Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey
Abstract
:1. Introduction
- It examines the application of ML in IoT systems and the role of blockchain in enhancing security within smart cities.
- The survey identifies potential synergies between ML, blockchain, and IoT to create more intelligent and secure urban environments.
- It highlights key challenges, such as scalability and ethical considerations, and outlines future research directions.
2. Machine Learning in IoT Systems for Smart Cities
3. Blockchain for Security and Data Integrity in Smart Cities
4. Synergy of Machine Learning, Blockchain, and IoT in Smart Cities
4.1. Similar Aspects
4.2. Distinct Interactions and Complementary Roles
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Majeed, U.; Khan, L.U.; Yaqoob, I.; Kazmi, S.A.; Salah, K.; Hong, C.S. Blockchain for IoT-based smart cities: Recent advances, requirements, and future challenges. J. Netw. Comput. Appl. 2021, 181, 103007. [Google Scholar] [CrossRef]
- Mohanty, R.; Kumar, B.P. Urbanization and smart cities. In Solving Urban Infrastructure Problems Using Smart City Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 143–158. [Google Scholar]
- Corchado, J.M.; Chamoso, P.; Hernández, G.; Gutierrez, A.S.R.; Camacho, A.R.; González-Briones, A.; Pinto-Santos, F.; Goyenechea, E.; García-Retuerta, D.; Alonso-Miguel, M.; et al. Deepint. net: A rapid deployment platform for smart territories. Sensors 2021, 21, 236. [Google Scholar] [CrossRef]
- Dash, B.; Sharma, P. Role of artificial intelligence in smart cities for information gathering and dissemination (a review). Acad. J. Res. Sci. Publ. 2022, 4, 1–15. [Google Scholar] [CrossRef]
- Bobde, Y.; Narayanan, G.; Jati, M.; Raj, R.S.P.; Cvitić, I.; Peraković, D. Enhancing Industrial IoT Network Security through Blockchain Integration. Electronics 2024, 13, 687. [Google Scholar] [CrossRef]
- Alajlan, R.; Alhumam, N.; Frikha, M. Cybersecurity for blockchain-based IoT systems: A review. Appl. Sci. 2023, 13, 7432. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, A.K.; Mirza, A. Artificial Intelligence-Driven Governance Systems: Smart Cities and Smart Governance. In Digital Transformation, Artificial Intelligence and Society: Opportunities and Challenges; Springer: Berlin/Heidelberg, Germany, 2024; pp. 73–90. [Google Scholar]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Javed, A.R.; Ahmed, W.; Pandya, S.; Maddikunta, P.K.R.; Alazab, M.; Gadekallu, T.R. A survey of explainable artificial intelligence for smart cities. Electronics 2023, 12, 1020. [Google Scholar] [CrossRef]
- Deep, G.; Verma, J. Embracing the future: AI and ML transforming urban environments in smart cities. J. Artif. Intell 2023, 5, 57–73. [Google Scholar] [CrossRef]
- Sha, M.; Boukerche, A. Performance evaluation of CNN-based pedestrian detectors for autonomous vehicles. Ad Hoc Netw. 2022, 128, 102784. [Google Scholar] [CrossRef]
- Allu, A.R.; Mesapam, S. Real-Time Optimization of Traffic Signaling Time Using CNN. Suranaree J. Sci. Technol 2021, 28, 8. [Google Scholar]
- Muthamizharasan, M.; Ponnusamy, R. Forecasting crime event rate with a CNN-LSTM model. In Innovative Data Communication Technologies and Application: Proceedings of ICIDCA 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 461–470. [Google Scholar]
- Li, Q.; Mi, J.; Li, W.; Wang, J.; Cheng, M. CNN-based malware variants detection method for internet of things. IEEE Internet Things J. 2021, 8, 16946–16962. [Google Scholar] [CrossRef]
- Rahhal, J.S.; Abualnadi, D. IOT based predictive maintenance using LSTM RNN estimator. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, M.; Dong, R. Time-series prediction of environmental noise for urban IoT based on long short-term memory recurrent neural network. Appl. Sci. 2020, 10, 1144. [Google Scholar] [CrossRef]
- Saeed, F.; Ahmed, M.J.; Gul, M.J.; Hong, K.J.; Paul, A.; Kavitha, M.S. A robust approach for industrial small-object detection using an improved faster regional convolutional neural network. Sci. Rep. 2021, 11, 23390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl.-Based Syst. 2021, 216, 106775. [Google Scholar] [CrossRef]
- Pandya, S.; Srivastava, G.; Jhaveri, R.; Babu, M.R.; Bhattacharya, S.; Maddikunta, P.K.R.; Mastorakis, S.; Piran, M.J.; Gadekallu, T.R. Federated learning for smart cities: A comprehensive survey. Sustain. Energy Technol. Assess. 2023, 55, 102987. [Google Scholar] [CrossRef]
- Jiang, J.C.; Kantarci, B.; Oktug, S.; Soyata, T. Federated learning in smart city sensing: Challenges and opportunities. Sensors 2020, 20, 6230. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, Y.; Sun, Y.; Wang, Z.; Liu, B.; Li, K. Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges. Connect. Sci. 2022, 34, 1–28. [Google Scholar] [CrossRef]
- Joo, H.; Ahmed, S.H.; Lim, Y. Traffic signal control for smart cities using reinforcement learning. Comput. Commun. 2020, 154, 324–330. [Google Scholar] [CrossRef]
- Louati, A.; Louati, H.; Kariri, E.; Neifar, W.; Hassan, M.K.; Khairi, M.H.; Farahat, M.A.; El-Hoseny, H.M. Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles. Sustainability 2024, 16, 1779. [Google Scholar] [CrossRef]
- Dhaya, R.; Kanthavel, R.; Algarni, F.; Jayarajan, P.; Mahor, A. Reinforcement learning concepts ministering smart city applications using iot. In Internet of Things in Smart Technologies for Sustainable Urban Development; Springer: Cham, Switzerland, 2020; pp. 19–41. [Google Scholar]
- Damadam, S.; Zourbakhsh, M.; Javidan, R.; Faroughi, A. An intelligent IoT based traffic light management system: Deep reinforcement learning. Smart Cities 2022, 5, 1293–1311. [Google Scholar] [CrossRef]
- Chen, W.; Qiu, X.; Cai, T.; Dai, H.N.; Zheng, Z.; Zhang, Y. Deep reinforcement learning for Internet of Things: A comprehensive survey. IEEE Commun. Surv. Tutorials 2021, 23, 1659–1692. [Google Scholar] [CrossRef]
- Islam, M.; Dukyil, A.S.; Alyahya, S.; Habib, S. An IoT enable anomaly detection system for smart city surveillance. Sensors 2023, 23, 2358. [Google Scholar] [CrossRef]
- Al-amri, R.; Murugesan, R.K.; Man, M.; Abdulateef, A.F.; Al-Sharafi, M.A.; Alkahtani, A.A. A review of machine learning and deep learning techniques for anomaly detection in IoT data. Appl. Sci. 2021, 11, 5320. [Google Scholar] [CrossRef]
- Reddy, D.K.; Behera, H.S.; Nayak, J.; Vijayakumar, P.; Naik, B.; Singh, P.K. Deep neural network based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities. Trans. Emerg. Telecommun. Technol. 2021, 32, e4121. [Google Scholar] [CrossRef]
- Agrawal, A.P.; Singh, N. Comparative analysis of SVM kernels and parameters for efficient anomaly detection in IoT. In Proceedings of the 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 22–23 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Chatterjee, A.; Ahmed, B.S. IoT anomaly detection methods and applications: A survey. Internet Things 2022, 19, 100568. [Google Scholar] [CrossRef]
- Gomez-Rosero, S.; Capretz, M.A.; Mir, S. Transfer learning by similarity centred architecture evolution for multiple residential load forecasting. Smart Cities 2021, 4, 217–240. [Google Scholar] [CrossRef]
- Pinto, G.; Wang, Z.; Roy, A.; Hong, T.; Capozzoli, A. Transfer learning for smart buildings: A critical review of algorithms, applications, and future perspectives. Adv. Appl. Energy 2022, 5, 100084. [Google Scholar] [CrossRef]
- Abbas, Q.; Ahmad, G.; Alyas, T.; Alghamdi, T.; Alsaawy, Y.; Alzahrani, A. Revolutionizing Urban Mobility: IoT-Enhanced Autonomous Parking Solutions with Transfer Learning for Smart Cities. Sensors 2023, 23, 8753. [Google Scholar] [CrossRef]
- Vu, L.; Nguyen, Q.U.; Nguyen, D.N.; Hoang, D.T.; Dutkiewicz, E. Deep transfer learning for IoT attack detection. IEEE Access 2020, 8, 107335–107344. [Google Scholar] [CrossRef]
- Lin, H.; Hu, J.; Wang, X.; Alhamid, M.F.; Piran, M.J. Toward secure data fusion in industrial IoT using transfer learning. IEEE Trans. Ind. Inform. 2020, 17, 7114–7122. [Google Scholar] [CrossRef]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future trends and current state of smart city concepts: A survey. IEEE Access 2020, 8, 86448–86467. [Google Scholar] [CrossRef]
- Lai, C.S.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Wong, R.T.; Zobaa, A.F.; Wu, R.; Lai, L.L. A review of technical standards for smart cities. Clean Technol. 2020, 2, 290–310. [Google Scholar] [CrossRef]
- Bauer, M.; Sanchez, L.; Song, J. IoT-enabled smart cities: Evolution and outlook. Sensors 2021, 21, 4511. [Google Scholar] [CrossRef]
- Xihua, Z.; Goyal, S. Security and privacy challenges using IoT-blockchain technology in a smart city: Critical analysis. Int. J. Electr. Electron. Res 2022, 10, 190–195. [Google Scholar] [CrossRef]
- Eghmazi, A.; Ataei, M.; Landry, R.J.; Chevrette, G. Enhancing IoT data security: Using the blockchain to boost data integrity and privacy. IoT 2024, 5, 20–34. [Google Scholar] [CrossRef]
- Cong, R.; Liu, Y.; Tago, K.; Li, R.; Asaeda, H.; Jin, Q. Individual-initiated auditable access control for privacy-preserved IoT data sharing with blockchain. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Padma, A.; Ramaiah, M. Blockchain based an efficient and secure privacy preserved framework for smart cities. IEEE Access 2024, 12, 21985–22002. [Google Scholar] [CrossRef]
- Tyagi, A.K. Decentralized everything: Practical use of blockchain technology in future applications. In Distributed Computing to Blockchain; Elsevier: Amsterdam, The Netherlands, 2023; pp. 19–38. [Google Scholar]
- Ajayi, O.J.; Rafferty, J.; Santos, J.; Garcia-Constantino, M.; Cui, Z. BECA: A Blockchain-Based Edge Computing Architecture for Internet of Things Systems. IoT 2021, 2, 610–632. [Google Scholar] [CrossRef]
- Lashkari, B.; Musilek, P. A comprehensive review of blockchain consensus mechanisms. IEEE Access 2021, 9, 43620–43652. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.P.; Garg, S.; Hassan, M.M. A distributed intrusion detection system to detect DDoS attacks in blockchain-enabled IoT network. J. Parallel Distrib. Comput. 2022, 164, 55–68. [Google Scholar] [CrossRef]
- Ansar, K.; Ahmed, M.; Helfert, M.; Kim, J. Blockchain-Based Data Breach Detection: Approaches, Challenges, and Future Directions. Mathematics 2023, 12, 107. [Google Scholar] [CrossRef]
- Rahman, A.; Islam, M.J.; Khan, M.S.I.; Kabir, S.; Pritom, A.I.; Karim, M.R. Block-sdotcloud: Enhancing security of cloud storage through blockchain-based sdn in iot network. In Proceedings of the 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 19–20 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Khan, D.; Jung, L.T.; Hashmani, M.A. Systematic literature review of challenges in blockchain scalability. Appl. Sci. 2021, 11, 9372. [Google Scholar] [CrossRef]
- Li, Z.; Sharma, V.; Mohanty, S.P. Preserving data privacy via federated learning: Challenges and solutions. IEEE Consum. Electron. Mag. 2020, 9, 8–16. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, T.; Bashir, A.K.; Alazab, M.; Mumtaz, S.; Wang, X. A decentralized mechanism based on differential privacy for privacy-preserving computation in smart grid. IEEE Trans. Comput. 2021, 71, 2915–2926. [Google Scholar] [CrossRef]
- Hassan, M.U.; Rehmani, M.H.; Chen, J. Differential privacy in blockchain technology: A futuristic approach. J. Parallel Distrib. Comput. 2020, 145, 50–74. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Parizi, R.M. A robust privacy-preserving federated learning model against model poisoning attacks. IEEE Trans. Inf. Forensics Secur. 2024, 19, 6693–6708. [Google Scholar] [CrossRef]
- Rahman, M.S.; Chamikara, M.; Khalil, I.; Bouras, A. Blockchain-of-blockchains: An interoperable blockchain platform for ensuring IoT data integrity in smart city. J. Ind. Inf. Integr. 2022, 30, 100408. [Google Scholar] [CrossRef]
- Ali, M.; Karimipour, H.; Tariq, M. Integration of blockchain and federated learning for Internet of Things: Recent advances and future challenges. Comput. Secur. 2021, 108, 102355. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D.; Li, Z.; Lyu, L.; Liu, Y. Privacy-preserving blockchain-based federated learning for IoT devices. IEEE Internet Things J. 2020, 8, 1817–1829. [Google Scholar] [CrossRef]
- Ali, A.; Al-Rimy, B.A.S.; Almazroi, A.A.; Alsubaei, F.S.; Almazroi, A.A.; Saeed, F. Securing secrets in cyber-physical systems: A cutting-edge privacy approach with consortium blockchain. Sensors 2023, 23, 7162. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, E.R.D.; García-Alonso, J.; Moguel, E.; Alegría, J.A.H. Blockchain for healthcare management systems: A survey on interoperability and security. IEEE Access 2023, 11, 5629–5652. [Google Scholar] [CrossRef]
- Rehman, A.; Naz, S.; Razzak, I. Leveraging big data analytics in healthcare enhancement: Trends, challenges and opportunities. Multimed. Syst. 2022, 28, 1339–1371. [Google Scholar] [CrossRef]
- Dedeoglu, V.; Malik, S.; Ramachandran, G.; Pal, S.; Jurdak, R. Blockchain meets edge-AI for food supply chain traceability and provenance. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2023; Volume 101, pp. 251–275. [Google Scholar]
- Sedlmeir, J.; Buhl, H.U.; Fridgen, G.; Keller, R. The energy consumption of blockchain technology: Beyond myth. Bus. Inf. Syst. Eng. 2020, 62, 599–608. [Google Scholar] [CrossRef]
- Sarker, I.H. Smart City Data Science: Towards data-driven smart cities with open research issues. Internet Things 2022, 19, 100528. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Aledhari, M. Enabling drones in the internet of things with decentralized blockchain-based security. IEEE Internet Things J. 2020, 8, 6406–6415. [Google Scholar] [CrossRef]
- Khan, S.N.; Loukil, F.; Ghedira-Guegan, C.; Benkhelifa, E.; Bani-Hani, A. Blockchain smart contracts: Applications, challenges, and future trends. Peer- Netw. Appl. 2021, 14, 2901–2925. [Google Scholar] [CrossRef] [PubMed]
- Hewa, T.M.; Hu, Y.; Liyanage, M.; Kanhare, S.S.; Ylianttila, M. Survey on blockchain-based smart contracts: Technical aspects and future research. IEEE Access 2021, 9, 87643–87662. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Li, D.; Yu, H.; Wu, Q. Fleetchain: A secure scalable and responsive blockchain achieving optimal sharding. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, New York City, NY, USA, 2–4 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 409–425. [Google Scholar]
- Zheng, P.; Xu, Q.; Zheng, Z.; Zhou, Z.; Yan, Y.; Zhang, H. Meepo: Sharded consortium blockchain. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1847–1852. [Google Scholar]
- Aiyar, K.; Halgamuge, M.N.; Mohammad, A. Probability distribution model to analyze the trade-off between scalability and security of sharding-based blockchain networks. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Hong, Z.; Guo, S.; Li, P.; Chen, W. Pyramid: A layered sharding blockchain system. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10. [Google Scholar]
- Platt, M.; Sedlmeir, J.; Platt, D.; Xu, J.; Tasca, P.; Vadgama, N.; Ibañez, J.I. The energy footprint of blockchain consensus mechanisms beyond proof-of-work. In Proceedings of the 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Hainan, China, 6–10 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1135–1144. [Google Scholar]
- Gallersdörfer, U.; Klaaßen, L.; Stoll, C. Energy consumption of cryptocurrencies beyond bitcoin. Joule 2020, 4, 1843–1846. [Google Scholar] [CrossRef]
- Zhang, R.; Chan, W.K.V. Evaluation of energy consumption in block-chains with proof of work and proof of stake. J. Phys. Conf. Ser. 2020, 1584, 012023. [Google Scholar] [CrossRef]
- Riđić, O.; Jukić, T.; Riđić, G.; Mangafić, J.; Bušatlić, S.; Karamehić, J. Implementation of blockchain technologies in smart cities, opportunities and challenges. In Blockchain Technologies for Sustainability; Springer: Singapore, 2022; pp. 71–89. [Google Scholar]
- Zhou, S.; Li, K.; Xiao, L.; Cai, J.; Liang, W.; Castiglione, A. A systematic review of consensus mechanisms in blockchain. Mathematics 2023, 11, 2248. [Google Scholar] [CrossRef]
- Wen, Y.; Lu, F.; Liu, Y.; Cong, P.; Huang, X. Blockchain consensus mechanisms and their applications in iot: A literature survey. In Proceedings of the Algorithms and Architectures for Parallel Processing: 20th International Conference, ICA3PP 2020, New York City, NY, USA, 2–4 October 2020; Proceedings, Part III 20. Springer: Berlin/Heidelberg, Germany, 2020; pp. 564–579. [Google Scholar]
- Ullah, Z.; Naeem, M.; Coronato, A.; Ribino, P.; De Pietro, G. Blockchain applications in sustainable smart cities. Sustain. Cities Soc. 2023, 97, 104697. [Google Scholar] [CrossRef]
- Kumar, R.; Jain, V.; Yie, L.W.; Teyarachakul, S. Convergence of IoT, Blockchain, and Computational Intelligence in Smart Cities; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Ullah, A.; Anwar, S.M.; Li, J.; Nadeem, L.; Mahmood, T.; Rehman, A.; Saba, T. Smart cities: The role of Internet of Things and machine learning in realizing a data-centric smart environment. Complex Intell. Syst. 2024, 10, 1607–1637. [Google Scholar] [CrossRef]
- Alrashdi, I.; Alqazzaz, A. Synergizing AI, IoT, and Blockchain for Diagnosing Pandemic Diseases in Smart Cities: Challenges and Opportunities. Sustain. Mach. Intell. J. 2024, 7, 1–6. [Google Scholar] [CrossRef]
- Goyal, S.; Goyal, I.; Ahmed, T. A Review on Machine Learning Techniques in IoT-Based Smart Grid Applications. In Proceedings of the International Conference on Recent Trends in Image Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2023; pp. 151–164. [Google Scholar]
- Abir, S.A.A.; Anwar, A.; Choi, J.; Kayes, A. Iot-enabled smart energy grid: Applications and challenges. IEEE Access 2021, 9, 50961–50981. [Google Scholar] [CrossRef]
- Saleem, M.; Abbas, S.; Ghazal, T.M.; Khan, M.A.; Sahawneh, N.; Ahmad, M. Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egypt. Inform. J. 2022, 23, 417–426. [Google Scholar] [CrossRef]
- Sharma, A.; Podoplelova, E.; Shapovalov, G.; Tselykh, A.; Tselykh, A. Sustainable smart cities: Convergence of artificial intelligence and blockchain. Sustainability 2021, 13, 13076. [Google Scholar] [CrossRef]
- Kayikci, S.; Khoshgoftaar, T.M. Blockchain meets machine learning: A survey. J. Big Data 2024, 11, 9. [Google Scholar] [CrossRef]
- Masa’deh, R.; Jaber, M.; Sharabati, A.A.A.; Nasereddin, A.Y.; Marei, A. The Blockchain Effect on Courier Supply Chains Digitalization and Its Contribution to Industry 4.0 within the Circular Economy. Sustainability 2024, 16, 7218. [Google Scholar] [CrossRef]
- Salimitari, M.; Chatterjee, M.; Fallah, Y.P. A survey on consensus methods in blockchain for resource-constrained IoT networks. Internet Things 2020, 11, 100212. [Google Scholar] [CrossRef]
- André, M.; Margarida, J.; Garcia, H.; Dante, A. Complexities of Blockchain technology and distributed ledger technologies: A detailed inspection. Fusion Multidiscip. Res. Int. J. 2021, 2, 164–177. [Google Scholar]
- Shurman, M.; Obeidat, A.A.R.; Al-Shurman, S.A.D. Blockchain and smart contract for IoT. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 361–366. [Google Scholar]
- Jamil, F.; Iqbal, N.; Ahmad, S.; Kim, D. Peer-to-peer energy trading mechanism based on blockchain and machine learning for sustainable electrical power supply in smart grid. IEEE Access 2021, 9, 39193–39217. [Google Scholar] [CrossRef]
- Esmat, A.; de Vos, M.; Ghiassi-Farrokhfal, Y.; Palensky, P.; Epema, D. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl. Energy 2021, 282, 116123. [Google Scholar] [CrossRef]
- Muneeb, M.; Raza, Z.; Haq, I.U.; Shafiq, O. Smartcon: A blockchain-based framework for smart contracts and transaction management. IEEE Access 2021, 10, 23687–23699. [Google Scholar] [CrossRef]
- Hemashree, P.; Kavitha, V.; Mahalakshmi, S.; Praveena, K.; Tarunika, R. Machine Learning Approaches in Blockchain Technology-Based IoT Security: An Investigation on Current Developments and Open Challenges. In Blockchain Transformations: Navigating the Decentralized Protocols Era; Springer: Berlin/Heidelberg, Germany, 2024; pp. 107–130. [Google Scholar]
- Matei, A.; Cocoșatu, M. Artificial Internet of Things, Sensor-Based Digital Twin Urban Computing Vision Algorithms, and Blockchain Cloud Networks in Sustainable Smart City Administration. Sustainability 2024, 16, 6749. [Google Scholar] [CrossRef]
- Ahmed, I.; Zhang, Y.; Jeon, G.; Lin, W.; Khosravi, M.R.; Qi, L. A blockchain-and artificial intelligence-enabled smart IoT framework for sustainable city. Int. J. Intell. Syst. 2022, 37, 6493–6507. [Google Scholar] [CrossRef]
- Tsampoulatidis, I.; Komninos, N.; Syrmos, E.; Bechtsis, D. Universality and interoperability across smart city ecosystems. In Proceedings of the International Conference on Human-Computer Interaction, Virtual Event, 26 June–1 July 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 218–230. [Google Scholar]
- Cui, L.; Qu, Y.; Xie, G.; Zeng, D.; Li, R.; Shen, S.; Yu, S. Security and privacy-enhanced federated learning for anomaly detection in IoT infrastructures. IEEE Trans. Ind. Inform. 2021, 18, 3492–3500. [Google Scholar] [CrossRef]
- Otoum, S.; Al Ridhawi, I.; Mouftah, H. Securing critical IoT infrastructures with blockchain-supported federated learning. IEEE Internet Things J. 2021, 9, 2592–2601. [Google Scholar] [CrossRef]
- Yu, F.; Lin, H.; Wang, X.; Yassine, A.; Hossain, M.S. Blockchain-empowered secure federated learning system: Architecture and applications. Comput. Commun. 2022, 196, 55–65. [Google Scholar] [CrossRef]
- Ruzbahani, A.M. AI-Protected Blockchain-based IoT environments: Harnessing the Future of Network Security and Privacy. arXiv 2024, arXiv:2405.13847. [Google Scholar]
- Kumar, P.; Kumar, R.; Srivastava, G.; Gupta, G.P.; Tripathi, R.; Gadekallu, T.R.; Xiong, N.N. PPSF: A privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2326–2341. [Google Scholar] [CrossRef]
- Makhdoom, I.; Zhou, I.; Abolhasan, M.; Lipman, J.; Ni, W. PrivySharing: A blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 2020, 88, 101653. [Google Scholar] [CrossRef]
- Sezer, B.B.; Turkmen, H.; Nuriyev, U. PPFchain: A novel framework privacy-preserving blockchain-based federated learning method for sensor networks. Internet Things 2023, 22, 100781. [Google Scholar] [CrossRef]
- Simonet-Boulogne, A.; Solberg, A.; Sinaeepourfard, A.; Roman, D.; Perales, F.; Ledakis, G.; Plakas, I.; Sengupta, S. Toward blockchain-based fog and edge computing for privacy-preserving smart cities. Front. Sustain. Cities 2022, 4, 846987. [Google Scholar] [CrossRef]
- Valencia-Arias, A.; González-Ruiz, J.D.; Verde Flores, L.; Vega-Mori, L.; Rodríguez-Correa, P.; Sánchez Santos, G. Machine Learning and Blockchain: A Bibliometric Study on Security and Privacy. Information 2024, 15, 65. [Google Scholar] [CrossRef]
- Tong, Z.; Ye, F.; Yan, M.; Liu, H.; Basodi, S. A survey on algorithms for intelligent computing and smart city applications. Big Data Min. Anal. 2021, 4, 155–172. [Google Scholar] [CrossRef]
- Tang, S.; Chen, L.; He, K.; Xia, J.; Fan, L.; Nallanathan, A. Computational intelligence and deep learning for next-generation edge-enabled industrial IoT. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2881–2893. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455. [Google Scholar] [CrossRef]
- Singh, S.K.; Rathore, S.; Park, J.H. Blockiotintelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Gener. Comput. Syst. 2020, 110, 721–743. [Google Scholar] [CrossRef]
- Auhl, Z.; Chilamkurti, N.; Alhadad, R.; Heyne, W. A Comparative study of consensus mechanisms in blockchain for IoT networks. Electronics 2022, 11, 2694. [Google Scholar] [CrossRef]
- Biswas, S.; Yao, Z.; Yan, L.; Alqhatani, A.; Bairagi, A.K.; Asiri, F.; Masud, M. Interoperability benefits and challenges in smart city services: Blockchain as a solution. Electronics 2023, 12, 1036. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Keogh, J.G. Blockchain technology in the smart city: A bibliometric review. Qual. Quant. 2022, 56, 2875–2906. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, S.; Kim, J. City data hub: Implementation of standard-based smart city data platform for interoperability. Sensors 2020, 20, 7000. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Maabreh, M.; Ghaly, M.; Khan, K.; Qadir, J.; Al-Fuqaha, A. Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges. Comput. Sci. Rev. 2022, 43, 100452. [Google Scholar] [CrossRef]
- Ahmad, K.; Maabreh, M.; Ghaly, M.; Khan, K.; Qadir, J.; Al-Fuqaha, A. Developing future human-centered smart cities: Critical analysis of smart city security, interpretability, and ethical challenges. arXiv 2020, arXiv:2012.09110. [Google Scholar]
- Ziosi, M.; Hewitt, B.; Juneja, P.; Taddeo, M.; Floridi, L. Smart cities: Mapping their ethical implications. SSRN Electron. J. 2022, 10. [Google Scholar] [CrossRef]
- Park, J.; Lim, H. Privacy-preserving federated learning using homomorphic encryption. Appl. Sci. 2022, 12, 734. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, T.; Yu, F.R.; Li, M.; Zhang, D.; Zhao, X. Blockchain-Based Federated Learning with Enhanced Privacy and Security Using Homomorphic Encryption and Reputation. IEEE Internet Things J. 2024, 11, 21674–21688. [Google Scholar] [CrossRef]
- Singh, P.; Masud, M.; Hossain, M.S.; Kaur, A. Blockchain and homomorphic encryption-based privacy-preserving data aggregation model in smart grid. Comput. Electr. Eng. 2021, 93, 107209. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, G.P.; Tripathi, R. TP2SF: A Trustworthy Privacy-Preserving Secured Framework for sustainable smart cities by leveraging blockchain and machine learning. J. Syst. Archit. 2021, 115, 101954. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet Things 2020, 11, 100227. [Google Scholar] [CrossRef]
- Rathore, S.; Park, J.H. A blockchain-based deep learning approach for cyber security in next generation industrial cyber-physical systems. IEEE Trans. Ind. Inform. 2020, 17, 5522–5532. [Google Scholar] [CrossRef]
Approach | References | Summary |
---|---|---|
AI & ML | [7,8,9,10] | Application of AI and ML for smart governance, traffic control, healthcare, crime forecasting, and more in smart cities. |
CNN-based | [11,12,13,14] | Use of CNNs for pedestrian detection, traffic signal optimization, crime prediction, and malware detection. |
RNN-based | [15,16,17,18] | Application of RNNs for time-series prediction, environmental noise prediction, and small-object detection in industrial settings. |
FL | [19,20,21,22] | Privacy-preserving data analysis and decentralized data processing in smart cities using FL techniques. |
RL-based | [23,24,25,26,27] | Use of RL for optimizing traffic signal control, autonomous vehicles, smart energy grids, and other IoT systems in smart cities. |
Deep & Unsupervised Learning | [28,29,30,31,32] | Application of deep and unsupervised learning techniques for anomaly detection in IoT systems within smart cities. |
Transfer Learning | [33,34,35,36,37] | Research on the application of transfer learning for IoT, smart buildings, IoT attack detection, and secure data fusion in industrial IoT. |
IoT and Smart Cities—Overview | [38,39,40,41] | Overview of technologies, practices, and challenges related to IoT in smart cities, including a broad analysis of IoT ecosystems and their development in urban settings. |
Topic | References | Description |
---|---|---|
Blockchain for Security & Data Integrity | [42,43,44,45,46] | Discusses the role of blockchain in enhancing security and ensuring data integrity within IoT systems in smart cities, focusing on aspects like cryptographic security and protection against cyber threats. |
Blockchain & Cybersecurity | [47,48,49,50,51] | Focuses on how blockchain can be used to prevent cyber threats, such as DDoS attacks, data breaches, and unauthorized data modifications in IoT networks. |
FL vs Blockchain for Privacy | [52,53,54,55] | Compares FL to blockchain, focusing on how these technologies maintain data privacy and security in smart city environments, with blockchain ensuring data integrity through decentralized ledgers. |
Blockchain & FL Integration Challenges | [56,57,58,59] | Discusses the challenges of integrating blockchain with FL in IoT systems, including issues like model poisoning and balancing privacy with security. |
Blockchain Integration in Smart Cities | [60,61,62,63] | Examines the integration of blockchain technology into smart city infrastructure, highlighting its use in public health monitoring, energy management, and urban governance. |
Smart Contracts & Blockchain | [64,65,66,67,68] | Explores the application of smart contracts within blockchain frameworks in smart cities, enabling automated processes like energy trading and enhancing transparency in urban management. |
Blockchain Scalability & Performance | [69,70,71,72] | Discusses challenges related to the scalability of blockchain networks in smart cities, and explores solutions like sharding and layer-two protocols to improve performance. |
Consensus Mechanisms in Blockchain | [73,74,75] | Evaluates different blockchain consensus mechanisms (e.g., proof of stake, sharding) and their impact on scalability, energy efficiency, and security in smart cities. |
Blockchain & Smart City Applications | [76,77,78] | Provides insights into the practical applications of blockchain in smart cities, including challenges and opportunities for enhancing urban resilience and sustainability through blockchain technology. |
Topic | References | Description |
---|---|---|
ML, Blockchain & IoT | [79,80,81,82] | Discussion on the synergy and integration of ML, blockchain, and IoT in smart cities. |
ML in IoT | [83,84,85,86] | Application of ML within IoT systems for smart city services like traffic management, energy optimization, and anomaly detection. |
Blockchain for Automation & Integrity | [87,88,89,90,91,92,93,94] | Use of blockchain and smart contracts to automate processes and ensure data integrity in smart cities. |
Interoperability & Data Privacy | [95,96,97,98] | Challenges and solutions related to interoperability among systems and maintaining data privacy in smart city integrations. |
FL & Security | [99,100,101,102] | Use of FL in IoT environments to enhance security and privacy with blockchain integration. |
Privacy-Preserving Frameworks | [103,104,105,106] | Focuses on privacy-preserving frameworks using blockchain and ML to ensure secure and private data management in IoT-driven smart cities. |
Topic | References | Description |
---|---|---|
ComputationalDemands in ML | [107,108,109] | Discusses the challenges related to the computational demands of ML algorithms in IoT environments. |
Scalability in Blockchain | [110,111,112] | Explores issues related to the scalability of blockchain technologies, especially in the context of IoT networks in smart cities, and potential solutions. |
Interoperability in Smart Cities | [113,114,115] | Focuses on the challenges and solutions related to interoperability among diverse systems in smart cities. |
Ethical & Governance Challenges | [116,117,118] | Addresses the ethical implications and governance challenges of integrating ML, blockchain, and IoT in smart cities, including issues of transparency and bias. |
Privacy-PreservingTechnologies | [119,120,121] | Covers the use of privacy-preserving technologies, such as homomorphic encryption and FL, in ensuring secure and private data handling in smart cities. |
Trustworthy & Secure Frameworks | [122,123,124] | Focuses on developing secure and trustworthy frameworks that leverage blockchain, ML, and IoT for smart cities, ensuring robust security and privacy measures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dritsas, E.; Trigka, M. Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey. Future Internet 2024, 16, 324. https://doi.org/10.3390/fi16090324
Dritsas E, Trigka M. Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey. Future Internet. 2024; 16(9):324. https://doi.org/10.3390/fi16090324
Chicago/Turabian StyleDritsas, Elias, and Maria Trigka. 2024. "Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey" Future Internet 16, no. 9: 324. https://doi.org/10.3390/fi16090324
APA StyleDritsas, E., & Trigka, M. (2024). Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey. Future Internet, 16(9), 324. https://doi.org/10.3390/fi16090324