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Abstract: The integration of machine learning (ML), blockchain, and the Internet of Things (IoT)
in smart cities represents a pivotal advancement in urban innovation. This convergence addresses
the complexities of modern urban environments by leveraging ML’s data analytics and predictive
capabilities to enhance the intelligence of IoT systems, while blockchain provides a secure, decen-
tralized framework that ensures data integrity and trust. The synergy of these technologies not
only optimizes urban management but also fortifies security and privacy in increasingly connected
cities. This survey explores the transformative potential of ML-driven blockchain-IoT ecosystems
in enabling autonomous, resilient, and sustainable smart city infrastructure. It also discusses the
challenges such as scalability, privacy, and ethical considerations, and outlines possible applications
and future research directions that are critical for advancing smart city initiatives. Understanding
these dynamics is essential for realizing the full potential of smart cities, where technology enhances
not only efficiency but also urban sustainability and resilience.
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1. Introduction

The rapid and ongoing urbanization of global populations has fundamentally trans-
formed the dynamics of modern cities, necessitating the development of advanced techno-
logical infrastructure capable of managing the increasing complexity of urban environments.
At the heart of this transformation is the concept of smart cities—urban ecosystems that
leverage cutting-edge technologies to optimize the efficiency of city services, enhance the
quality of life for residents, and ensure sustainable development. The IoT and blockchain
technologies constitute central concepts to this vision, serving as the backbone for data
collection, processing, and secure management across diverse urban domains [1,2].

IoT systems enable the pervasive monitoring of urban infrastructure, generating an
unprecedented volume of real-time data that can be used to make informed decisions in
areas such as traffic management, energy distribution, waste disposal, and public safety.
However, the sheer scale and complexity of IoT-generated data present significant chal-
lenges to processing, analysis, and security. The integration of ML within this framework
offers a powerful means to address these challenges. ML algorithms, due to their ability to
learn from data, identify patterns, and make predictions, are uniquely suited to extracting
actionable insights from the vast and heterogeneous datasets produced by IoT devices [3,4].

Moreover, the decentralized nature of IoT systems introduces vulnerabilities, partic-
ularly related to data integrity, privacy, and security. Blockchain technology, thanks to a
decentralized and immutable ledger system, provides a robust solution to these challenges,
ensuring the secure and transparent management of data across the smart city ecosystem.
The cooperation of ML, blockchain, and IoT thus presents a transformative approach to the
development of smart cities, where data-driven decision-making is enhanced by secure
and trustworthy information management [5,6].
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Capitalizing on the previous studies, several focus areas were identified i.e., the
importance of secure and scalable frameworks and data-driven decision-making, which
guided the further exploration of how ML, blockchain, and IoT collaborate to create
intelligent and resilient urban infrastructure. Nowadays, with IoT generating large-scale
data, ML is essential for deriving insights, while blockchain ensures the need for data
integrity and security. The insights gained from these studies helped to frame the survey’s
focus on the synergies and challenges of these technological fields. These areas are reflected
in the structure and content of the paper and direct the literature review. The executed
study was motivated by the need to make a focused presentation of works aimed at
analyzing how the combination of ML, blockchain, and IoT can address these rising issues
in smart cities in the era of rapid urbanization. More specifically, this survey makes the
following contributions:

• It examines the application of ML in IoT systems and the role of blockchain in enhanc-
ing security within smart cities.

• The survey identifies potential synergies between ML, blockchain, and IoT to create
more intelligent and secure urban environments.

• It highlights key challenges, such as scalability and ethical considerations, and outlines
future research directions.

The key topics explored in the subsequent sections are depicted in Figure 1, which
reflects the structure of the work. The paper is organized as follows. Section 2 details
the integration of ML into IoT systems for smart cities. Section 3 explores blockchain for
security and data integrity in smart cities. Moreover, Section 4 discusses the synergy of
ML, blockchain, and IoT in smart cities. Section 5 outlines challenges and future directions.
Finally, Section 6 summarizes the findings of this survey.
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Figure 1. Overview of the survey focus areas.

2. Machine Learning in IoT Systems for Smart Cities

In the context of smart cities, the integration of ML into IoT systems transcends
conventional data processing and analytics, offering sophisticated mechanisms for real-
time decision-making, anomaly detection, and system optimization. The complexity and
scale of urban IoT networks necessitate the deployment of advanced ML models that can
operate efficiently under constraints such as limited computational power, varying network
conditions, and the need for real-time responsiveness [7–10].
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Deep learning (DL) models, particularly convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), are pivotal in extracting high-level features from vast,
heterogeneous IoT data streams. For instance, CNNs are instrumental in processing
visual data from city-wide surveillance systems, enabling real-time recognition of patterns
related to traffic density, pedestrian movement, and even criminal activity [11–14]. RNNs,
with their ability to handle sequential data, excel in predictive maintenance scenarios,
where they can analyze time-series data from sensors to forecast equipment failures with
high accuracy [15–18].

Moreover, the advent of federated learning (FL) has addressed the challenges of data
privacy and decentralized data processing in smart cities. FL allows ML models to be
trained across multiple edge devices—such as sensors, cameras, and actuators—without
the need to centralize data. This approach not only mitigates privacy concerns by ensuring
that sensitive data remain on the device but also reduces the latency and bandwidth
requirements associated with transmitting data to a central server for processing. In smart
cities, FL facilitates the creation of robust, localized models that are capable of adapting to
the specific conditions of different urban areas, thereby enhancing the overall efficiency
and responsiveness of IoT systems [19–22].

In addition to predictive analytics, reinforcement learning (RL) has emerged as a
powerful tool for dynamic optimization in smart city IoT systems. RL algorithms enable
IoT devices to learn optimal strategies through trial and error, continuously improving
their performance in dynamic environments. For example, in smart traffic management,
RL-based systems can dynamically adjust traffic signal timings in response to real-time
traffic conditions, leading to significant reductions in congestion and travel time. Similarly,
in smart energy grids, RL can optimize the distribution of energy in real time, balancing
supply and demand while minimizing energy loss and maximizing the use of renewable
sources [23–27].

Another critical aspect of ML in IoT for smart cities is anomaly detection. As urban
IoT systems are inherently complex and operate in unpredictable environments, the ability
to detect anomalies—such as unusual traffic patterns, abnormal energy consumption,
or unauthorized access to sensitive areas—is crucial for maintaining the security and
efficiency of the city. Advanced ML techniques, including unsupervised learning and
deep anomaly detection methods, are particularly effective in identifying these anomalies.
These techniques can autonomously learn the normal operating patterns of various systems
and flag deviations that may indicate potential issues or security threats. For instance,
autoencoders—a type of neural network—can be employed to compress and reconstruct
data, with significant reconstruction errors signaling potential anomalies that require
further investigation [28–32].

What is more, integrating transfer learning into IoT systems enables the adaptation of
pre-trained ML models to new urban environments with minimal additional data. This
capability is especially valuable in smart cities, where the conditions and requirements can
vary significantly across different regions. Transfer learning allows models trained on data
from one part of the city—or even from another city entirely—to be quickly adapted to new
contexts, thereby accelerating the deployment of intelligent IoT solutions and reducing the
time and resources needed for training [33–37].

In summary, applying advanced ML techniques in IoT systems for smart cities extends
far beyond traditional analytics, enabling real-time, adaptive, and context-aware solutions
that can handle the complexities of modern urban environments. These capabilities are
essential for the continuous improvement and optimization of smart city systems, ensuring
that they can meet the evolving needs of urban populations while maintaining security,
efficiency, and resilience [38–41]. Table 1 provides a comprehensive summary of the
artificial intelligence (AI), ML, and DL approaches employed in smart cities, detailing the
methodologies and innovations that drive these intelligent systems. By encapsulating the
key contributions of each approach, the table offers a clear comparison of their impact on
enhancing urban management and the overall functionality of smart city ecosystems.
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Table 1. Use of AI, ML, and DL approaches in IoT for smart cities.

Approach References Summary

AI & ML [7–10]
Application of AI and ML for smart
governance, traffic control, healthcare,
crime forecasting, and more in smart cities.

CNN-based [11–14]
Use of CNNs for pedestrian detection,
traffic signal optimization, crime prediction,
and malware detection.

RNN-based [15–18]

Application of RNNs for time-series
prediction, environmental noise prediction,
and small-object detection in industrial
settings.

FL [19–22]
Privacy-preserving data analysis and
decentralized data processing in smart
cities using FL techniques.

RL-based [23–27]
Use of RL for optimizing traffic signal
control, autonomous vehicles, smart energy
grids, and other IoT systems in smart cities.

Deep & Unsupervised
Learning [28–32]

Application of deep and unsupervised
learning techniques for anomaly detection
in IoT systems within smart cities.

Transfer Learning [33–37]

Research on the application of transfer
learning for IoT, smart buildings, IoT attack
detection, and secure data fusion in
industrial IoT.

IoT and Smart
Cities—Overview [38–41]

Overview of technologies, practices,
and challenges related to IoT in smart cities,
including a broad analysis of IoT
ecosystems and their development in urban
settings.

3. Blockchain for Security and Data Integrity in Smart Cities

In the intricate landscape of smart cities, where millions of interconnected IoT devices
continuously generate and exchange data, ensuring the security and integrity of these
data is paramount. Blockchain technology emerges as a critical solution, providing a
decentralized and immutable framework that addresses these pressing concerns [42].

The decentralized nature of blockchain aligns seamlessly with the distributed archi-
tecture of IoT systems, creating a robust foundation for secure data management. Each
transaction or data exchange in a blockchain network is recorded in a cryptographically
secured block, which is then linked to the previous block, forming a chain. This immutable
ledger ensures that once data are recorded they cannot be altered or tampered with, pro-
viding an unprecedented level of data integrity. This characteristic is particularly vital in
smart cities, where the reliability of data directly impacts the efficacy of urban management
systems, from traffic control to energy distribution [43–46].

Blockchain also enhances security through its consensus mechanisms, which require
network participants to agree on the validity of transactions before they are added to the
blockchain. This consensus process significantly reduces the risk of data manipulation,
as altering the blockchain would require the collusion of a majority of participants, which is
computationally infeasible in well-designed networks. This property is crucial in protecting
against various cyber threats that target centralized databases, such as Distributed Denial
of Service (DDoS) attacks, data breaches, and unauthorized data modifications [47–51].

While blockchain technology excels in ensuring data integrity and transparency
through its decentralized ledger system, it faces significant challenges, particularly in
terms of scalability and privacy. FL offers an alternative decentralized approach that fo-
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cuses on maintaining data privacy by keeping data localized on edge devices. Unlike
blockchain, which requires data to be recorded on a public ledger, FL trains machine learn-
ing models directly on the devices without transferring the raw data, thereby inherently
preserving privacy through techniques such as differential privacy [52–55].

However, while FL enhances privacy and reduces the risks of data breaches, it comes
with its own set of vulnerabilities, such as potential exposure to model poisoning attacks
where malicious participants can compromise the model’s integrity. This contrasts with
blockchain’s strength in data integrity and security, which is ensured through crypto-
graphic mechanisms and consensus protocols. Therefore, the choice between implementing
blockchain or FL in IoT systems should be based on the specific needs of the application,
particularly in balancing the demands for privacy, security, and scalability [56–59].

Moreover, blockchain’s role in ensuring data provenance and traceability is indispens-
able in smart cities. In complex urban environments, where data from multiple sources
are continuously integrated and analyzed, the ability to trace the origin and modifications
of data becomes essential for accountability and transparency. Blockchain provides an
unalterable history of data transactions, enabling city administrators and stakeholders to
verify the authenticity and source of the data. This traceability is particularly beneficial in
critical applications such as public health monitoring, where accurate data provenance is
necessary to make informed decisions during emergencies, such as disease outbreaks or
environmental hazards [60–63].

Smart contracts, another pivotal feature of blockchain, further augment security and
operational efficiency in smart cities. These self-executing contracts with predefined rules
and conditions automate and enforce agreements between parties without the need for
intermediaries. In smart city applications, smart contracts can streamline a wide range
of processes, from automated billing and payments in smart utilities to real-time traffic
management systems. By embedding these contracts into blockchain, cities can ensure that
all transactions and processes are executed as intended, with full transparency and without
the risk of human error or corruption [64–68].

However, the integration of blockchain in smart cities is not without challenges.
The scalability of blockchain networks is a significant concern, especially as the number
of IoT devices continues to grow exponentially. Traditional blockchain systems, such as
Bitcoin or Ethereum, face limitations in transaction throughput and latency, which could
hinder their application in high-density urban environments. To address these challenges,
advancements in blockchain technologies, such as sharding, sidechains, and layer-two
solutions, are being explored. These innovations aim to enhance the scalability and per-
formance of blockchain networks, making them more suitable for the demands of smart
cities [69–72].

Furthermore, the energy consumption of blockchain, particularly in proof-of-work con-
sensus mechanisms, poses a sustainability challenge in the context of smart cities. Since
smart cities are designed to promote sustainability and energy efficiency, integrating energy-
intensive blockchain systems could be counterproductive. Therefore, there is a growing
interest in alternative consensus mechanisms, such as proof of stake or proof of authority,
which offer lower energy footprints while maintaining security and decentralization [73–75].

In conclusion, blockchain technology plays a critical role in securing IoT systems
and ensuring data integrity in smart cities. Its decentralized, immutable, and transparent
nature provides robust protection against data tampering and cyber threats, while smart
contracts streamline and secure urban processes. However, the successful implementation
of blockchain in smart cities will require addressing the challenges of scalability and energy
consumption, ensuring that these systems can meet the demands of rapidly growing urban
environments while supporting the broader goals of sustainability and resilience [76–78].
Table 2 offers an overview of the contributions of blockchain technology within smart cities,
highlighting its applications in enhancing security, data integrity, and operational efficiency.
This table illustrates the studies discussed in this section, providing a compact summary of
blockchain’s role and impact across smart city infrastructure.
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Table 2. Use of blockchain in smart cities.

Topic References Description

Blockchain for
Security & Data
Integrity

[42–46]

Discusses the role of blockchain in enhancing
security and ensuring data integrity within IoT
systems in smart cities, focusing on aspects like
cryptographic security and protection against
cyber threats.

Blockchain &
Cybersecurity [47–51]

Focuses on how blockchain can be used to prevent
cyber threats, such as DDoS attacks, data breaches,
and unauthorized data modifications in IoT
networks.

FL vs Blockchain for
Privacy [52–55]

Compares FL to blockchain, focusing on how these
technologies maintain data privacy and security in
smart city environments, with blockchain ensuring
data integrity through decentralized ledgers.

Blockchain & FL
Integration
Challenges

[56–59]
Discusses the challenges of integrating blockchain
with FL in IoT systems, including issues like model
poisoning and balancing privacy with security.

Blockchain
Integration in Smart
Cities

[60–63]

Examines the integration of blockchain technology
into smart city infrastructure, highlighting its use
in public health monitoring, energy management,
and urban governance.

Smart Contracts &
Blockchain [64–68]

Explores the application of smart contracts within
blockchain frameworks in smart cities, enabling
automated processes like energy trading and
enhancing transparency in urban management.

Blockchain
Scalability &
Performance

[69–72]

Discusses challenges related to the scalability of
blockchain networks in smart cities, and explores
solutions like sharding and layer-two protocols to
improve performance.

Consensus
Mechanisms
in Blockchain

[73–75]

Evaluates different blockchain consensus
mechanisms (e.g., proof of stake, sharding) and
their impact on scalability, energy efficiency,
and security in smart cities.

Blockchain & Smart
City
Applications

[76–78]

Provides insights into the practical applications of
blockchain in smart cities, including challenges
and opportunities for enhancing urban resilience
and sustainability through blockchain technology.

4. Synergy of Machine Learning, Blockchain, and IoT in Smart Cities

This section emphasizes (i) in the first part, the shared aspects of ML, blockchain,
and IoT, emphasizing how these technologies complement each other in the context of
smart cities, and, in the second part, following the discussion of their shared characteristics,
and (ii) the unique contributions and specific roles each technology plays in the broader
smart city ecosystem.

4.1. Similar Aspects

The technological integration of ML, blockchain, and IoT in smart cities is driven by
several key similarities. First, all three technologies drive data-driven decision-making.
ML analyzes vast datasets from IoT devices to optimize urban operations in real-time,
while IoT continuously collects essential data across city services. Blockchain ensures the
integrity and security of these data, enabling reliable decision-making processes. Another
commonality is decentralization; ML benefits from decentralized data processing methods
like FL, which reduces latency and enhances privacy. Similarly, IoT networks are inherently
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decentralized, with numerous devices operating autonomously. Blockchain complements
these by providing a decentralized, secure framework that ensures no single point of control
over data, aligning perfectly with the distributed nature of IoT and ML. In addition to
data-driven decision-making and decentralization, scalability and adaptability are shared
challenges and goals. ML models need to scale and adapt to growing data volumes and
varying urban conditions, as IoT systems do, and must handle increasing devices and
fluctuating network demands. Finally, although blockchain faces scalability challenges,
particularly with the rise in IoT transactions, advanced solutions are being developed to
enhance its scalability and performance.

4.2. Distinct Interactions and Complementary Roles

While ML, blockchain, and IoT share several similarities in their approach to en-
hancing smart city infrastructure, each technology also brings distinct capabilities and
plays complementary roles, essential for developing intelligent urban environments. The
cooperation between ML, blockchain, and the IoT in smart cities goes beyond mere tech-
nological integration; it embodies a sophisticated interplay of advanced computational
models, decentralized frameworks, and interconnected systems that collectively enable
the evolution of urban environments into intelligent, adaptive, and secure ecosystems.
The confluence of these technologies empowers smart cities to operate at an unprecedented
level of efficiency and resilience by facilitating real-time decision-making, enhancing data
security, and enabling seamless collaboration across diverse urban subsystems [79–82].

At the core of this synergy lies the ability of ML algorithms to extract actionable
insights from the vast, heterogeneous data generated by IoT devices. These insights drive
autonomous decision-making processes that are crucial for managing the dynamic and
complex nature of urban systems. For example, ML models can continuously learn from
traffic sensor data, optimizing traffic flows and reducing congestion in real time. In energy
grids, ML predicts consumption patterns, optimizing energy distribution and reducing
waste, which are vital for sustainability in densely populated urban areas [83–86].

Blockchain technology, with its decentralized and immutable ledger, complements
ML by ensuring that the data feeding these models are both secure and trustworthy. The in-
tegrity of data is paramount in smart cities, where decisions impact millions of lives.
Blockchain’s consensus mechanisms and cryptographic protocols ensure that data originat-
ing from IoT devices remain unaltered and verifiable, which is critical when ML models
are used to automate crucial services like emergency response, healthcare, or financial
transactions [87–90].

Moreover, the integration of smart contracts within blockchain frameworks allows
for the automation of processes based on predefined conditions, further enhancing the
efficiency of IoT systems. For instance, in smart grids, blockchain-enabled smart contracts
can automatically execute transactions between energy producers and consumers, based
on real-time data processed by ML algorithms. This not only streamlines operations but
also minimizes human intervention, reducing the potential for errors and fraud [91–94].

The interoperability between these technologies facilitates a level of collaboration
across different sectors of a smart city that would be impossible with siloed systems.
For example, ML can be employed to forecast maintenance needs for infrastructure, while
blockchain securely records all relevant data and transactions, ensuring transparency and
accountability. This creates a feedback loop where data are continuously refined and used
to improve both the efficiency and security of urban systems [95–98].

Additionally, the combination of ML, blockchain, and IoT fosters an environment
where data privacy is rigorously protected while enabling the data-driven innovation that
smart cities require. FL, an advanced ML technique that allows models to be trained on
decentralized data, can be coupled with blockchain to ensure that sensitive data never
leave their source while contributing to global models. This is particularly crucial in areas
such as healthcare, where privacy concerns are paramount [99–102].

In a nutshell, the synergy of ML, blockchain, and IoT in smart cities is not merely a
combination of technologies but a sophisticated ecosystem where data-driven intelligence,
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security, and autonomy are seamlessly integrated to create urban environments that are not
only smart but also resilient, sustainable, and responsive to the needs of their inhabitants.
This triad of technologies holds the potential to redefine urban life, paving the way for cities
that are not only more efficient and secure but also more equitable and inclusive [103–106].
Table 3 offers a comprehensive overview of this collaboration, illustrating how these
technologies interact to transform various facets of smart city infrastructure. The table
highlights key applications and demonstrates the combined strengths of ML, blockchain,
and IoT in driving forward innovation, resilience, and sustainable urban development.

Table 3. The synergy of ML, blockchain, and IoT in smart cities.

Topic References Description

ML, Blockchain & IoT [79–82] Discussion on the synergy and integration
of ML, blockchain, and IoT in smart cities.

ML in IoT [83–86]

Application of ML within IoT systems for
smart city services like traffic management,
energy optimization, and anomaly
detection.

Blockchain for
Automation &
Integrity

[87–94]
Use of blockchain and smart contracts to
automate processes and ensure data
integrity in smart cities.

Interoperability & Data
Privacy [95–98]

Challenges and solutions related to
interoperability among systems and
maintaining data privacy in smart city
integrations.

FL & Security [99–102]
Use of FL in IoT environments to enhance
security and privacy with blockchain
integration.

Privacy-Preserving
Frameworks [103–106]

Focuses on privacy-preserving frameworks
using blockchain and ML to ensure secure
and private data management in IoT-driven
smart cities.

5. Challenges and Future Directions

The integration of ML, blockchain, and IoT in smart cities, while promising, encounters
a myriad of sophisticated challenges that demand careful consideration and innovative solu-
tions. One of the foremost challenges lies in the computational demands of ML algorithms,
particularly in the context of large-scale IoT networks. These networks generate immense
numbers of data that must be processed in real time to maintain the efficacy of smart city
operations. The complexity of deploying ML models on resource-constrained devices at
the edge of the network exacerbates this issue. Current advancements in edge computing,
while notable, remain insufficient for the seamless execution of ML algorithms that require
significant processing power and memory. Consequently, there is a pressing need for the
development of more efficient, lightweight ML models that can operate under the stringent
constraints of IoT environments without compromising performance [107–109].

Scalability poses another critical challenge, particularly in the context of blockchain
technology. As the proliferation of IoT devices in smart cities accelerates, blockchain net-
works must contend with an ever-increasing number of transactions. Traditional blockchain
architectures, reliant on resource-intensive consensus mechanisms like proof of work, strug-
gle to maintain performance and throughput at scale. This scalability bottleneck not only
hampers the real-time processing of transactions but also raises concerns about energy con-
sumption and latency. Emerging solutions such as sharding and layer-2 protocols, and alter-
native consensus mechanisms like proof of stake offer potential pathways to enhanced scal-
ability. However, these innovations must be rigorously tested and optimized for integration
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within the complex, multi-layered ecosystems of smart cities, where the interplay between
various subsystems demands seamless, high-throughput communication [110–112].

Interoperability represents yet another significant hurdle. The diversity of IoT devices,
blockchain platforms, and ML frameworks within a smart city ecosystem introduces
challenges related to standardization and compatibility. The lack of standardized protocols
for data exchange and integration can lead to fragmented systems that fail to communicate
effectively, undermining the overall coherence and efficiency of smart city operations.
Addressing this issue requires the development of universal standards and protocols
that facilitate interoperability across heterogeneous systems. Furthermore, cross-chain
interoperability within blockchain networks must be advanced to enable the seamless
transfer of data and value across different blockchain platforms, which is crucial for the
decentralized management of smart city resources [113–115].

The convergence of these technologies also introduces profound ethical and gover-
nance challenges. The deployment of ML algorithms in critical decision-making processes
within smart cities raises concerns about transparency, accountability, and algorithmic bias.
These issues are further compounded by the immutable nature of blockchain, which, while
enhancing data security, also risks perpetuating errors or biases embedded in the data or
smart contracts. To mitigate these risks, it is essential to establish robust ethical frameworks
and governance structures that ensure the responsible development and deployment of
these technologies. This includes implementing mechanisms for auditing ML models and
blockchain-based systems, as well as developing strategies for the equitable distribution of
the benefits derived from smart city innovations [116–118].

Privacy concerns are paramount in the smart city context, where the aggregation
and analysis of vast amounts of personal data are necessary for the optimization of urban
services. The tension between the need for data-driven insights and the protection of
individual privacy is a significant challenge. While blockchain offers potential solutions
through decentralized identity management and encrypted data storage, these approaches
must be carefully balanced against the need for transparency and accountability in public
systems. The development of privacy-preserving technologies, such as homomorphic
encryption and FL, is crucial to enabling secure, privacy-respecting data analysis in smart
cities. However, these technologies are still in their infancy and require substantial research
and development to become viable at scale [119–121].

Overall, while the integration of ML, blockchain, and IoT in smart cities holds immense
potential, it is accompanied by complex challenges that necessitate ongoing research and
innovation. Addressing the computational demands of ML, enhancing the scalability and
interoperability of blockchain, and establishing robust ethical and governance frameworks
are critical to realizing the vision of truly intelligent and secure urban environments.
As these technologies continue to mature, their successful convergence will be pivotal
in shaping the future of urbanization, driving not only technological advancement but
also societal transformation [122–124]. Table 4 provides a detailed taxonomy of these key
challenges, serving as a reference and offering insights into the obstacles that need to be
overcome to ensure the successful deployment of these technologies in urban environments.

Table 4. A taxonomy of topics in key challenges and reference works.

Topic References Description

Computational
Demands in ML [107–109]

Discusses the challenges related to the
computational demands of ML algorithms
in IoT environments.

Scalability in Blockchain [110–112]

Explores issues related to the scalability of
blockchain technologies, especially in the
context of IoT networks in smart cities,
and potential solutions.
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Table 4. Cont.

Topic References Description

Interoperability in Smart
Cities [113–115]

Focuses on the challenges and solutions
related to interoperability among diverse
systems in smart cities.

Ethical & Governance
Challenges [116–118]

Addresses the ethical implications and
governance challenges of integrating ML,
blockchain, and IoT in smart cities,
including issues of transparency and bias.

Privacy-Preserving
Technologies [119–121]

Covers the use of privacy-preserving
technologies, such as homomorphic
encryption and FL, in ensuring secure and
private data handling in smart cities.

Trustworthy & Secure
Frameworks [122–124]

Focuses on developing secure and
trustworthy frameworks that leverage
blockchain, ML, and IoT for smart cities,
ensuring robust security and privacy
measures.

6. Conclusions

This paper has examined the integration of ML, blockchain, and IoT in smart city
ecosystems, demonstrating how these technologies can collaboratively transform urban
management and infrastructure. The synergy of these technologies represents more than
just a technological advancement; it embodies a new approach to addressing the com-
plexities of modern urbanization. By harnessing the analytical power of ML, the security
and transparency of blockchain, and the real-time data collection capabilities of IoT, smart
cities can achieve unprecedented levels of efficiency, resilience, and adaptability. When
integrated, these technologies create a synergistic effect that amplifies their individual
strengths, resulting in a holistic framework capable of managing the dynamic challenges of
urban growth.

A key benefit of this synergy is its ability to tackle critical urban challenges such
as scalability, interoperability, and ethical governance. By enabling more accurate and
secure data-driven decision-making, these technologies ensure that smart cities can evolve
sustainably and equitably. The implications are extensive, offering new opportunities for
innovation in urban planning, resource management, and public service delivery.

The future of smart cities will depend on experts’ ability to fully exploit this techno-
logical synergy. Continued research and interdisciplinary collaboration will be crucial in
overcoming the challenges that arise. Prioritizing the development of advanced scalability
solutions will be essential to enhance blockchain’s capacity to support the dynamic and
high-volume demands of smart cities. Concurrently, innovations in privacy-preserving
technologies will be vital to safeguarding individual data while allowing for the effective
use of ML in decentralized environments. Additionally, establishing robust ethical and
governance frameworks will ensure that the deployment of these technologies aligns with
societal values and public interest. By addressing these challenges, the field can make
significant strides toward creating smart cities that are not only technologically advanced
but also socially responsible, sustainable, and inclusive. These advancements will ulti-
mately redefine urban life, making cities smarter, safer, and more responsive to the needs
of their inhabitants.

In summary, the foundations laid in this paper highlight the potential for significant
advancements in smart city technologies and offer a roadmap for future exploration. This
study emphasizes the importance of integrating ML, blockchain, and IoT while emphasizing
the need for ongoing innovation to ensure that these technologies meet the ever-evolving
demands of urban life. By deepening the understanding of these interconnected systems,
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we can pave the way for smarter, more sustainable cities that enhance the quality of life for
all residents.
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