
Citation: Su, G.; Liu, L. Workflow

Trace Profiling and Execution Time

Analysis in Quantitative Verification.

Future Internet 2024, 16, 319.

https://doi.org/10.3390/fi16090319

Academic Editors: Paolo Bellavista,

Giuseppe Di Modica and Fernando

Cucchietti

Received: 14 July 2024

Revised: 20 August 2024

Accepted: 29 August 2024

Published: 3 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Workflow Trace Profiling and Execution Time Analysis in
Quantitative Verification
Guoxin Su 1,* and Li Liu 2

1 School of Computing and Information Technology, University of Wollongong,
Wollongong, NSW 2522, Australia

2 School of Big Data & Software Engineering, Chongqing University, Chongqing 400044, China;
dcsliuli@cqu.edu.cn

* Correspondence: guoxin@uow.edu.au

Abstract: Workflows orchestrate a collection of computing tasks to form a complex workflow logic.
Different from the traditional monolithic workflow management systems, modern workflow systems
often manifest high throughput, concurrency and scalability. As service-based systems, execution
time monitoring is an important part of maintaining the performance for those systems. We developed
a trace profiling approach that leverages quantitative verification (also known as probabilistic model
checking) to analyse complex time metrics for workflow traces. The strength of probabilistic model
checking lies in the ability of expressing various temporal properties for a stochastic system model
and performing automated quantitative verification. We employ semi-Makrov chains (SMCs) as the
formal model and consider the first passage times (FPT) measures in the SMCs. Our approach maintains
simple mergeable data summaries of the workflow executions and computes the moment parameters
for FPT efficiently. We describe an application of our approach to AWS Step Functions, a notable
workflow web service. An empirical evaluation shows that our approach is efficient for computer
high-order FPT moments for sizeable workflows in practice. It can compute up to the fourth moment
for a large workflow model with 10,000 states within 70 s.

Keywords: AWS Step Functions; execution time; probabilistic model checking; profiling; semi-Markov
chain; workflow

1. Introduction

Software-as-a-Service (SaaS) systems are deployed in an increasingly modularised
and distributed pattern. The architecture of those systems benefits from a separation
between a collection of computing tasks and a workflow that orchestrates those tasks.
Traditionally, workflow management systems (WMSs) are (usually monolithic) software
tools that are driven by workflow models and automate business processes [1]. In modern
service-based workflow-centric systems (called workflow systems hereafter), the workflow
and task applications are implemented by software developers and deployed in containers
or run by serverless functions. Moreover, those workflow systems often manifest high
throughput and high concurrency and consist of scalable computing tasks. One notable
example is the web service AWS Step Functions [2].

In order to conform with the quality of service deliveries, workflow systems usu-
ally provide an access to a wide range of monitoring metrics. One important kind of
performance metric is the execution time. We can easily measure the end-to-end time
(i.e., makespan) of any workflow and the task time for individual tasks in the workflows.
For complex workflows, it is also useful to consider complex time metrics in the level of
execution traces. For example, we may want to know the execution time of traces traversing
specific branches and iterating in some loop at most i times (where i is a positive integer).
We use the term “trace component” to refer to a subset of traces that can be described by

Future Internet 2024, 16, 319. https://doi.org/10.3390/fi16090319 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2087-4894
https://orcid.org/0000-0002-4776-5292
https://doi.org/10.3390/fi16090319
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090319?type=check_update&version=2

Future Internet 2024, 16, 319 2 of 19

a temporal pattern. The time metrics for trace components can provide more pertinent
information to establish a monitoring plan for workflow systems.

In general, there are two approaches used to analyse execution traces. Event stream
processing [3,4] is a technique of continuously querying timestamped event logs, which
contain low-level and precise footprints of the traces. However, ingesting the telemetry
(probably after a cleaning step) from a high-throughput system to a processing platform is
not cost-effective. Sampling can alleviate the cost by randomly selecting a portion of data to
process, but it comes with the price of lowered accuracy. In contrast, trace profiling is a model-
based technique used to build and maintain a statistical profile of the traces. Compared with
the set of concrete traces, a profile model is compact and contains rich trace information
to be analysed further. In particular, temporal (or behavioural) profiling, which employs
models preserving the temporal orders of events, is adopted in various problem domains
(e.g., clickstream analysis [5], intrusion detection [6] and process mining [7]).

Following the trace profiling approach, we leverage probabilistic model checking [8] to
analyse time metrics for trace components in workflows. Probabilistic model checking,
which is a formal technique of quantitative verification, has been applied to address differ-
ent problems in software engineering, including Quality-of-Service (QoS) management [9],
self-adaptive systems [10,11], event-streaming systems [12] and business workflows [13].
One main strength of this technique is the ability of expressing a wide range of temporal
properties for a system model in the Markovian model family [14] and performing ver-
ification in an automated way. As our focus is on time analysis, the Markovian model
of workflow profiles should encode not only the state transition probabilities but also the
state holding times. Moreover, because of the uncertain workload and environment of the
workflow system, it is more reasonable to consider the state holding times as random
variables rather than fixed values.

If we assume that the state holding times are exponentially distributed, we obtain a
continuous-time Markov chain (CTMC), which is a widely-adopted model in performance
analysis [15]. Based on the memoryless properties of exponential distributions, we can
perform automated verification on CTMC using the well-established methods of numerical
computation [16]. But the aforementioned assumption is usually too restricted to interpret
the empirical trace data and thus results in inaccurate analysis output. Therefore, we
consider an extension to CTMC, namely, semi-Markov chain (SMC), in which the state
holding times are determined by general distributions. The execution time of a trace
component is naturally formalised by a fundamental measure in SMC, called first passage
times (FPTs). It is noteworthy that in some existing work [17,18] that aggregate workflow
makespans from randomised task times, the workflow is represented as a directed acyclic
graph (DAG). But loops, which are allowed in SMC (and other models in the Markovian
family), are an essential structure used to build workflow models.

However, the generality of an SMC results in a serious challenge for its quantitative
verification. First, it is impractical to estimate the exact distribution functions of state
holding times from empirical trace data. Second, even if those distributions are given, it
is extremely hard to compute the probability that FPT falls in an interval for SMC [19]. In
view of these difficulties, we maintain a simple mergeable summary of workflow executions
(which comprises frequency values and power sum values only), and compute a group of
generic statistical parameters, namely moments, for FPT. Our core computational method,
which is underpinned by a well-established property of SMC [20], resorts to solving a
sequence of linear systems in a reasonable size (i.e., the same size as the SMC). We can
either use the FPT moments directly as time metrics for trace components or further infer
other statistical parameters, such as quantiles, from the FPT moments using the method of
moments ([21], Chapter 10.2).

In real-world applications, our approach is suitable for performance monitoring in
workflow systems such as AWS Step Functions. In particular, our approach can build
compact workflow trace profiles from historical data and recent data in a sliding or decaying
time window, and produces a broad range of complex time metrics to define a performance

Future Internet 2024, 16, 319 3 of 19

baseline and the current performance for monitoring. We also included an empirical
evaluation of the computation time for our approach.

The main contributions of this paper are summarised as follows:

• We leverage probabilistic model checking as a trace profiling approach to formally
analyse the complex time metrics for workflow systems.

• We present an efficient method to compute the FPT moments in SMC, which comple-
ments the existing quantitative verification technique for SMC.

• We describe an application of our approach to a notable workflow Web service, namely,
AWS Step Functions.

The remainder of the paper is organised as follows: Section 2 presents the background
of our problem in the time analysis of workflow trace components. Section 3 presents
an overview of our approach. Sections 4 and 5 present the technical details, namely, the
model building process and the core time analysis method, respectively. Section 6 describes
an application of our approach to a real-world workflow system. Section 7 discusses the
related work. Finally, Section 8 concludes the paper.

2. Background and Problem

In this section, we explain the background and problem of workflow execution time
analysis using a simple running example.

2.1. Execution Trace Components

A workflow orchestrates a set of computing tasks to form a complex workflow logic.
Typically, besides a “start” state and an “end” state, a workflow comprises two kinds of
steps, namely tasks (where the main computing functions are performed) and control
stages (such as “choice”, “fork”, “join” and “loop”). For illustration purposes, Figure 1
presents the diagram of a simple workflow, called SimpleFlow, which includes two tasks
(Task 1 and Task 2). The workflow logic of SimpleFlow is as follows: After the workflow
starts, two parallel threads are spawned at the “fork” stage. In the first thread, Task 1 is
executed once. In the second thread, Task 2 is executed iteratively, depending on the output
of the “ok?” stage. After both threads enter the “join” stage, the workflow terminates.

start fork

Task2

Task1

ok? join end

Figure 1. Specification of SimpleFlow

In real-world workflow engines (such as AWS Step Functions), workflows are usually
defined in a domain-specific specification language (such as a JSON-style language). The
execution traces of a workflow can be identified at different levels of abstraction. For exam-
ple, we can consider each task as a single execution stage of SimpleFlow or a combination of
the lower-level execution stages (e.g., scheduling, queuing and processing). For simplicity,
we adopt the former (i.e., more abstract) level of execution traces. A trace component can
be viewed as a part of the workflow, which can be described by some temporal pattern.
Informally speaking, a trace component represents a subset of possible execution traces in
a workflow. Consider the following two examples of trace components for SimpleFlow:

TC-A Task 2 is executed only once.

TC-B Task 2 is executed at least twice.

The formalisation of trace components and their relationship with workflows is pro-
vided in Section 4.

Future Internet 2024, 16, 319 4 of 19

2.2. Execution Time Metric

Suppose that SimpleFlow is a long-running workflow service, where multiple execu-
tions can run simultaneously. Also suppose that the resources allocated to the two tasks in
SimpleFlow are scalable at runtime (which is often the case in real-world SaaS systems).
To manage the resource allocation, the workflow system needs to have access to a wide
range of performance metrics, including the time metrics. Basic time metrics include the
end-to-end time of the workflow and the task time (i.e., the time to run an individual task)
in the workflow. But in order to provide more pertinent information about the workflow
performance, it is also important to consider time metrics for trace components.

Time metrics of those trace components can provide performance information to deter-
mine whether more computing resources should be allocated to the two tasks. Unlike the
end-to-end time and task time, the time metrics for trace components cannot be measured
directly. One generic technique is event stream processing, in which we can route the trace
logs to a stream processing platform, filter the traces belonging to an interesting trace com-
ponent and aggregate the time for those traces. But this technique is resource-consuming
especially for high-throughput streams, because the telemetry needs to be streamed into
a processing platform from (possibly) multiple sources (e.g., multiple service units), and
because fragments of the streams need to remain in main memory for aggregation. In prac-
tice, the overhead of performance monitoring atop the operation cost of the applications
should be minimised. Therefore, a light-weight trace profiling method, which can produce
reasonably accurate time metrics for a variety of trace components, is desirable.

3. Approach Overview

In this section, we present an overview of our approach to workflow execution time
analysis, and illustrate its several key aspects.

Because of the uncertain workload and environment for the workflow system, workflow
executions manifest stochastic characteristics. Therefore, the execution time of any part of the
workflow should be viewed as a random variable. The workflow execution traces, which are
collected according to some pre-determined time window function (e.g., a sliding or decaying
function), can be considered as some kind of random samples. We assume that those random
samples (i.e., traces) are generated by a stochastic process, in which the probabilities and
elapsed times of jumping to the next states are dependent on the current states only. This
assumption or some equivalent statements are adopted in many QoS composition studies
(e.g., [17,22–24]). Under this mild assumption, we developed a quantitative verification
technique to compute the time metrics for trace components efficiently, just by constructing a
fixed workflow model and maintaining an execution summary.

An overview of our approach is illustrated in Figure 2, whilst the technical details are
presented later in Sections 4 and 5. Our approach requires three inputs: (i) a workflow model,
which is a transition system, (ii) a simple mergeable summary of workflow executions,
and (iii) one or more to-be-analysed trace components, which are formalised by finite-
state automata (DFA). The key idea is to build an SMC model for each trace component
based on the aforementioned three input and analyse its FPT measure formally. The
direct quantitative verification of FPT in SMC is impractical because (i) the probability
distribution functions of state holding times in SMC can be arbitrary and difficult to
determined precisely from data and (ii) even if those probability distribution functions are
given, the probability that FPT falls within some interval is extremely hard to compute [19].
However, we can calculate a data summary, which comprises frequency values and power
sum values, and compute a group of important statistical parameters (i.e., moments) for
the FPT efficiently [20]. Besides the mean (which is the first moment), some other common
statistical parameters (such as variance, skewness and kurtosis) are derivable from moments
directly. We can use those statistical parameters for the FPT as time metrics of the trace
components. From the FPT moments, we can also infer (approximate) quantiles of the FPT
as other time metrics.

Future Internet 2024, 16, 319 5 of 19

Workflow
Model

...
Execution
Summary

SMC
Model 1

...

Trace
Comp
Spec 1

Trace
Comp
Spec N

Time
Metrics

!"#. 4.1

!"#. 4.2 !"#. 4.3 !"#. 4.4 !"#. 5

TIM
E

W
INDOW

Trace
data

SMC
Model N

Figure 2. Overview of the approach.

We highlight the following advantages of our approach. First, our approach early-
aggregates simple statistical summaries from the workflow execution data, thus alleviating
the cost of transferring and persisting the raw telemetry. Second, owning to the expressive
power of DFA (which is equivalent to the regular language), a very broad range of trace
components for a given workflow can be defined and analysed. Third, the computation
of the FPT moments is very efficient, as it resorts to solving a sequence of linear systems,
whose size is not larger than the size of the SMC state space.

4. Model Building

In this section, we focus on the model building stage of our approach, namely the
building of the SMC model from a transition system, an execution summary and DFA.

4.1. Transition System for Workflow

Defintion 1 (Transition system). A transition system W is the tuple (W, wini,−→, AP, L)
where

• W is a set of states;
• wini ∈ W is an initial state;
• −→⊆ W × W is a transition relation;
• AP is a set of atomic properties;
• L : W → 2AP is a labelling function that assigns a subset of atomic propositions to each event.

A trace in W is a finite sequence φ = w1w2 . . . wn such that wi −→ wi+1 for all
1 ≤ i ≤ n. We present a transition system in Figure 3 as the model of SimpleFlow. In
general, to model a workflow as a transition system W , the following rules are applied:

– The set AP includes the names of some stages in the workflow. The excluded stages
(such as the control stages “fork”, “join” and “ok?” in SimpleFlow) have almost instant
elapsed times, which are negligible.

– The labelling function L assigns {start} to Wini and {end} to a state without outgoing
transitions, respectively.

– The parallel threads in the workflow are represented by branches in W . For example,
the two “fork–join” threads in SimpleFlow are represented by the two branches of w1
and w2 from wini.

wini w1 w2 w3

{start} {Task1} {Task2} {end}

Figure 3. Transition system for SimpleFlow WSF

The last rule is worthy of further explanation. Because some threads are temporarily
blocked before entering a “join” stage in a workflow execution, only the last-completed
thread determines the execution time. As our focus is on time analysis, we can resolve
the parallel structures in the workflow by the branching structures in W . Thus, the traces

Future Internet 2024, 16, 319 6 of 19

in W model the traces of last-completed threads in the workflow only. In WSF, the path
winiw2 . . . w2w3 (for any positive number of w2) models an execution trace of SimpleFlow
where the thread of Task2 is the last one completed. This can avoid the exponential growth
in the size of the transition system as the number of threads in the workflow increases. For
convenience, we also use W to denote the workflow that it models from now on.

4.2. Workflow Execution Summary

An execution trace of a workflow W is a list of events with the following fields:
(eventType, timestamp), where eventType is an event type, such as entering a stage in the
workflow, and timestamp is the event timestamp. The list may also contain a unique ID
to identify the execution instance. Execution traces include all the information to create a
workflow execution (data) summary.

Assume that we have collected a set of execution traces falling into a prescribed time
window. We remove the events that do not belong to last-completed threads. With the exe-
cution trace data, we can replay the executions and calculate two kinds of statistical values.
The first kind of statistical values are the frequencies of transitions, denoted Freq(w, w′),
where w −→ w′ is a transition in W . The frequencies can be calculated by counting the
pairs of consecutive events. The second kind of statistical values are power sums of transition
time intervals, denoted PSum(j, w, w′), where j is a power, and w −→ w′ is a transition in
W . Let t and t′ be the timestamps of two consecutive events that correspond to w and
w′, respectively, and let ∆ = t′ − t. Thus, we have a set of time intervals {∆1, . . . , ∆m} for
w −→ w′, where m = Freq(w, w′). Then, we calculate PSum(j, w, w′) = ∑m

i=1 ∆j
i , where

1 ≤ j ≤ k. An alternative way of interpreting time intervals of transitions is the holding time
at state w if the next state is w′. For example, when the execution of SimpleFlow is located in
w1 in WSF, the transition time from w1 to w3 means the task time for Task1.

The pair Summ = (Freq, PSum) is an execution summary of the workflow. It is note-
worthy that one important property of Summ is mergeability [25,26]: Given Freq1 and
Freq2 (resp., PSum1 and PSum2), we can simply merge them, namely, let Summ1 + Summ2 =
(Freq1 + Freq2, PSum1 + PSum2). This property enables the parallel calculation of Summ in
practice. Moreover, we can calculate the summary Summ with sliding or decaying win-
dows [4]. Assume that we calculate Summold with historical data (e.g., data from the past week)
and Summnew with recent data (e.g. data from the past hour). In the case of (exponential)
decaying windows, we can let Summ = λSummold + Summnew, where λ ∈ [0, 1] is a decaying
factor. Thus, we represent the entire execution history with a compact summary Summ.

We use a (statistical) workflow profile to refer to the combination of a workflow model
W and its execution summary Summ, where W is fixed, and Summ is updated by the afore-
mentioned method as more recent execution trace data are collected.

4.3. Specification of Trace Component

We present the definition of DFA, which we employ to define trace components of the
workflow W .

Defintion 2 (Deterministic finite automata). A DFA A is a tuple (Q, Σ, δ, Q0, QF), where

• Q is a set of locations;
• Σ is an alphabet;
• δ : Q × Σ → Q is a transaction function;
• Q0 ⊆ Q is a set of initial locations;
• QF ⊆ Q is a set of accept locations.

Throughout the paper, we let the alphabet of A be the power set of atomic propositions
in a workflow W , namely Σ = 2AP. Based on a transition system W and a DFA A, we can
define a product transition system that models the behaviour of a trace component.

Future Internet 2024, 16, 319 7 of 19

Defintion 3 (Product transition system). Given a workflow W and a DFA A, a product transition
system W ⊗A is the tuple (W × Q, {wini} × Q0,−→⊗) where the transition relation −→⊗⊆
(W × Q)2 is the smallest relation defined by the following rules:

w −→ w′ ∧ δ(q, L(w′)) = q′ ̸∈ QF
⟨w, q⟩ −→⊗ ⟨w′, q′⟩ and

⟨w, q⟩ −→⊗ ⟨w′, q′⟩ ∧ q ∈ QF
w = w′ ∧ q = q′

Clearly, traces of W⊗A are also traces of W . This justifies W⊗A as a trace component
of W . The DFA is a very expressive formalism used to specify temporal patterns for traces.
Figure 4a,b presents two DFA examples A1 and A2. The production transition systems of
WSF ⊗A1 and WSF ⊗A2 model the two trace components of SimpleFlow in Section 2.1.

q1start q2 q3
Task2 end

(a) DFA A1 for trace component TC-A

q1start q2 q3 q4
Task2 Task2 end

Task2

(b) DFA A2 for trace component TC-B

Figure 4. DFA examples.

Note that Definition 3 is slightly different from the standard definition of production
transition systems. For technical purposes, we encode absorbing states in the production
transition system with the second rule of transition relations.

4.4. SMC Model

With the workflow profile and DFA , we can define an SMC model. Our presentation
of an SMC follows the probabilistic model checking literature [19] but also specifies the
absorbing states explicitly.

Defintion 4 (Semi-Markov chain). An SMC (with absorbing states) M is the tuple (S, α, P, F, G)
where

• S is a state space of M;
• α is an initial (probability) distribution on S;
• P is a transition (probability) matrix on S;
• F is an |S| × |S| matrix of continuous probability distribution functions (i.e., Cumulative

Distribution Functions (CDFs)) whose supports belong to R≥0;
• G ⊂ S is a set of absorbing states (i.e., P[s, s] = 1 if s ∈ G).

Let Post(s) be the set of successor states of s, namely, Post(s) = {r ∈ S | P[s, r] > 0}.
A path in M is given by an infinite alternating sequence of states and time values, namely
π = s0t0s1t1s2t2 . . . with si ∈ S and ti ∈ R≥0, such that r ∈ Post(s) for all i. For convenience,
let ht(π, i) = ti, which is the holding time of the path before the i-th jump. We use Path to
denote the set of paths in M and Paths to denote the set of those paths in Path originating
from state s. Following the literature [19], we define a probability measure on an SMC as
follows: Let C(s0, I0, . . . , Ii−1, si), where Ij is a non-empty interval in R≥0, and denote a
cylinder set consisting of all paths in Path such that ht(π, j) ∈ Ij, for all 0 ≤ j ≤ i. Then, a
probability measure Pr is defined by induction on i: If i = 0, Pr(C(s0)) = α(s0); for all i ≥ 1,

Future Internet 2024, 16, 319 8 of 19

Pr(C(s0, I0, . . . , si, Ii, si+1)) = Pr(C(s0, I0, . . . , si)) ·
P[si, si+1] · (F[si, si+1](b)− F[si, si+1](a)) .

where [a, b] is the closure of Ii. Based on the probability measure Pr, we can formally
analyse a variety of stochastic and timed properties of an SMC M.

For convenience, let F′ contain the corresponding Probability Density Functions (PDFs)
for the CDFs in F. Let F = F[s, r] and f = F′[s, r]. The k-th moment of a random variable
X is the expected value of the k-th power of X, usually denoted as E[Xk] (where E is the
“expectation” operator). Formally, let F and f be the CDF and PDF of X, respectively; the
k-th moment of X is the following quantity (if it exists):

E[Xk] =
∫ ∞

−∞
xkdF(x) =

∫ ∞

−∞
xk f (x)dx .

The first moment of X is just its expected value E[X]. The variance of X is derived
from the first and second moments of X, namely E[X2]− E[X]2. We can also mention the
moments of a CDF (or PDF) without referring to a random variable.

4.4.1. Building the SMC Structure

We build an SMC based on a product transition system W ⊗A. For convenience,
if s = ⟨w, q⟩, let s[0] = w and s[1] = q. We first prune the W ⊗A such that each state
in W ⊗A reaches at least one absorbing state and is reachable from at least one initial
state. Then, the state space S of M is just W × Q in the (pruned) W ⊗A, and the set G of
absorbing states is the set {s ∈ S | s[1] ∈ QF}. Also, P[s, r] is “qualitatively determined” in
the sense that if s −→⊗ r, then P[s, r] > 0.

4.4.2. Estimating the SMC Quantitative Parameters

The initial distribution α is a distribution over the states in the intersection of S and
{wini}× Q0. If this intersection is not a singleton, we usually let α be a uniform distribution.
But in general, α can be any discrete distribution over the state space.

Recall that the statistics of execution traces is given as Summ = (Freq, PSum), where
Freq includes the frequencies of transitions, and PSum includes the power sums of state
holding times. We use Freq to estimate the transition matrix P of the SMC. For each s ∈ S, let

P[s, r] := ps,r =


Freq(s[0], r[0])

∑r∈Post(s) Freq(s[0], r[0])
if r ∈ Post(s)

0 otherise.
(1)

Clearly, if Post(s) = {r}, then P[s, r] = 1.
It is very difficult to determine continuous probability distribution functions from

data. We use Freq and PSum to estimate the moments of the CDFs in F. For each s ∈ S and
k ≥ 1, let

F[s, r] := µ
(k)
s,r =


PSum(k, s[0], r[0])
Freq(s[0], r[0])

if r ∈ Post(s)

0 otherwise.
(2)

We briefly summarise the model building stage in our approach. The fixed workflow
model W and an updatable execution summary Summ form a workflow profile. One or
more DFAs A are defined to formalise the trace components of W . The workflow profile
(W , Summ) and the DFA A are used together to build an SMC model M for time analysis
(which is detailed in the next section).

Future Internet 2024, 16, 319 9 of 19

5. Time Analysis

In the section, we formalise the time metrics for trace components in the SMC and
present our core computational method of time analysis.

5.1. First Passage Time

Time metrics of trace components can be formalised as a group of fundamental
measures in SMC, namely, first passage times (FPTs) [14], which informally express “the
randomised time until the trace traverses a goal (i.e., absorbing) state for the first time”.

To define an FPT, we first introduce a real-valued function, which is defined almost
everywhere on Paths for some state s in M (with respect to the probability measure Pr):

timeG(π) =

{
0 if s0 ∈ G,

∑i
j=0 tj if si+1 ∈ G and sj ̸∈ G for all 0 ≤ j ≤ i.

Intuitively, timeG(π) is the total time duration along with the path π until an absorbing
state is reached. Note that if the first state in π is a goal state, timeG(π) = 0 by definition.
This is slightly different from the standard FPT definition in the literature, where the FPT at
an goal state is the time of leaving that state. Also note that, although timeG is not defined
on paths that do not reach any absorbing states, the set of those paths has a probability
measure of zero (with respect to Pr), and thus timeG is defined almost everywhere on Paths.
Therefore, we can define a random variable

Xs : Paths → R≥0 (3)

such that Xs(π) = timeG(π), where π ∈ Paths. Intuitively, Xs means the FPT for the
absorbing states from state s. Thus, the FPT of M (to the absorbing states) is a linear
combination of Xs with a weight given by α(s) for all s ∈ S:

Y = ∑
s∈S\G

α(s)Xs . (4)

Therefore, our objective is to compute the moments E[Y j], where 1 ≤ j ≤ k for some k.

5.2. Linear Systems of Moments

In the following, we present an efficient quantitative verification method to compute
E[Y j] for 1 ≤ i ≤ k. Although our main result (i.e., Theorem 1) can be proved directly
(c.f., Lemma 4.1 in [20]), we relate it to a well-known property of convolution. We first
present a basic property of mixture distributions.

Proposition 1. If E[X j
s] exists for all s ∈ S\G then

E[Y j] = ∑
s∈S\G

α(s)E[X j
s]

where Y is defined in Equation (4).

With the above proposition, it suffices to consider the moments of Xs for all s ∈ S. We
recall the following property about the probability distribution of Xs.

Lemma 1 ([14]). It holds that

Pr(Xs ≤ t) = ∑
r∈Post(s)

P[s, r]
∫ t

0
F′[s, r](x) · Pr(Xr ≤ t − x)dx

Future Internet 2024, 16, 319 10 of 19

or, equivalently,
fXs = ∑

r∈Post(s)
P[s, r]

(
F′[s, r] ∗ fXr

)
where fXs and fXr are the PDFs of Xs and Xr, respectively, and ∗ denotes the convolution.

In the following, we show that the moments of Xs for all s ∈ S can be alternatively
characterised by a sequence of linear systems and thus can be computed efficiently in
practice. We define an equation system as follows: (i) first,

x(1)s = 0 if s ∈ G

x(1)s = ∑
r∈Post(s)

ps,r

(
x(1)r + µ

(1)
s,r

)
if s ̸∈ G. (5)

(ii) second, for j ≥ 2,
x(j)

s = 0 if s ∈ G

x(j)
s = ∑

r∈Post(s)
ps,r

(
x(j)

r +
j

∑
i=1

(
j
i

)
· µ

(i)
s,r · x(j−i)

r

)
if s ̸∈ G.

(6)

Based on Lemma 1, the following theorem holds as a result of a well-known property
of convolution [27].

Theorem 1. Given (1) and (2), x(j)
s = E[X j

s] for all s ∈ S and 1 ≤ j ≤ k are the unique solutions
to Equations (5) and (6).

In the first instance, Equations (5) and (6) form a linear system with k|S| variables
(where S is the state space of SMC M). However, because for each order j ≤ k, only
unknowns up to the order j are included in the equations; the whole linear system can be
reduced to k smaller linear systems, each of which has at most |S| unknowns. Solving the
linear systems can involve inverting a matrix with size |S| × |S|. Recall that matrix inversion
can be carried out in the time complexity O(|S|3). Therefore, based on the standard time
complexity of solving linear systems, we have the following result.

Proposition 2. The time complexity of computing up to the k-order FPT moments in an SMC is
O(k|S|3), where S is the state space of the SMC.

We note that Equation (5) is just the standard characterisation of expected accumulated
rewards for Markov Reward Models (MRMs) (c.f., ([28], Chapter 10)). If k = 2, we have the
following equations to compute the second moments:

x(2)s = 0 if s ∈ G

x(2)s = ∑
r∈Post(s)

ps,r

(
x(2)r + 2µ

(1)
s,r x(1)r + µ

(2)
s,r

)
if s ̸∈ G. (7)

Our approach can be improved slighly by separating the offline computation and the
online computation. The linear systems that produce the FPT moments (Equations (5) and
(6)) are entirely based on the SMC model, which is in turn determined by the workflow
transition system, the execution summary and DFA. The fixed transition system and the
given DFA determine the structures of the linear systems, while the execution summary
provides the coefficients of the linear systems. In view of this, we can pre-compute a
sequence of abstract linear systems, whose coefficients are instantiated online. In this way,
the online computation only includes the necessary part of computation, namely, solving
the linear systems of moments.

Future Internet 2024, 16, 319 11 of 19

5.3. Moments to Quantiles

Moments are important statistical parameters for probability distributions. We can
report the moments of FPT Y as the final time metrics of the trace components. In particular,
the first FPT moment E[Y] is the mean execution time. The variance of Y, which measures
the deviation of the execution time from its mean, equals E[Y2]− E[Y]2. Moreover, skew-
ness (a measure of the asymmetry of the probability distribution) and kurtosis (a measure
of the “tailedness” of the probability distribution) are also defined by moments.

It is also possible to infer more intuitive metrics, such as quantiles, from moments. If
the probability distribution of Y has a specific form, say, a PDF f (y|θ) where the parameters
θ are unknown, by the method of moments ([21], Chapter 10.2), we can usually construct
an equation system, whose coefficients are moments of Y (up to some order) and whose
variables are θ. By solving this equation system, we can obtain the values of θ and thus
infer the quantiles of f (y|θ). For example, if Y has a normal distribution N (µ, σ2), we
have µ = E[Y] and δ2 = E[Y2]− E[Y]2 immediately; if Y has a Gamma distribution Γ(α, β),
where α is the shape parameter and β is the rate parameter, we can derive the following
two equations: α/β = E[Y] and α/β2 = E[Y2]− E[Y]2. This method can be applied to
almost all common forms of probability distributions.

In practice, we can use the historical data to estimate the form of the distribution function
for Y. However, if the form of the probability distribution of Y is unknown, there are other
existing methods to estimate or approximate the quantiles of Y. For example, one method is to
estimate the PDF of Y with the maximum-entropy distribution (i.e., a distribution with “least
information” according to information theory) [25]. Another method is to use semidefinite
programming to compute the bounds of the quantiles of Y [29]. Hence, it is possible to extend
our approach to include those methods in future work.

5.4. Untimed Probabilistic Analysis

It is often useful to combine the untimed probabilistic analysis and our FPT moment
analysis in the SMC. Typically, we can analyse the probability of traversing a trace compo-
nent in the workflow and then analyse the randomised traversing time. For example, before
estimating the time metrics for the trace component described in Figure 2, we may want
to know how likely an arbitrary execution trace of SimpleFlow traverses that trace compo-
nent. The untimed probabilistic analysis can employ the standard technique in probabilistic
model checking for discrete-time Markov chains (DTMCs) ([28], Chapter 10) and are briefly
summarised as follows in the context of our approach. First, we build a DTMC D based on
the workflow model W and its execution summary Summ (in particular, the frequency values
in Freq of Summ). The state space of D is the same as that of W . The estimation of transition
probabilities in D uses the same method for the SMC as described in Section 4.4. Second, we
build a product model D⊗A of D and DFA A in a similar way to Definition 3. The product
model D⊗A is essentially a sub-DTMC in the sense that the transition probability matrix
of D ⊗A is sub-stochastic (namely, the sum of outgoing probabilities from states may be
smaller than 1). Finally, we can compute the reachability probability to the target states in
D⊗A using the standard probabilistic model checking technique.

6. Application and Evaluation

In this section, to demonstrate the practicality of our time analysis approach, we present
a detailed description of applying our approach to establish a monitoring plan for AWS Step
Functions, which also includes an empirical evaluation of the computational efficiency.

6.1. AWS Step Functions

AWS Step Functions (https://aws.amazon.com/step-functions/ accessed on
1 June 2024) is a web service that provides a flexible way to coordinate tasks running on
other AWS services, such as AWS Lambda (https://aws.amazon.com/lambda/ accessed on
1 June 2024) (a serverless computing service) and AWS ECS (https://aws.amazon.com/ecs/
accessed on 1 June 2024) (a container-based computing service). It is well suited for running

https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/
https://aws.amazon.com/ecs/

Future Internet 2024, 16, 319 12 of 19

high-throughput workflows and processing massive parallel jobs. Workflows in AWS Step
Functions are defined with a domain-specific JSON-style language called the Amazon
States Language (https://states-language.net/spec.html accessed on 1 June 2024), which
employs finite state machines (FSMs) as the semantics.

6.2. Example: JobDeciderWorkflow

We envisage a workflow called JobDeciderWorkflow as an example to explain the
applicability of our approach to AWS Step Functions. For readability, we do not present
its JSON-style specification directly but instead illustrate the specification in Figure 5. The
main purpose of this workflow is to run a job in a cost-effective way, either with Lambda
(if the job is small to medium-sized) or ECS (if the job is large). Assume that each job of
this workflow can be decomposed into multiple parts. All main stages (except “start” and
“end”) are implemented as Lambda functions and play the following different roles: the
workflow controllers (i.e., “Job Decider” and “Job Complete?”), job runners (i.e., “Run Job
in Parallel”), job submitter (i.e., “Submit Job to ECS”), time keeper (i.e., “Wait X Second’),
status checker (e.g., “Get Status”) and event emitter (i.e., “Emit ‘Successful’” and “Emit
‘Failed’”). If the “Job Decider” decides that the job should be run in Lambda, by exploiting the
easy parallelisation of this service, a set of parallel threads are spawned to handle different
parts of the job. If the “Job Decider” decides that the job should be submitted to ECS and run
by it, two loops are used to guarantee the quality of job completion: The inner loop monitors
the status of the job, and the outer loop resubmits the job if it has failed. This workflow
example manifests many common characteristics of AWS Step Function workflows.

start

Job Decider

Submit Job to ECS

Wait X Seconds

Get Status

Job Complete?

fork

join

Run
Part-1

Run
Part-N

. . .

Emit ‘Failed’Emit ‘Successful’

end

Figure 5. JobDeciderWorkflow in AWS Step Functions

6.3. Execution Time Monitoring

Execution time monitoring is an important part of maintaining the performance
in service-based systems, such as AWS Step Functions. The historical monitoring data
provide a baseline, against which the workflow administrator can compare the current
performance of the workflow system. A monitoring plan includes a set of baseline metrics
and current performance metrics, which are determined by historical and current data,
respectively. If the current performance falls below the baseline, the administrator can
undertake various countermeasures, ranging from simply reconfiguring some workflow
parameters to purchasing more cloud resources to run the tasks. In JobDeciderWorkflow,
parameter reconfiguration can involve updating the criterion of running the job with
Lambda or ECS and reseting the maximum number of job resubmissions to ECS.

https://states-language.net/spec.html

Future Internet 2024, 16, 319 13 of 19

In this case study, we focus on the metrics of execution times. AWS Step Functions
supports the monitoring of the task execution time and the end-to-end workflow execution
time. However, it does not provide the time metrics in the level of traces. Consider the
following trace component for JobDeciderWorkflow:

The “Submit Job to ECS” stage is traversed up to i times, where i is a parameter, until
the“Emit ‘Successful’” stage is reached.

The time metrics of trace components similar to the above one can help to define a
performance baseline and the current performance, and to create a thorough monitoring plan.

6.4. Model Building

In the following, we explain how to apply our time analysis approach (as depicted Figure 2)
to define the performance baseline and current performance based on the JobDeciderWorkflow
example in detail. Recall that there are three inputs to our approach, namely (INPUT I) a
transition system as the workflow model, (INPUT II) a workflow execution summary and
(INPUT III) one or more DFA, which specify the to-be-analysed trace components.

For INPUT I, the transition system (denoted WJobDec) for JobDeciderWorkflow is built
from its specification in the Amazon States Language. There are seven types of states
in the FSM of AWS Step Functions, namely Task, Choice, Fail, Succeed, Pass, Wait and
Parallel. In the model building, we need to decide the level of abstraction. In AWS Step
Functions, when a Lambda Task state (i.e., a Task state that runs a Lambda function) is
traversed, the following five low-level events are created (in order): “TaskStateEntered”,
“LambdaFunctionScheduled”, “LambdaFunctionStarted”, “LambdaFunctionSucceeded”
and “TaskStateExited”. Thus, WJobDec includes five low-level states for each Lambda
Task state in the “Run Job in Parallel” step. Alternatively, we can consider all steps in
JobDeciderWorkflow (including the Task states) as single abstract states in WJobDec. Another
problem is the parallel states in the FSM, which if directly translated to a transition system,
result in a state explosion: The composition of N parallel Lambda Task states results in
5N lower-level states. However, since our objective is time analysis, we can model the
parallel threads with non-deterministic last-completed threads (c.f., Section 4.1). When an
execution trace traverses the step “Run Job in Parallel”, the traverse time is determined by
the thread that takes the longest time to complete the part of job. Thus, the step “Run Job
in Parallel” can be modelled with no more than 5N states in WJobDec.

For INPUT II, the statistical values in the execution summary are the frequencies of
transitions and the power sums of time intervals (as specified in Section 4.2), which are
calculated from the execution traces. The log data of execution traces is available in AWS
Step Functions. In particular, the getExecutionHistory API (https://docs.aws.amazon.
com/step-functions/latest/apireference/API_Operations.html accessed on 1 June 2024) of
AWS Step Functions returns a list of (raw) timestamped trace events for a specific workflow
execution. We filter the execution traces where the timestamps of the last events fall into a
prescribed time window and then remove the unnecessary events in the following two steps:
First, we remove the events that do not belong to the last-completed threads. For example, if
“Run Part-1” takes the longest time to complete in a trace, we remove all the events related to
“Run Part-2”, “Run Part-3”, . . . , and “Run Part-N” in the same trace. Second, based on the
modelling abstraction level, we may also need to remove the unnecessary low-level events.
For example, if we adopt the high-level modelling for WJobDec, among the aforementioned
five low-level events for each Lambda Task state, we retain “TaskStateEntered” only and
remove the other four. After removing the unnecessary events, we can replay the traverses
of paths in WJobDec and calculate the values of frequencies and power sums, where the
detailed method of calculation is presented in Section 4.2. Moreover, by setting two
suitable time windows, we can create two versions of summaries, namely the baseline
summary Summbaseline and the current performance summary Summcurrent. For example, we
can calculate Summbaseline from data in the past week and Summcurrent from data in the past
hour. The detailed method of calculation is given in Section 4.2. Note that the baseline summary

https://docs.aws.amazon.com/step-functions/latest/apireference/API_Operations.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_Operations.html

Future Internet 2024, 16, 319 14 of 19

can be updated with sliding or decaying windows, and that the mergeability of frequencies and
power sums can facilitate the parallel calculation of both summaries in practice .

For INPUT III, the DFA for specifying trace components are user-defined. The ex-
pressive power of DFA allows a broad range of complex trace components to be defined
and analysed. The trace component for JobDeciderWorkflow informally described in
Section 6.3 can be formalised with DFA Ai in Figure 6, which has i + 1 states. Note that
Ai is parametric on i; in particular, if i = 0, Ai just includes the traces traversing the “Run
Job in Parallel” step but not the “Submit Job to ECS” step. As DFAs are independent of the
two execution summaries Summbaseline and Summcurrent, the set of user-defined DFAs can be
updated dynamically.

q0start q1 . . . qi−2 qi−1 qi

¬(A ∧ S)

S

A

¬(A ∧ S)

S

A A

¬(A ∧ S)

A

S

¬(A ∧ S)

S

Figure 6. Trace component DFA Ai for WJobDec (where A = “Submit Job to ECS”, S =

“Emit ‘Successful’”, and ¬(A ∧ S) refers to all other steps except A and S)

6.5. Evaluation of Computation Time

Provided with the three outputs (i.e., the workflow transition system, an execution
summary and DFA, Table 1), the computation includes building the SMC model, and
generating and solving the linear systems of FPT moments. In the empirical evaluation, we
parametrised the value of i in the DFA in Figure 6 for JobDeciderWorkflow and created SMC
models in different sizes. The experimental data, as summarised in Table and depicted in
Figure 7, were collected in a Linux system with a 2.8 GHz Intel Core i7 CPU and 32 GB
memory. As shown in the figure, the computation time is relevant to the size (i.e., the
number of states) of the SMC models, which is also the size of the linear systems. Within
16 s, we can compute the first four moments for SMC models with up to 5000 states, and
within 70 s, we can compute the same moments for models with up to 10,000 states. The
superlinear increment in computation time with respect to model size is mainly due to the
need of solving linear systems (c.f., Proposition 2). However, we believe that the meaningful
time analysis of most real-world workflows in our approach results in SMC models with
no more than 10,000 states. In Figure 7, the largest SMC model is built from the production
of the JobDeciderWorkflow transition system with 13 states and a DFA with 2400 locations.
Another observation from Figure 7 is the linear increment in computation time as the order
of the FPT moment increases (Note that the computation of the first FPT moment also
includes the model building time). This conforms with the fact that the linear systems for
FTP moments are of the same size regardless of the moment orders.

0 2000 4000 6000 8000 10000
#state in SMC

0

10

20

30

40

50

60

70

Ti
m

e
(s

ec
.)

1st mo.
2nd mo.
3rd mo.
4th mo.

Figure 7. Plot of computing time of FPT moments

Future Internet 2024, 16, 319 15 of 19

Table 1. Computing time of FPT moments.

State in SMC # Location in DFA
Time (ms)

1st mo. 2nd mo. 3rd mo. 4rd mo.

119 30 7 11 15 19
199 50 15 19 25 31
399 100 58 70 85 101
799 200 162 196 238 282

1599 400 690 853 1017 1197
1999 500 998 1269 1536 1810
2399 600 1449 1842 2251 2662
3199 800 2998 3839 4644 5464
3999 1000 4282 5642 7002 8359
4799 1200 6675 8865 11,000 13,080
5599 1400 8267 11,052 13,880 16,850
6399 1600 11,836 15,878 19,830 23,917
7999 2000 19,939 27,112 34,312 41,455
9599 2400 27,864 42,620 55,177 69,789

6.6. Summary and Discussion

To apply our approach to performance monitoring in AWS Step Functions, we translate
the JSON-style specification of a workflow into a fixed transition system in a suitable level
of abstraction, maintain two sets of execution summaries, which are created from the
historical and recent workflow execution traces, respectively, and employ DFA to specify
trace components, whose time metrics are interesting to monitor. With these three inputs,
the building of the SMC models and the computation of the FPT moments in those models
are automated and efficient. We can use the FPT moments as time metrics to define the
baseline and current performance. Alternatively, we can further infer the FPT quantiles
from the FPT moments using the method of moments. Therefore, our approach is a useful
monitoring technique for AWS Step Functions, and the evaluation of computation time
also demonstrates its efficiency in general.

It is noteworthy that, although this case study focuses on AWS Step Functions, our
approach can be applied to other realistic workflow systems. The process follows the same
steps, which is the preparation of the three inputs for model building (c.f., Section 6.4).
However, the translation of workflow specifications into transition systems and the collec-
tion of execution statistics are platform-dependent. In AWS Step Functions, workflows are
specified in the JSON format, and execution statistics can be retrieved by a specific API.

7. Related Work

Workflow execution time analysis is heavily investigated in the existing works, most
of which belong to a specific problem domain, such as the makespan estimation for workflow
scheduling and the QoS aggregation in service composition (i.e., how to aggregate QoS metrics,
such as execution times, for composite services from those of atomic services). Many
works in those two domains represent makespans and QoS metrics as constant values
(e.g., [30–34]). We discuss only those works in which the makespans and QoS metrics are
modelled as stochastic values, as those analytic methods are more related to our approach.

In the framework proposed by Hwang et al. [22], the QoS metrics of atomic services
are modelled as independent discrete random variables. Their algorithm works recursively
to derive the Probability Mass Functions (PMFs) for the service QoS metrics through five
common composition structures (i.e., sequential, conditional, loop, synchronised parallel
and unsynchronised parallel) until the PMF of the end-to-end QoS is computed. Although
the PMF composition is straightforward, in order to represent the empirical QoS values
accurately, the support of the PMF must consist of a high number of small discretised value
ranges. The complexity of their algorithm grows exponentially as the support size of the
PMF increases. Zheng et al. [24] presented an approach to aggregate the continuously

Future Internet 2024, 16, 319 16 of 19

distributed QoS metrics of service components in the same aforementioned five composition
patterns. In order to compute the composite QoS, they assumed that the distributions of all
QoS metrics must have the same form, and that the histograms must have the same start
point and width of intervals. This assumption may be over restricted in application.

Zheng et al. [23] employed an SMC to formally model composite services. They
derived basic statistical parameters (i.e., means and variances) of QoS metrics (i.e., the
response time and availability probability) for composite services in the closed form of
the basic statistical parameters for atomic services. Although we also use an SMC as
the formal model, our method computes not only the first and second moments but also
high-order moments numerically, which are not so convenient to express in a closed form.
Our approach is also equipped with an expressive formalism (i.e., DFA) to specify trace
components for quantitative verification.

In the task scheduling framework of workflows proposed by Chirkin et al. [18], an
essential component is a method to infer the execution time of workflows from generally
(and independently) distributed times of basic tasks. Their method estimates both the
CDFs and characteristic functions (CFs) of task times. By representing the workflow as a
directed acyclic graph (DAG) (without loops), they can employ the former to aggregate the
parallel structure and later to aggregate the sequential structure and branching structure.
During the aggregation process, their method uses Fourier transforms between CDFs and
CFs at the cost of some approximation error. In contrast, by considering the last-completed
parallel threads for execution time analysis purposes, our approach reduces to the parallel
structure into the branching structure and works on the computation of moments with
loops. Moreover, the moment estimation of task times from workflow execution data is
much easier than the estimation of CDFs and CFs.

Glatard et al. [17] proposed a probabilistic model to estimate the workflow makespans
for scientific grid applications. In their model, they separated the task time and the grid
latency for executing a task, where the former is a constant value and the later is a random
variable. In practice, the randomised grid latency represents the time variations caused
by factors such as new-resource provision, system failures or network interruptions. They
considered the parallel composition (called “data parallel”) and the sequential parallel
composition (called “data and service parallel”) only. As with Chirkin et al. [18], their
probabilistic model assumes a DAG workflow topology. The aggregation of the makespan
means and variances in those two kinds of compositions can be viewed as a special case
of Zheng et al’s approach [23] and our approach. Rogge-Solti and Weske [7] presented a
method based on the Generalised Stochastic Petri Net (GSPN) [35] (which is a more expres-
sive stochastic model than an SMC in that the independence assumption for the general
distributions of state holding times is relaxed) to predict the remaining time to workflow
completion and the likelihood of breaching workflow deadlines. However, in order to solve
the GSPN, one can only resort to discrete-event simulation, which is suitable for offline
analysis but too time-consuming for online monitoring. Meyer et al. [36] proposed Timed
Probabilistic Workflow Net (TPMN), which is underpinned by the Markov Decision Process
(MDP) semantics, and analysed the expected execution time of TPMN. However, task times
are modelled as fixed costs in TPMN rather than random variables. Carnevali et al. [37]
employed Stochastic Time Petri Nets to analyse complex workflows that are constructed
through sequence, choice/merge, and balanced/unbalanced split/join operators. They pro-
vided an efficient and accurate compositional approach to provide an upper bound on the
response time distribution. Belgacem and Beghdad-Bey [38] investigated the makespan and
cost of virtual machine usage in cloud-computing workflows. They used a multi-objective
optimisation method to optimise the trade-off between the two factors. Wang et al. [39]
presented a probabilistic modelling and evolutionary optimisation approach to analyse the
performance and cost of serverless workflows as well as the tradeoff of the two metrics.
Similarly, Zhang et al. [40] considered the effective workflow scheduling strategy for cloud
computing services while ensuring the service executing reliability. They proposed a formal

Future Internet 2024, 16, 319 17 of 19

approach that includes a reliability checkpoint mechanism to meet the workflow deadline
and the energy consumption constraints.

In general, our execution time analysis is different from the aforementioned works in
that we adopt a quantitative verification approach. In particular, we use DFA to specify
trace components whose time metrics are interesting to analyse in a workflow. Su et al. [12]
employed model checking to analyse cloud-native event-streaming systems. Due to the em-
pirical estimation of event stream statistics, they considered how the empirical estimation
influences the model checking output. A DTMC was used as the formal model, and thus,
their approach does not aim to address continuous-time metrics such as first pass time
(FPT), which is the focus of the current work. However, in this work, we do not employ the
standard technique of probabilistic model checking directly. The well-established quantita-
tive verification technique for CTMCs (based on uniformisation) [16] cannot be generalised
to SMCs, which allow state holding times to be determined by general distributions. We
report several recent advancements in probabilistic model checking for SMCs and the
related models as follows.

López et al. [19] formalised a quantitative verification framework for an SMC, in
which the verification of the SMC against the expressive logic Continuous Stochastic Logic
(CSL) is reduced to FPT analysis. They further demonstrated that the FPT analysis for
an SMC requires solving a set of Volterra integral equations, which limits its scalability
seriously. Paolieri et al. [41] proposed another model called Stochastic Time Petri Net
(STPN), whose expressive power is between that of an SMC and GSPN, and demonstrated
that the verification of STPN can also resort to (a variant of) the Volterra equation system.
Despite an extension to the previous work, no efficiency benefit is gained with their
technique. Bryans et al. [42] verified stochastic automata with underlying SMCs against
“non-nested until” formulas in CSL by unfolding the model into a region tree, where
regions are defined by relations between randomised clocks. And a direct computation
of probabilities to reach individual regions includes the number of integration operations,
which grows exponentially as the number of regions increases.

Compared with the above model-based and quantitative analysis literature, our work
adopts a very different approach. We exploited the history-independence property of SMCs
(that is, the moment property of convolution) and developed a sequence of linear systems
to compute the moments of the FPT, which contains the moments of state holding times as
the coefficients. In addition to the computational efficiency, an advantage of working with
moments is the easy estimation of moments from empirical data, especially for probability
distributions whose forms are unknown.

It is also noteworthy that, beyond the context of model-based and quantitative analysis,
our approach is related to the literature that utilises mergeable summaries of moments to
describe data streams and that inverts the quantiles of the streams from the moments [25].

8. Conclusions

We presented a formal approach to analyse time metrics for workflow systems at
the level of traces. Our objective is to compute the randomised time metrics of trace
components, which represent subsets of workflow traces that satisfy specific temporal
patterns. In the model building of our approach, we create compact trace profiles from
the workflow specification and the workflow execution data summaries, define trace
components using DFA, and build SMC models from the profiles and DFA. Our core
computation method is an efficient quantitative verification technique that produces the
moments of FPT in an SMC. We demonstrated the applicability of our approach to create
a monitoring plan in real-world workflow systems such as AWS Step Functions. The
computation time evaluation shows the efficiency of our approach to compute high-order
FPT moments for large-workflow instances. In particular, our approach can compute up to
the fourth moment for a workflow model with 10,000 states within 70 s.

In future work, we plan to apply our approach to other real-world workflow systems.
We also plan to establish an extension to the current approach to analyse not only time

Future Internet 2024, 16, 319 18 of 19

metrics but also other commons QoS metrics, such as reliability and availability. Also,
despite its expressive power, encoding temporal properties in DFA is at a very low level. To
improve the usability of our approach, we can introduce a high-level expressive notation
(such as a notation based on the Linear Temporal Logic) to specify trace components.
Finally, as mentioned in Section 5.3, in practice, we usually do not know the exact forms of
the probability distributions for time metrics. In order to infer quantiles from moments in
the absence of distribution functions with known forms, we plan to develop more advanced
means of statistical inference than the standard method of moments for our approach.

Author Contributions: Conceptualization, G.S. and L.L.; methodology, G.S.; software, G.S.; validation,
G.S. and L.L.; formal analysis, G.S.; writing—original draft preparation, G.S.; writing—review and
editing G.S. and L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Experiment data and implementation is available by contacting the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. van Der Aalst, W.; Van Hee, K.M.; van Hee, K. Workflow Management: Models, Methods, and Systems; MIT Press: Cambridge, MA,

USA, 2004.
2. AWS Step Functions. AWS Step Functions Developer Guide. 2019. Available online: https://docs.aws.amazon.com/step-

functions/latest/dg/welcome.html (accessed on 24 August 2019).
3. Andrade, H.C.M.; Gedik, B.; Turaga, D.S. Fundamentals of Stream Processing: Application Design, Systems, and Analytics; Cambridge

University Press: Cambridge, UK, 2014.
4. Cohen, E.; Strauss, M. Maintaining time-decaying stream aggregates. In Proceedings of the 22nd ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, Philadelphia, PA, USA, 12–17 June 2003; ACM: New York, NY, USA,
2003; pp. 223–233.

5. Wang, G.; Zhang, X.; Tang, S.; Wilson, C.; Zheng, H.; Zhao, B.Y. Clickstream user behavior models. ACM Trans. Web 2017, 11, 21.
[CrossRef]

6. Ye, N.; Zhang, Y.; Borror, C.M. Robustness of the Markov-chain model for cyber-attack detection. IEEE Trans. Reliab. 2004,
53, 116–123. [CrossRef]

7. Rogge-Solti, A.; Weske, M. Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 2015,
54, 1–14. [CrossRef]

8. Katoen, J.P. The Probabilistic Model Checking Landscape. In Proceedings of the 31th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS’16, New York, NY, USA, 5–8 July 2016.

9. Calinescu, R.; Grunske, L.; Kwiatkowska, M.; Mirandola, R.; Tamburrelli, G. Dynamic QoS management and optimization in
service-based systems. IEEE Trans. Softw. Eng. 2011, 37, 387–409. [CrossRef]

10. Cámara, J.; Moreno, G.A.; Garlan, D.; Schmerl, B. Analyzing latency-aware self-adaptation using stochastic games and simulations.
ACM Trans. Auton. Adapt. Syst. 2016, 10, 23. [CrossRef]

11. Filieri, A.; Tamburrelli, G.; Ghezzi, C. Supporting self-adaptation via quantitative verification and sensitivity analysis at run time.
IEEE Trans. Softw. Eng. 2016, 42, 75–99. [CrossRef]

12. Su, G.; Liu, L.; Zhang, M.; Rosenblum, D.S. Quantitative Verification for Monitoring Event-Streaming Systems. IEEE Trans. Softw.
Eng. 2022, 48, 538–550. [CrossRef]

13. Mangi, F.A.; Su, G.; Zhang, M. Statistical Model Checking in Process Mining: A Comprehensive Approach to Analyse Stochastic
Processes. Future Internet 2023, 15, 378. [CrossRef]

14. Kulkarni, V.G. Modeling and Analysis of Stochastic Systems; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016.
15. Su, G.; Chen, T.; Feng, Y.; Rosenblum, D.S. ProEva: Runtime Proactive Performance Evaluation Based on Continuous-time

Markov Chains. In Proceedings of the 39th International Conference on Software Engineering, ICSE’ 17, Piscataway, NJ, USA,
20–28 May 2017; pp. 484–495.

16. Baier, C.; Haverkort, B.; Hermanns, H.; Katoen, J.P. Model-checking algorithms for continuous-time Markov chains. IEEE Trans.
Softw. Eng. 2003, 29, 524–541. [CrossRef]

17. Glatard, T.; Montagnat, J.; Pennec, X. A probabilistic model to analyse workflow performance on production grids. In Proceedings
of the 8th IEEE International Symposium on Cluster Computing and the Grid, Lyon, France, 19–22 May 2008; IEEE: Piscataway,
NJ, USA, 2008; pp. 510–517.

18. Chirkin, A.M.; Belloum, A.S.; Kovalchuk, S.V.; Makkes, M.X.; Melnik, M.A.; Visheratin, A.A.; Nasonov, D.A. Execution time
estimation for workflow scheduling. Future Gener. Comput. Syst. 2017, 75, 376–387. [CrossRef]

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
http://doi.org/10.1145/3068332
http://dx.doi.org/10.1109/TR.2004.823851
http://dx.doi.org/10.1016/j.is.2015.04.004
http://dx.doi.org/10.1109/TSE.2010.92
http://dx.doi.org/10.1145/2774222
http://dx.doi.org/10.1109/TSE.2015.2421318
http://dx.doi.org/10.1109/TSE.2020.2996033
http://dx.doi.org/10.3390/fi15120378
http://dx.doi.org/10.1109/TSE.2003.1205180
http://dx.doi.org/10.1016/j.future.2017.01.011

Future Internet 2024, 16, 319 19 of 19

19. López, G.G.I.; Hermanns, H.; Katoen, J.P. Beyond memoryless distributions: Model checking semi-Markov chains. In Proceedings
of the Joint International Workshop von Process Algebra and Probabilistic Methods, Performance Modeling and Verification,
Aachen, Germany, 12–14 September 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 57–70.

20. Zhang, X.; Hou, Z. The first-passage times of phase semi-Markov processes. Stat. Probab. Lett. 2012, 82, 40–48. [CrossRef]
21. Wasserman, L. All of Statistics: A Concise Course in Statistical Inference; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013.
22. Hwang, S.Y.; Wang, H.; Tang, J.; Srivastava, J. A probabilistic approach to modeling and estimating the QoS of web-services-based

workflows. Inf. Sci. 2007, 177, 5484–5503. [CrossRef]
23. Zheng, Z.; Trivedi, K.S.; Qiu, K.; Xia, R. Semi-Markov models of composite web services for their performance, reliability and

bottlenecks. IEEE Trans. Serv. Comput. 2015, 10, 448–460. [CrossRef]
24. Zheng, H.; Yang, J.; Zhao, W. Probabilistic QoS aggregations for service composition. ACM Trans. Web 2016, 10, 12. [CrossRef]
25. Gan, E.; Ding, J.; Tai, K.S.; Sharan, V.; Bailis, P. Moment-based quantile sketches for efficient high cardinality aggregation queries.

Proc. VLDB Endow. 2018, 11, 1647–1660. [CrossRef]
26. Agarwal, P.K.; Cormode, G.; Huang, Z.; Phillips, J.M.; Wei, Z.; Yi, K. Mergeable summaries. ACM Trans. Database Syst. 2013,

38, 26. [CrossRef]
27. Laury-Micoulaut, C.A. The n-th centered moment of a multiple convolution and its applications to an intercloud gas model.

Astron. Astrophys. 1976, 51, 343–346.
28. Baier, C.; Katoen, J.P. Principles of Model Checking; The MIT Press: Cambridge, MA, USA, 2008.
29. Bertsimas, D.; Popescu, I. Optimal inequalities in probability theory: A convex optimization approach. SIAM J. Optim. 2005,

15, 780–804. [CrossRef]
30. Amalarethinam, D.I.G.; Selvi, F.K.M. A minimum makespan grid workflow scheduling algorithm. In Proceedings of the

2012 International Conference on Computer Communication and Informatics, Coimbatore, India, 10–12 January 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 1–6.

31. Alrifai, M.; Risse, T.; Nejdl, W. A hybrid approach for efficient Web service composition with end-to-end QoS constraints. ACM
Trans. Web 2012, 6, 7. [CrossRef]

32. Pietri, I.; Juve, G.; Deelman, E.; Sakellariou, R. A performance model to estimate execution time of scientific workflows on the
cloud. In Proceedings of the 9th Workshop on Workflows in Support of Large-Scale Science, New Orleans, LA, USA, 16–21
November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 11–19.

33. Zou, G.; Lu, Q.; Chen, Y.; Huang, R.; Xu, Y.; Xiang, Y. QoS-aware dynamic composition of web services using numerical temporal
planning. IEEE Trans. Serv. Comput. 2012, 7, 18–31. [CrossRef]

34. Asghari Alaie, Y.; Hosseini Shirvani, M.; Rahmani, A.M. A hybrid bi-objective scheduling algorithm for execution of scientific
workflows on cloud platforms with execution time and reliability approach. J. Supercomput. 2023, 79, 1451–1503. [CrossRef]

35. Ciardo, G.; German, R.; Lindemann, C. A characterization of the stochastic process underlying a stochastic Petri net. IEEE Trans.
Softw. Eng. 1994, 20, 506–515. [CrossRef]

36. Meyer, P.J.; Esparza, J.; Offtermatt, P. Computing the expected execution time of probabilistic workflow nets. In Proceedings of
the International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Prague, Czech Republic,
6–11 April 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 154–171.

37. Carnevali, L.; Paolieri, M.; Reali, R.; Vicario, E. Compositional Safe Approximation of Response Time Probability Density Function
of Complex Workflows. ACM Trans. Model. Comput. Simul. 2023, 33, 1–26. [CrossRef]

38. Belgacem, A.; Beghdad-Bey, K. Multi-objective workflow scheduling in cloud computing: Trade-Off between makespan and cost.
Cluster Comput. 2022, 25, 579–595. [CrossRef]

39. Wang, W.; Wu, Q.; Zhang, Z.; Zeng, J.; Zhang, X.; Zhou, M. A probabilistic modeling and evolutionary optimization approach for
serverless workflow configuration. Softw. Pract. Exp. 2023, 54, 1697–1713. [CrossRef]

40. Zhang, L.; Ai, M.; Liu, K.; Chen, J.; Li, K. Reliability enhancement strategies for workflow scheduling under energy consumption
constraints in clouds. IEEE Trans. Sustain. Comput. 2024 , 9, 155–169. [CrossRef]

41. Paolieri, M.; Horváth, A.; Vicario, E. Probabilistic model checking of regenerative concurrent systems. IEEE Trans. Softw. Eng.
2016, 42, 153–169. [CrossRef]

42. Bryans, J.; Bowman, H.; Derrick, J. Model checking stochastic automata. ACM Trans. Comput. Log. 2003, 4, 452–492. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.spl.2011.08.021
http://dx.doi.org/10.1016/j.ins.2007.07.011
http://dx.doi.org/10.1109/TSC.2015.2475957
http://dx.doi.org/10.1145/2876513
http://dx.doi.org/10.14778/3236187.3236212
http://dx.doi.org/10.1145/2500128
http://dx.doi.org/10.1137/S1052623401399903
http://dx.doi.org/10.1145/2180861.2180864
http://dx.doi.org/10.1109/TSC.2012.27
http://dx.doi.org/10.1007/s11227-022-04703-0
http://dx.doi.org/10.1109/32.297939
http://dx.doi.org/10.1145/3591205
http://dx.doi.org/10.1007/s10586-021-03432-y
http://dx.doi.org/10.1002/spe.3268
http://dx.doi.org/10.1109/TSUSC.2023.3314759
http://dx.doi.org/10.1109/TSE.2015.2468717
http://dx.doi.org/10.1145/937555.937558

	Introduction
	Background and Problem
	Execution Trace Components
	Execution Time Metric

	Approach Overview
	Model Building
	Transition System for Workflow
	Workflow Execution Summary
	Specification of Trace Component
	SMC Model
	Building the SMC Structure
	Estimating the SMC Quantitative Parameters

	Time Analysis
	First Passage Time
	Linear Systems of Moments
	Moments to Quantiles
	Untimed Probabilistic Analysis

	Application and Evaluation
	AWS Step Functions
	Example: JobDeciderWorkflow
	Execution Time Monitoring
	Model Building
	Evaluation of Computation Time
	Summary and Discussion

	Related Work
	Conclusions
	References

