurately
analyze sentiment information with its complicated semantic relations for e-commerce
platforms. Experiments were conducted, and it was found to outperform other baselines.
A MARL problem was proposed to manage resources in a cellular network using GAT
and DRL, leading to an efficient inter-slice resource management strategy [120]. GAT was
applied over both DQN and A2C, and its superiority was verified through simulations.
GATNNCDA [121] was developed as a novel method that could efficiently model and
integrate circRNA–disease relationships and predict new potential associations. A molecule-
editing graph attention network (MEGAN) was created as a neural model for automated
synthesis planning, based on models that described a chemical reaction as a model of
graph edits, similar to arrow pushing [122]. The authors adapted it for retro-synthesis and
enlarged the dataset size, providing state-of-the-art accuracy in standard benchmarks.

Table 1. Top-cited graph attention network (GAT)-based papers the last years with a minimum of
10 citations.

Model Name Year Citation Count Cites Per Year

N/A [29] 2019 115 28.75

Mgat [84] 2020 44 14.67

N/A [68] 2022 40 40.00
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Table 1. Cont.

Model Name Year Citation Count Cites Per Year

WFCG [114] 2022 39 39.00

HGAT [77] 2020 37 12.33

HGAT [28] 2021 34 17.00

Mgat [83] 2020 32 10.67

N/A [123] 2020 31 10.33

MAGAT [124] 2021 28 14.00

N/A [125] 2021 25 12.50

GATrust [43] 2022 25 25.00

N/A [103] 2022 23 23.00

GATMDA [126] 2021 22 11.00

MGA-Net [52] 2022 20 20.00

Hawk [127] 2021 19 9.50

ResGAT [26] 2021 19 9.50

MEGAN [122] 2021 19 9.50

GANLDA [40] 2022 19 19.00

SRGAT [128] 2021 18 9.00

PD-RGAT[109] 2022 18 18.00

HLGAT [76] 2021 18 9.00

HGAT [11] 2020 16 5.33

RRL-GAT [19] 2022 16 16.00

N/A [82] 2021 16 8.00

HEAT [18] 2022 15 15.00

ASTGAT [66] 2022 14 14.00

RA-AGAT [9] 2022 14 14.00

SSGAT [72] 2022 12 12.00

MDGAT [25] 2021 12 6.00

FTPG [65] 2022 12 12.00

Gchgat [49] 2022 11 11.00

HGATLDA [50] 2022 10 10.00

STGGAT [82] 2022 10 10.00

PSCR [81] 2021 10 5.00

EGAT [71] 2022 10 10.00

KGAT [35] 2022 10 10.00

A novel message-dependent attention mechanism was introduced to improve graph
neural networks in multi-agent path planning [124], and the model was more capable on
large-scale path planning tasks in a decentralized setting, consistently achieving better
results than other benchmark models. Hawk [127] is a malware detection framework
for Android applications that modeled relationships between Android entities to reveal
hidden, higher-order relationships to better detect malicious behaviour. It offered the
highest detection accuracy, with a detection time of 3.5 ms for out-of-sample applications
and a much quicker training time at 50× faster than traditional methods. CRF-GAT [129],
combined the advantages of conditional random fields and graph attention networks to
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enable the semi-supervised fault diagnosis of motors. An optimized algorithm with the
technique of Clustering with Adaptive Neighbor was also added for graph construction
with high accuracy in the diagnosis of motor conditions. A graph attention network
scheduler has been presented [123]. It imitated experts’ advice to quickly create near-
perfect timetables for robot teams of varying sizes, and could scale up to huge, previously
unseen tasks. The research had indicated that this scheduling network had been able to
find highly efficient solutions for around 90% of the tests suggested for scheduling two to
five robots and up to 100 tasks much more effectively than prior techniques.

4. Applications of Graph Attention Networks

Graph attention networks (GAT) have been widely adopted for graph representa-
tion learning, with several Python libraries offering optimized implementations. For the
convenience of the reader, we have compiled a list of popular GAT libraries in Table 2.
Most of these libraries support standard graph representation learning (GRL) tasks and
offer seamless integration with popular machine learning frameworks such as PyTorch,
TensorFlow, and JAX (see Table 3).

Table 2. Overview of key domains, case studies, challenges, and applications of graph attention
networks.

Domain Case Study Problem Applications of GATs

Healthcare and
Bioinformatics

Drug–Drug
Interaction
Prediction

Predicting potential
interactions between
drugs is crucial for drug safety
and efficacy. Traditional
methods may
not fully capture
the complex relationships
between different drugs and
their effects on the human body.

GATs can model drug–drug
interaction networks by treating
drugs as nodes and interactions as edges.
The attention mechanism helps to focus on
the most relevant interactions,
improving the accuracy of predictions.

Protein–Protein
Interaction
Networks

Understanding protein
interactions is essential
for drug discovery and
understanding biological processes.
Protein-protein interaction (PPI)
networks are complex and
require sophisticated models
to accurately predict interactions.

GATs are applied to PPI
networks by treating proteins
as nodes and their interactions
as edges. The attention mechanism
enables the model to focus on the
most biologically relevant
interactions, improving
predictive performance.

Social Network
Analysis

Community
Detection

Identifying communities
within social networks is
important for understanding
the structure and dynamics
of social groups.
Traditional methods often
struggle with the overlapping and
hierarchical nature of communities in
large social networks.

GATs can be used to detect
communities by focusing on
the most influential connections
within a network. The attention
mechanism allows the model to
distinguish between strong and
weak ties, which is crucial for
accurately identifying communities.

Fake News
Detection

The spread of fake news on social
media is a significant problem, and
identifying fake news early is critical.
Traditional methods may not effectively
capture the complex relationships between
users and the content they share.

GATs can be applied to social networks
where nodes represent users or news articles,
and edges represent interactions (e.g., shares or likes).
The attention mechanism allows the model to focus
on the most suspicious interactions, improving the
detection of fake news.
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Table 2. Cont.

Domain Case Study Problem Applications of GATs

Finance and
Economics

Fraud Detection
in Financial
Transactions

Detecting fraudulent transactions
in financial networks is challenging
due to the complex and evolving nature
of financial interactions. Traditional methods
may fail to capture subtle patterns
indicative of fraud.

GATs can be used to model financial
transaction networks, where nodes
represent entities (e.g., accounts) and
edges represent transactions. The attention
mechanism helps in focusing on unusual
patterns of transactions that are likely
to be fraudulent.

Stock Market
Prediction

Predicting stock market movements
involves analyzing complex relationships
between different stocks, sectors, and
external factors. Traditional models
may not effectively capture
these relationships.

GATs can be applied to stock market graphs,
where nodes represent stocks and edges represent
relationships (e.g., co-movement or industry links).
The attention mechanism helps in identifying the
most influential factors affecting stock prices.

Natural
Language
Processing
(NLP)

Document
Classification

Classifying documents based on their
content can be challenging when the
documents have complex structures or
when the relationships between different
parts of the text are important.

GATs can be applied to document graphs,
where nodes represent words or sentences,
and edges represent syntactic or semantic
relationships. The attention mechanism
helps in focusing on the most relevant
parts of the document for classification.

Machine
Translation

Machine translation requires understanding
the relationships between words and phrases
in sentences. Traditional methods may
struggle to capture these relationships
effectively, especially in complex sentences.

GATs can be used in translation models by
treating words as nodes and their relationships as
edges in a sentence graph. The attention mechanism
allows the model to focus on the most important word
relationships, improving translation quality.

Autonomous
Vehicles and
Robotics

Traffic Flow
Prediction

Predicting traffic flow in urban environments
is complex due to the dynamic nature of traffic
and the numerous factors that influence it,
such as road networks, weather, and accidents.

GATs can be applied to traffic networks,
where nodes represent intersections or road
segments, and edges represent traffic flow
between them. The attention mechanism
allows the model to focus on the most critical
road segments, improving the accuracy
of traffic predictions.

Path Planning
for Autonomous
Robots

Autonomous robots need to navigate
complex environments, which requires
efficient path planning. Traditional methods
may not effectively capture the complex
relationships between different parts
of the environment.

GATs can be used to model the environment
as a graph, where nodes represent locations
and edges represent possible paths.
The attention mechanism helps the robot
focus on the most relevant paths for
efficient navigation.

Chemistry and
Material Science

Molecular
Property
Prediction

Predicting the properties of molecules, such as
their toxicity, reactivity, or solubility, is a key
task in drug discovery and material science.
Traditional models may not fully capture the
complex interactions between atoms in a
molecule.

GATs can be applied to molecular graphs,
where nodes represent atoms and edges represent
chemical bonds. The attention mechanism helps in
focusing on the most important atomic interactions,
improving the accuracy of property predictions.

Telecomm-
unications

Network
Anomaly
Detection

Detecting anomalies in telecommunication
networks is crucial for maintaining network
security and performance. Traditional methods
may not effectively capture complex, evolving
patterns of network traffic.

GATs can be used to model telecommunication
networks, where nodes represent devices or servers,
and edges represent communication links. The
attention mechanism helps in focusing on abnormal
patterns, improving the detection of anomalies.

In areas such as recommendation systems, GATs have revolutionized the capability to
deliver personalized and relevant suggestions, catering to diverse sectors like entertain-
ment, travel, finance, health, and e-commerce. Their ability to intricately map user–item
relationships has led to significant improvements in recommendation precision and person-
alization. Similarly, in biomedical research, GATs have played a pivotal role in uncovering
complex biomarker–disease associations, aiding in the advancement of disease diagnosis
and treatment strategies. Their impact extends to natural language processing, particularly
in sentiment analysis, where they excel in extracting emotions and opinions from textual
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data, ranging from customer feedback to aspect-based sentiment analysis. Moreover, in
the field of image analysis, GATs are utilized for sophisticated tasks such as hyperspectral
image classification, image super-resolution, and denoising, thanks to their refined atten-
tion mechanisms. Finally, in the critical domain of anomaly detection, crucial in sectors
like cybersecurity and fraud detection, GATs have proven to be invaluable in identify-
ing deviations from normal patterns in data. The widespread adoption and success of
GAT-based algorithms across these diverse fields highlight their flexibility, robustness, and
transformative potential in managing and interpreting complex data structures. Table 2,
provides a comprehensive overview, encapsulating some of the most significant applica-
tions, challenges, and practical use cases associated with graph attention networks (GATs).
This summary aims to highlight the critical advancements and areas of interest where GATs
have demonstrated remarkable potential, as well as the inherent obstacles that continue
to shape ongoing research and development in this domain. Through this synthesis, the
reader is offered a clearer understanding of the multifaceted impact and future directions
of GATs in various fields.

It is easy to understand that graph attention networks (GATs) have emerged as a
powerful deep learning technique for modeling graph-structured data. With their versatility
and effectiveness, they have attracted significant attention in the research community and
have shown remarkable performance in many different knowledge domains.

Table 3. Popular Python frameworks for graph neural networks (GNNs) and graph attention
networks (GATs).

Name Language Repository Framework-Related Paper

GAT Python https://github.com/PetarV-/GAT [130]

pyGAT Python https://github.com/Diego999/pyGAT [130]

keras-gat Python https://github.com/danielegrattarola/keras-gat [130]

pytorch_geometric Python https://github.com/pyg-team/pytorch_geometric [131]

GATv2 Python https://nn.labml.ai/graphs/gatv2/index.html [132]

anomaly-detection-resources Python https://github.com/yzhao062/anomaly-detection-resources N/A

dgl Python https://github.com/dmlc/dgl [133]

dgl-lifesci Python https://github.com/awslabs/dgl-lifesci [134]

dgl-ke Python https://github.com/awslabs/dgl-ke [135]

benchmarking-gnns Python https://github.com/graphdeeplearning/benchmarking-gnns [136]

graph4nlp Python https://github.com/graph4ai/graph4nlp [137]

GNN-RecSys Python https://github.com/je-dbl/GNN-RecSys N/A

GNNLens2 Python https://github.com/dmlc/GNNLens2 [138]

RNAglib Python https://github.com/Jonbroad15/RNAGlib [139]

OpenHGNN Python https://github.com/BUPT-GAMMA/OpenHGNN [140]

tgl Python https://github.com/amazon-science/tgl [141]

gtrick Python https://github.com/sangyx/gtrick N/A

4.1. Recommendation

The recommender system has emerged as a critical information service in the con-
temporary landscape of the internet. At the heart of the recommender system lies the
fundamental objective of providing relevant and valuable recommendations to a group of
users regarding a set of items, products, or services that are likely to align with their prefer-
ences and interests. This objective entails a sophisticated mechanism that leverages user
feedback and various sources of data to make informed predictions and generate personal-
ized recommendations that cater to the unique needs and preferences of each user [142].
Notably, graph neural networks (GNNs) have emerged as a recent state-of-the-art approach
in this domain as they have shown great potential for improving the effectiveness and
efficiency of the recommender system [143]. In this vein, graph attention networks (GATs)
have been increasingly employed in the development of diverse recommender system
applications, including but not limited to movie and media recommendation [144], travel
and tourism recommendation [22,145], finance and stock recommendation [9,146], health
and medicine recommendation [147], web services and API recommendation [148,149], as
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well as e-commerce and package recommendation [150,151]. This highlights the versatility
and potential of GATs in advancing the state-of-the-art of the recommender system domain.

4.2. Biomarker–Disease Association

The identification of the relationship between molecular biomarkers and different
types of ailments is of paramount importance in elucidating the underlying molecular
mechanisms of the disease. Circular RNA (circRNA) is a distinctive class of non-coding
RNA molecules that play a pivotal role in a diverse range of pathological conditions. They
represent a critical component of the non-coding RNA repertoire, contributing significantly
to the modulation of gene expression by sequestering microRNAs (miRNAs) in a regu-
latory manner [152]. Long non-coding RNA (lncRNA) is a class of RNA molecules that
surpass a threshold of 200 nucleotides in length. They modulate the expression of genes
at various stages of gene regulation, including transcriptional, RNA processing, transla-
tional, and post-translational levels, through intermolecular interactions with nucleic acids
and proteins. These molecules serve as molecular guides that facilitate the recruitment of
transcription factors to specific DNA binding sites. Additionally, lncRNAs can serve as
decoys, which impede the binding of certain proteins to other proteins or nucleic acids [153].
MicroRNAs (miRNAs) are a class of small, single-stranded, non-coding RNA molecules
that typically range from 21 to 23 nucleotides in length. These molecules are ubiquitously
present in organisms such as plants, animals, and certain viruses. miRNAs play crucial
roles in modulating RNA silencing and post-transcriptional regulation of gene expres-
sion. Specifically, they participate in regulating gene expression by interfering with the
translation of messenger RNA molecules into functional proteins [154]. PIWI-interacting
RNAs (piRNAs) are a category of small silencing RNAs that are exclusive to animals and
are differentiated from other classes of small RNAs such as microRNAs (miRNAs) and
small interfering RNAs (siRNAs). piRNAs function to suppress transposable elements,
govern gene expression, and defend against viral infection. They serve as guides for PIWI
proteins to recognize and cleave target RNA, and also play a critical role in the promotion
of heterochromatin assembly and DNA methylation [155].

Graph attention networks (GATs) have emerged as a promising tool for predicting
associations between biomarkers and diseases [91]. Specifically, GATs have been utilized
to predict disease associations with a diverse set of biomarkers, including circular RNAs
(circRNAs) [49,156], long non-coding RNAs (lncRNAs) [40,50,58,157], microRNAs (miR-
NAs) [32,85,110,158], PIWI-interacting RNAs (piRNAs) [159], and microbes [126,160]. By
leveraging the unique features and relationships of these biomarkers, GATs can effec-
tively capture the complex patterns underlying biomarker–disease associations. These
efforts have shown great promise in advancing our understanding of the complex interplay
between biomarkers and disease states, and hold great potential for improving disease
diagnosis, treatment, and prevention in the future.

4.3. Sentiment Analysis

Sentiment analysis is a natural language processing (NLP) technique that entails the
examination and evaluation of digital textual data to identify and categorize the underlying
emotional tone, specifically as positive, negative, or neutral. This approach is widely uti-
lized by organizations to ascertain and classify prevailing opinions concerning a particular
product, service, or idea. In pursuit of this objective, the utilization of graph attention net-
works has been suggested for sentiment analysis and has been applied in diverse categories
of sentiment analysis, such as aspect-based sentiment analysis [109,161–167], Sentiment
Analysis for Multiple Entities and Aspects [168], and Aspect Category Sentiment Classifica-
tion [6]. Collectively, these endeavors underscore the capacity of graph attention networks
as a valuable instrument for sentiment analysis.
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4.4. Image Analysis

Image analysis encompasses a range of techniques and methods employed to process
an image by breaking it down into its fundamental constituents with the aim of extracting
meaningful information. These methods can involve tasks such as shape recognition, edge
detection, noise reduction, object quantification, and texture analysis or image quality
evaluation. To this end, GATs have been put forward as a formidable tool for diverse
forms of image processing. Specifically, GATs have been suggested for applications such
as hyperspectral image classification [72,114,125,169], image super-resolution [128,170],
image denoising [171], change detection in remote sensing images [172], image multi-label
classification [19,173], and text–image summarization [19].

4.5. Anomaly Detection

Anomaly detection, which can also be referred to as outlier detection or novelty detec-
tion, is a method of identifying exceptional items, events, or observations that significantly
deviate from the majority of the data and do not adhere to a well-defined notion of normal
behavior. Such instances may raise suspicion of being generated by a distinct mechanism or
seem incongruous with the remaining set of data. Anomaly detection is utilized in various
domains such as cyber security, medicine, machine vision, statistics, neuroscience, law
enforcement, and financial fraud detection [174]. Due to their robustness and versatility,
graph attention networks (GATs) have been proposed for anomaly detection tasks. GAT
architectures have been proposed and investigated for anomaly localization in microwave
imaging [175], video anomaly detection [53], time series anomaly detection [176,177], and
BGP anomaly detection [90], among others. Through these endeavors it is evident that GATs
have the potential to be effective in detecting and localizing anomalies in diverse datasets.

5. Discussion

Graph attention networks (GATs) represent an enhancement to graph convolutional
networks (GCNs), a class of neural networks specifically designed for processing data rep-
resented as graphs. By incorporating attention mechanisms, GATs offer greater flexibility
and parameterization for graph convolutions, allowing them to more effectively capture
and leverage the structural intricacies of graph data. These networks can be categorized
based on the type of attention mechanism employed, the techniques used to extract infor-
mation from the graph structure, and the specific domain applications for which they have
been optimized.

Over time, GATs have evolved into several specialized categories, each tailored to
address distinct challenges in graph-structured data processing. Global GATs focus on
capturing global features within a graph by using attention scores that are independent of
the graph’s edges. This approach enables them to identify and leverage broader patterns
that span the entire graph, making them particularly effective in scenarios where a compre-
hensive global context is crucial. In contrast, Multi-Layer GATs enhance the learning of
intricate, higher-level features by stacking multiple attention layers. Each layer aggregates
information from neighboring nodes, progressively refining node features and enabling
the network to capture more abstract and complex patterns from a larger neighborhood
within the graph.

Graph-embedding GATs combine graph-embedding techniques with attention mecha-
nisms to learn latent coordinates for each graph node, effectively representing the underly-
ing graph structure. This category excels in capturing both local and global graph structures,
making it versatile across various domains. Spatial GATs focus on capturing local graph
information by integrating both spatial and temporal attention mechanisms. This capability
makes them particularly effective in applications like video anomaly detection, where the
spatial and temporal relationships between nodes are critical. Variational GATs introduce a
probability-based regularization technique that constrains graph attention scores, thereby
mitigating overfitting. This makes them highly effective in complex, multimodal data
environments where overfitting is a significant concern. Finally, Hybrid GATs combine
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multiple technologies from these different categories to perform optimally across diverse
tasks, such as miRNA–disease connection discovery and session-based recommendations,
offering a flexible and powerful framework for a wide range of applications.

Attention mechanisms in GATs can vary, encompassing dot product attention, addi-
tive attention, and even more advanced or customized attention models. The methods
employed by GATs to obtain information from graph structures are diverse, involving edge-
labeling approaches, aggregation functions, general integrators, softmax normalization,
and edge masking.

In this paper, we emphasized five key categorizations: Global Attention Networks,
which use attention scores independent of graph edges to capture global features; Multi-
Layer GATs, which harness multiple attention layers to better capture intricate higher-level
features; graph-embedding GATs, which utilize graph-embedding techniques to learn
latent coordinates for each graph node, representing the underlying graph structure; spatial
GATs, which select both spatial and temporal attention to capture local graph information;
and Variational GATs, which introduce a probability-based regularization technique to
constrain graph attention scores, thereby mitigating overfitting. We also include a hybrid
category comprising methods that integrate more than one of the aforementioned categories
(Table 4).

Graph attention networks (GATs), while based on a core architecture, exhibit sub-
stantial technical differences across various applications, adapting uniquely to the specific
needs of each domain. In recommendation systems and biomarker–disease association,
GATs are tailored to analyze interaction graphs, whether they be user–item in the former or
biomolecular networks in the latter. The attention mechanism in these contexts is pivotal
for identifying intricate patterns, such as user preferences or biomarker linkages to dis-
eases. This is in stark contrast to their use in sentiment analysis and image analysis, where
the focus shifts to natural language processing and spatial relationships, respectively. In
sentiment analysis, GATs are designed to understand the semantic relationships in text,
while, in image analysis, they concentrate on visual features and pixel connections.

Table 4. Overview of different GAT-based architectures, core concepts, and their advantages.

Model Core Idea Attention Mechanism Advantages

Original GAT

Introduces attention mechanisms to graph neural networks (GNNs),
allowing the model to learn the importance (attention weights) of
neighboring nodes when aggregating information. The attention
mechanism is applied to each pair of nodes and their edges.

Uses a single-layer feedforward neural network to compute attention
scores, followed by a softmax function to normalize these scores.

Suitable for small to moderately sized graphs
but can become computationally expensive for very
large graphs due to the pairwise attention calculation.

Multi-Head Attention GAT
Extends the original GAT by using multiple attention mechanisms (heads)
in parallel. This allows the model to capture more complex relationships by
combining different attention heads.

Each head computes its own attention scores,
and the outputs are either concatenated or averaged.

Improves the expressive power and stabilizes the learning
process, making the model more robust to noise.

GATv2
An improvement over the original GAT that redefines the attention
mechanism to make it more expressive and less sensitive to the
order of node pairs.

Instead of computing attention scores as a single linear
combination of features, GATv2 computes them using a more
flexible approach that allows for asymmetric attention scores,
which better captures complex node relationships.

Provides better performance on certain tasks,
particularly where the direction of the edge plays a
significant role.

Sparse GAT

A variation designed to handle large-scale graphs with many nodes
and edges. Sparse GATs reduce the computational burden by
focusing only on a subset of neighbors when computing attention,
instead of all possible neighbors.

Often uses techniques like sampling or clustering to limit
the number of neighbors considered during attention calculation.

Scalable to much larger graphs while maintaining
reasonable performance, making them more
practical for real-world applications like social
networks or biological networks.

Hierarchical GAT (H-GAT)
Introduces a hierarchical structure to GATs, where attention is
computed at multiple levels of graph granularity.
This approach captures both local and global graph structures.

Combines attention scores at different hierarchical levels,
allowing the model to learn from different scales of the graph.

Particularly useful for large and complex graphs,
where both micro (local node connections) and macro
(overall graph structure) views are important.

Temporal GAT Adapts GATs for dynamic graphs where the structure evolves over time.
It incorporates temporal information into the attention mechanism.

Combines traditional attention with time-aware mechanisms,
such as temporal encoding or recurrent neural networks (RNNs),
to handle the evolving nature of the graph.

Essential for applications like transaction networks,
where the sequence and timing of interactions are crucial.

Edge-Weighted GAT
Incorporates edge weights directly into the attention mechanism,
making the model more sensitive to the strength or significance
of connections between nodes.

Modifies the attention computation to include edge weights,
which influence the importance of neighboring nodes during
information aggregation.

Useful for graphs where edges have varying levels of
importance, such as in recommendation systems
or weighted social networks.

Similarly, in anomaly detection, GATs are engineered to identify deviations from
standard patterns, necessitating a heightened sensitivity to outliers, which differs signif-
icantly from their application in more pattern-consistent domains like recommendation
systems or biomarker associations. Across all these domains, GATs are fine-tuned through
variations in attention mechanisms, node feature representations, and integration with
domain-specific data processing techniques, ensuring that their application is highly spe-
cialized and effective for the particular challenges and data characteristics of each field.

Recent advancements in the field of graph attention networks (GATs) have paved the
way for their application in novel and diverse areas of research, showcasing their potential
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to address complex challenges across various scientific domains. Notably, several ground-
breaking studies published this year highlight the expanding utility of GATs, particularly
in fields such as polymer science, drug discovery, and bioinformatics, where traditional
methods have often fallen short.

One such study introduced GATBoost [178], a comprehensive framework designed to
improve property prediction in polymers. This research demonstrated the power of GATs in
mining important substructures within polymer graphs that are highly correlated with key
properties such as the glass transition temperature (Tg). By integrating GATs with XGBoost-
based supervised learning, the study achieved high accuracy in predictions, significantly
enhancing the efficiency of property prediction processes and reducing experimental time.
This approach not only delivers precise predictions but also offers direct visualization
of the crucial polymer substructures, underscoring the interpretability of GAT models in
material science.

In the realm of drug discovery, the AttentionMGT-DTA [179] model presents a mul-
timodal attention-based approach for predicting drug–target affinity (DTA), a critical step
in the drug design process. By utilizing GATs to represent molecular graphs and binding
pocket graphs, and integrating two attention mechanisms to explore interactions between
different protein modalities and drug–target pairs, this model has set new benchmarks in
DTA prediction accuracy. The high interpretability of AttentionMGT-DTA, particularly in
modeling interaction strengths between drug atoms and protein residues, further highlights
the capability of GATs to enhance understanding and decision-making in drug development.

Another significant contribution this year comes from the bioinformatics domain with
the ML-FGAT model [180], which addresses the prediction of multi-label protein subcellular
localization (SCL). This model combines GATs with feature-generative adversarial networks
and linear discriminant analysis to predict protein SCL with remarkable accuracy. The
study emphasizes the robustness and interpretability of GATs, particularly through the
analysis of attention weight parameters, and demonstrates their effectiveness across diverse
datasets, including newly constructed ones such as human, virus, plant, and SARS-CoV-2.

These studies collectively underscore the rapidly growing interest in and application
of GATs in cutting-edge research, reflecting their versatility and potential to revolutionize
complex problem-solving across a wide range of scientific disciplines.

Despite the significant advancements and diverse applications of graph attention
networks (GATs), several limitations and challenges remain that hinder their broader
applicability and effectiveness in certain scenarios. One of the primary concerns lies
in the scalability of GATs when applied to large-scale graphs. As the size of the graph
increases, the computational and memory demands of attention mechanisms, especially
those that require full pairwise attention computations, can become prohibitive. This
issue is exacerbated when dealing with dense graphs, where the number of edges grows
quadratically with the number of nodes, leading to an explosion in the number of attention
coefficients that need to be computed and stored. Moreover, the attention mechanism’s
reliance on softmax normalization can introduce challenges related to numerical stability
and gradient vanishing, particularly in deeper networks with multiple attention layers.
These factors can limit the practical usability of GATs in large-scale, real-world applications,
where computational efficiency and scalability are crucial.

Another significant limitation of GATs is their susceptibility to overfitting, especially
when dealing with small or noisy datasets. The flexibility and expressiveness of attention
mechanisms, while beneficial in capturing intricate patterns and relationships within the
data, can also lead to the model learning spurious correlations that do not generalize well
to unseen data. This issue is particularly pronounced in Variational GATs, where the intro-
duction of probabilistic regularization techniques, although aimed at mitigating overfitting,
may not always be sufficient in complex, multimodal environments. Additionally, the
interpretability of the learned attention weights in GATs can be problematic. While the
attention mechanism theoretically offers insights into the importance of different nodes or
edges, in practice, the learned attention scores can be difficult to interpret, especially when
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the network is deep or the graph structure is complex. This lack of interpretability poses
challenges in applications where understanding the decision-making process is critical,
such as in biomedical or financial domains.

This review provides a comprehensive and systematic exploration of the diverse
graph attention network (GAT) techniques and their wide-ranging applications, offering
a detailed understanding of this rapidly advancing field. By categorizing GATs based on
their unique mechanisms and domain-specific optimizations, we aim to equip readers
with the critical insights necessary to effectively navigate and apply these networks in
their research. The analysis presented herein not only elucidates the current state of GAT
methodologies but also underscores the significant potential of these networks to drive
innovation in solving complex, graph-structured data problems. As GATs continue to
evolve, understanding their nuanced technical variations and their implications across
different domains will be essential for researchers and practitioners aiming to harness the
full power of these sophisticated models.

Looking forward, graph attention networks hold immense potential for unlocking new
avenues of research and application in emerging scientific fields. One promising area is
quantum computing, where GATs could be employed to model and analyze quantum states
and interactions, offering new insights into quantum information processing. Another
exciting opportunity lies in the field of personalized medicine, where GATs could be
used to integrate and analyze multi-omics data, including genomics, proteomics, and
metabolomics, to predict patient-specific treatment responses and disease trajectories [181].
Additionally, the integration of GATs with natural language processing could lead to
breakthroughs in understanding complex linguistic structures and enhancing machine
translation systems. The ongoing development of GATs for real-time applications, such
as autonomous systems and smart cities, also presents fertile ground for research, where
the ability to process and interpret dynamic, large-scale graph data in real time could lead
to significant advancements. As these networks continue to mature, the exploration of
their applications in such novel and interdisciplinary fields will undoubtedly open up new
research frontiers and drive further innovation.
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