Edge Computing in Healthcare: Innovations, Opportunities, and Challenges
Abstract
:1. Introduction
- An overview of core concepts related to edge computing, highlighting characteristics, use cases, and challenges.
- The definition of a systematic review methodology based on PRISMA by defining a set of research questions and clear inclusion/exclusion criteria.
- An analysis and classification of the selected articles considering the most important research topics, the used techniques, identified gaps, and future research.
- A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis for a better understanding of edge computing in healthcare research.
2. Edge Computing Overview
2.1. Main Characteristics
2.2. Use Cases and Application Domains
- allows for real-time decisions and enables for immediate response from professionals.
- reduces the risk of data breaches by processing and storing personal information at the edge.
- bandwidth and cost reduction by transmitting only the mandatory information to centralized entities.
- allows AI model deployment closer to the patient, enables personalization of AI models, and the prediction of health issues based on real-time data from the monitoring devices.
2.3. Challenges
3. Methods
- Identify the main use cases of edge computing in healthcare.
- Examine the development of edge computing solutions in healthcare systems.
- Investigate the technical challenges in the edge computing integration into eHealth systems.
- Determine the future research directions and potential advancements in edge computing for improving healthcare technologies.
- Edge Computing Artificial Intelligence Healthcare
- Edge Computing and Ambient Intelligence
- Edge Computing and Personalized Care
- Edge Computing and Active Assisted Living
- Edge Computing and Ambient Assisted Living
- Edge Computing and Remote Care
- Edge Computing Data Privacy and Security Healthcare
4. Literature Review
4.1. Privacy and Security
4.2. AI-Based Optimization in Edge Environments
4.3. Edge Offloading and Computational Distribution
Paper | Technologies Used | Main Contribution |
---|---|---|
[77] | Blockchain | Architecture for secured decentralized system |
[78] | Blockchain, NFTs | Ensure decentralized and secure resource allocation |
[79] | JTOS | Reducing delays in critical IoT applications |
[81] | SDN, NFV | Improved mobility management |
[80] | SDN, NFV | Enhancing network flexibility |
[83] | DL, PNN | Improving latency and resource use in fog computing |
[84] | DL, CL | Enhancing real-time decision-making |
[82] | FL, Blockchain | Improving latency and data privacy |
[85] | FL, UAV | Collective data processing |
[86] | Neuromorphic HW, DL | Enhancing accuracy and reducing power consumption |
[87] | CNN, LogNNet | Neural Network designed for edge computing, fine-tuned for medical data analysis |
[88] | SVM, ANFIS | Facilitate data processing across layers |
[89] | MAS | Efficient handling of healthcare-related tasks |
[90] | Real-time data processing pipelines | Improved efficiency in remote monitoring |
[91] | Simulator Edge/Fog | Improving latency and data privacy |
[92] | Wearable-based chemical sensing | Enhanced data processing and analysis techniques |
[93] | DPSO | Optimizing task distribution |
[94] | DAG, S2S, DCP | Collaborative and task placement optimization |
[95] | SVM, DT | Reduce network layer overhead |
[96] | FL, Personalization techniques | Adapt node to specific needs, enable heterogeneity |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [Google Scholar] [CrossRef]
- Chen, J.; Ran, X. Deep Learning with Edge Computing: A review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef]
- Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2018, 5, 439–449. [Google Scholar] [CrossRef]
- Anghel, I.; Cioara, T.; Moldovan, D.; Antal, M.; Pop, C.D.; Salomie, I.; Pop, C.B.; Chifu, V.R. Smart Environments and Social Robots for Age-Friendly Integrated Care Services. Int. J. Environ. Res. Public Health 2020, 17, 3801. [Google Scholar] [CrossRef]
- Cicirelli, G.; Marani, R.; Petitti, A.; Milella, A.; D’Orazio, T. Ambient Assisted Living: A Review of Technologies, Methodologies and Future Perspectives for Healthy Aging of Population. Sensors 2021, 21, 3549. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [Google Scholar] [CrossRef]
- Ometov, A.; Molua, O.L.; Komarov, M.; Nurmi, J. A Survey of Security in Cloud, Edge, and Fog Computing. Sensors 2022, 22, 927. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Arcas, G.I.; Cioara, T.; Anghel, I.; Lazea, D.; Hangan, A. Edge Offloading in Smart Grid. Smart Cities 2024, 7, 680–711. [Google Scholar] [CrossRef]
- Premsankar, G.; Di Francesco, M.; Taleb, T. Edge Computing for the Internet of Things: A Case Study. IEEE Internet Things J. 2018, 5, 1275–1284. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing. Proc. IEEE 2019, 107, 1738–1762. [Google Scholar] [CrossRef]
- Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. EdgeIoT: Mobile Edge Computing for the Internet of Things. IEEE Commun. Mag. 2016, 54, 22–29. [Google Scholar] [CrossRef]
- Shi, W.; Dustdar, S. The Promise of Edge Computing. Computer 2016, 49, 78–81. [Google Scholar] [CrossRef]
- Ai, Y.; Peng, M.; Zhang, K. Edge Computing Technologies for Internet of Things: A Primer. Digit. Commun. Netw. 2018, 4, 77–86. [Google Scholar] [CrossRef]
- Arcas, G.I.; Cioara, T.; Anghel, I. Whale Optimization for Cloud–Edge-Offloading Decision-Making for Smart Grid Services. Biomimetics 2024, 9, 302. [Google Scholar] [CrossRef]
- Dastjerdi, A.V.; Buyya, R. Fog Computing: Helping the Internet of Things Realize Its Potential. Computer 2016, 49, 112–116. [Google Scholar] [CrossRef]
- Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018, 32, 96–101. [Google Scholar] [CrossRef]
- Qureshi, R.; Irfan, M.; Ali, H.; Khan, A.; Nittala, A.S.; Ali, S.; Shah, A.; Gondal, T.M.; Sadak, F.; Shah, Z.; et al. Artificial Intelligence and Biosensors in Healthcare and Its Clinical Relevance: A Review. IEEE Access 2023, 11, 61600–61620. [Google Scholar] [CrossRef]
- Rauniyar, A.; Hagos, D.H.; Jha, D.; Håkegård, J.E.; Bagci, U.; Rawat, D.B.; Vlassov, V. Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions. IEEE Internet Things J. 2024, 11, 7374–7398. [Google Scholar] [CrossRef]
- Ekiz, D.; Can, Y.S.; Dardagan, Y.C.; Ersoy, C. Can a Smartband be Used for Continuous Implicit Authentication in Real Life? IEEE Access 2020, 8, 59402–59411. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, X.; Cao, J.; Ning, J.; Ying, Z.; Zheng, D. Blockchain-Enabled Decentralized Attribute-Based Access Control with Policy Hiding for Smart Healthcare. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34 Pt A, 8350–8361. [Google Scholar] [CrossRef]
- Mandarino, V.; Pappalardo, G.; Tramontana, E. A Blockchain-Based Electronic Health Record (EHR) System for Edge Computing Enhancing Security and Cost Efficiency. Computers 2024, 13, 132. [Google Scholar] [CrossRef]
- Akkaoui, R.; Hei, X.; Cheng, W. EdgeMediChain: A Hybrid Edge Blockchain-Based Framework for Health Data Exchange. IEEE Access 2020, 8, 113467–113486. [Google Scholar] [CrossRef]
- Rani, S.; Kataria, A.; Kumar, S.; Tiwari, P. Federated Learning for Secure IoMT-Applications in Smart Healthcare Systems: A Comprehensive Review. Knowl.-Based Syst. 2023, 274, 110658. [Google Scholar] [CrossRef]
- Mayer, A.H.; Rodrigues, V.F.; da Costa, C.A.; da Rosa Righi, R.; Roehrs, A.; Antunes, R.S. FogChain: A Fog Computing Architecture Integrating Blockchain and Internet of Things for Personal Health Records. IEEE Access 2021, 9, 122723–122737. [Google Scholar] [CrossRef]
- Ejaz, M.; Kumar, T.; Kovacevic, I.; Ylianttila, M.; Harjula, E. Health-BlockEdge: Blockchain-Edge Framework for Reliable Low-Latency Digital Healthcare Applications. Sensors 2021, 21, 2502. [Google Scholar] [CrossRef] [PubMed]
- Annane, B.; Alti, A.; Lakehal, A. Blockchain-Based Context-Aware CP-ABE Schema for Internet of Medical Things Security. Array 2022, 14, 100150. [Google Scholar] [CrossRef]
- Dammak, B.; Turki, M.; Cheikhrouhou, S.; Baklouti, M.; Mars, R.; Dhahbi, A. LoRaChainCare: An IoT Architecture Integrating Blockchain and LoRa Network for Personal Health Care Data Monitoring. Sensors 2022, 22, 1497. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.T.; Antona, M.; Stephanidis, C. Towards Open and Expandable Cognitive AI Architectures for Large-Scale Multi-Agent Human-Robot Collaborative Learning. IEEE Access 2021, 9, 73890–73909. [Google Scholar] [CrossRef]
- Humayun, M.; Alsirhani, A.; Alserhani, F.; Shaheen, M.; Alwakid, G. Transformative synergy: SSEHCET—Bridging mobile edge computing and AI for enhanced eHealth security and efficiency. J. Cloud Comput. 2024, 13, 37. [Google Scholar] [CrossRef]
- Chamikara, M.A.P.; Bertok, P.; Khalil, I.; Liu, D.; Camtepe, S. Privacy preserving distributed machine learning with federated learning. Comput. Commun. 2021, 171, 112–125. [Google Scholar] [CrossRef]
- Attaullah, H.; Anjum, A.; Kanwal, T.; Malik, S.U.R.; Asheralieva, A.; Malik, H.; Zoha, A.; Arshad, K.; Imran, M.A. F-Classify: Fuzzy Rule Based Classification Method for Privacy Preservation of Multiple Sensitive Attributes. Sensors 2021, 21, 4933. [Google Scholar] [CrossRef]
- Rachakonda, L.; Bapatla, A.K.; Mohanty, S.P.; Kougianos, E. SaYoPillow: Blockchain-Integrated Privacy-Assured IoMT Framework for Stress Management Considering Sleeping Habits. IEEE Trans. Consum. Electron. 2021, 67, 20–29. [Google Scholar] [CrossRef]
- Sánchez-Gallegos, D.D.; Galaviz-Mosqueda, G.; González, J.L.; Villarreal, S.; Perez-Ramos, A.-E.; Carrizales-Espinoza, D.; Carretero, J. On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing by Using Micro/Nanoservice Composition. IEEE Access 2020, 8, 120255–120281. [Google Scholar] [CrossRef]
- Loghin, D.; Ta, Q.-T.; Wang, W.; Xiao, X.; Yang, Y.; Zhang, M.; Zhang, Z.; Cai, S.; Chen, G.; Dinh, A.; et al. The Disruptions of 5G on Data-Driven Technologies and Applications. IEEE Trans. Knowl. Data Eng. 2020, 32, 1179–1198. [Google Scholar] [CrossRef]
- Rathore, S.; Park, J.H.; Chang, H. Deep Learning and Blockchain-Empowered Security Framework for Intelligent 5G-Enabled IoT. IEEE Access 2021, 9, 90075–90083. [Google Scholar] [CrossRef]
- Akter, M.; Moustafa, N.; Turnbull, B. SPEI-FL: Serverless Privacy Edge Intelligence-Enabled Federated Learning in Smart Healthcare Systems. Cogn. Comput. 2024, 16, 2626–2641. [Google Scholar] [CrossRef]
- Saheed, Y.K.; Arowolo, M.O. Efficient Cyber Attack Detection on the Internet of Medical Things-Smart Environment Based on Deep Recurrent Neural Network and Machine Learning Algorithms. IEEE Access 2021, 9, 161546–161554. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Friha, O.; Maglaras, L.; Janicke, H.; Shu, L. Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis. IEEE Access 2021, 9, 138509–138542. [Google Scholar] [CrossRef]
- Raza, A.; Tran, K.P.; Koehl, L.; Li, S. AnoFed: Adaptive anomaly detection for digital health using transformer-based federated learning and support vector data description. Eng. Appl. Artif. Intell. 2023, 121, 106051. [Google Scholar] [CrossRef]
- Abdullah, S.; Arshad, J.; Khan, M.M.; Alazab, M.; Salah, K. PRISED tangle: A privacy-aware framework for smart healthcare data sharing using IOTA tangle. Complex. Intell. Syst. 2023, 9, 3023–3041. [Google Scholar] [CrossRef]
- Zubair, M.; Ghubaish, A.; Unal, D.; Al-Ali, A.; Reimann, T.; Alinier, G.; Hammoudeh, M.; Qadir, J. Secure Bluetooth Communication in Smart Healthcare Systems: A Novel Community Dataset and Intrusion Detection System. Sensors 2022, 22, 8280. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Haseeb, K.; Alam, T.; Lloret, J. Sustainability Model for the Internet of Health Things (IoHT) Using Reinforcement Learning with Mobile Edge Secured Services. Sustainability 2022, 14, 12185. [Google Scholar] [CrossRef]
- Zhang, J.; Ouda, A.; Abu-Rukba, R. Authentication and Key Agreement Protocol in Hybrid Edge–Fog–Cloud Computing Enhanced by 5G Networks. Future Internet 2024, 16, 209. [Google Scholar] [CrossRef]
- Hernandez-Jaimes, M.L.; Martinez-Cruz, A.; Ramírez-Gutiérrez, K.A.; Feregrino-Uribe, C. Artificial intelligence for IoMT security: A review of intrusion detection systems, attacks, datasets and Cloud–Fog–Edge architectures. Internet Things 2023, 23, 100887. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Huang, X.; Liu, X. Leakage-Resilient Authenticated Key Exchange for Edge Artificial Intelligence. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2835–2847. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, M.A.; Alkhalifah, A.; Nordin, R.; Alsharif, M.H.; Alghtani, A.H.; Aly, A.A. A Multi-Message Multi-Receiver Signcryption Scheme with Edge Computing for Secure and Reliable Wireless Internet of Medical Things Communications. Sustainability 2021, 13, 13184. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Wang, J.; Pung, R.; Wang, H.; Lam, K.-Y. An Efficient FHE-Enabled Secure Cloud–Edge Computing Architecture for IoMT Data Protection with its Application to Pandemic Modeling. IEEE Internet Things J. 2024, 11, 15272–15284. [Google Scholar] [CrossRef]
- Scrugli, M.A.; Loi, D.; Raffo, L.; Meloni, P. An Adaptive Cognitive Sensor Node for ECG Monitoring in the Internet of Medical Things. IEEE Access 2022, 10, 1688–1705. [Google Scholar] [CrossRef]
- Djelouat, H.; Al Disi, M.; Boukhenoufa, I.; Amira, A.; Bensaali, F.; Kotronis, C.; Politi, E.; Nikolaidou, M.; Dimitrakopoulos, G. Real-time ECG monitoring using compressive sensing on a heterogeneous multicore edge-device. Microprocess. Microsyst. 2020, 72, 102839. [Google Scholar] [CrossRef]
- Irshad, R.R.; Hussain, S.; Sohail, S.S.; Zamani, A.S.; Madsen, D.Ø.; Alattab, A.A.; Ahmed, A.A.A.; Norain, K.A.A.; Alsaiari, O.A.S. A Novel IoT-Enabled Healthcare Monitoring Framework and Improved Grey Wolf Optimization Algorithm-Based Deep Convolution Neural Network Model for Early Diagnosis of Lung Cancer. Sensors 2023, 23, 2932. [Google Scholar] [CrossRef]
- Sakib, S.; Fouda, M.M.; Al-Mahdawi, M.; Mohsen, A.; Oogane, M.; Ando, Y.; Fadlullah, Z.M. Deep Learning Models for Magnetic Cardiography Edge Sensors Implementing Noise Processing and Diagnostics. IEEE Access 2022, 10, 2656–2668. [Google Scholar] [CrossRef]
- Velichko, A.; Huyut, M.T.; Belyaev, M.; Izotov, Y.; Korzun, D. Machine Learning Sensors for Diagnosis of COVID-19 Disease Using Routine Blood Values for Internet of Things Application. Sensors 2022, 22, 7886. [Google Scholar] [CrossRef]
- Hemalatha, M. A hybrid random forest deep learning classifier empowered edge cloud architecture for COVID-19 and pneumonia detection. Expert Syst. Appl. 2022, 210, 118227. [Google Scholar] [CrossRef]
- Antal, C.; Cioara, T.; Antal, M.; Anghel, I. Blockchain Platform For COVID-19 Vaccine Supply Management. IEEE Open J. Comput. Soc. 2021, 2, 164–178. [Google Scholar] [CrossRef]
- Badawy, M.; Balaha, H.M.; Maklad, A.S.; Almars, A.M.; Elhosseini, M.A. Revolutionizing Oral Cancer Detection: An Approach Using Aquila and Gorilla Algorithms Optimized Transfer Learning-Based CNNs. Biomimetics 2023, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Gu, Z.; Ni, Q. Cognitive computing and wireless communications on the edge for healthcare service robots. Comput. Commun. 2020, 149, 99–106. [Google Scholar] [CrossRef]
- Kim, J.; Kang, H.; Yang, J.; Jung, H.; Lee, S.; Lee, J. Multitask Deep Learning for Human Activity, Speed, and Body Weight Estimation Using Commercial Smart Insoles. IEEE Internet Things J. 2023, 10, 16121–16133. [Google Scholar] [CrossRef]
- Alekseeva, D.; Ometov, A.; Arponen, O.; Lohan, E.S. The future of computing paradigms for medical and emergency applications. Comput. Sci. Rev. 2022, 45, 100494. [Google Scholar] [CrossRef]
- Wang, W.-H.; Hsu, W.-S. Integrating Artificial Intelligence and Wearable IoT System in Long-Term Care Environments. Sensors 2023, 23, 5913. [Google Scholar] [CrossRef]
- Elbagoury, B.M.; Vladareanu, L.; Vlădăreanu, V.; Salem, A.B.; Travediu, A.-M.; Roushdy, M.I. A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform. Sensors 2023, 23, 3500. [Google Scholar] [CrossRef]
- Paramasivam, A.; Shahila, D.F.D.; Jenath, M.; Sivakumaran, T.S.; Sankaran, S.; Reddy Pittu, P.S.K.; Vijayalakshmi, S. Development of artificial intelligence edge computing based wearable device for fall detection and prevention of elderly people. Heliyon 2024, 10, e28688. [Google Scholar]
- Monti, L.; Tse, R.; Tang, S.-K.; Mirri, S.; Delnevo, G.; Maniezzo, V.; Salomoni, P. Edge-Based Transfer Learning for Classroom Occupancy Detection in a Smart Campus Context. Sensors 2022, 22, 3692. [Google Scholar] [CrossRef]
- Wilhelm, S.; Kasbauer, J. Exploiting Smart Meter Power Consumption Measurements for Human Activity Recognition (HAR) with a Motif-Detection-Based Non-Intrusive Load Monitoring (NILM) Approach. Sensors 2021, 21, 8036. [Google Scholar] [CrossRef]
- Janbi, N.; Mehmood, R.; Katib, I.; Albeshri, A.; Corchado, J.M.; Yigitcanlar, T. Imtidad: A Reference Architecture and a Case Study on Developing Distributed AI Services for Skin Disease Diagnosis over Cloud, Fog and Edge. Sensors 2022, 22, 1854. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, P.; Wu, D.; Hu, L.; Hassan, M.M.; Alamri, A. AI-Skin: Skin disease recognition based on self-learning and wide data collection through a closed-loop framework. Inf. Fusion 2020, 54, 1–9. [Google Scholar] [CrossRef]
- Jain, V.; Gupta, G.; Gupta, M.; Sharma, D.K.; Ghosh, U. Ambient intelligence-based multimodal human action recognition for autonomous systems. ISA Trans. 2023, 132, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Arikumar, K.S.; Prathiba, S.B.; Alazab, M.; Gadekallu, T.R.; Pandya, S.; Khan, J.M.; Moorthy, R.S. FL-PMI: Federated Learning-Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems. Sensors 2022, 22, 1377. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, K.; Sharma, A. Genetically optimized Fuzzy C-means data clustering of IoMT-based biomarkers for fast affective state recognition in intelligent edge analytics. Appl. Soft Comput. 2021, 109, 107525. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Zahid, N. AI-Enabled Framework for Fog Computing Driven E-Healthcare Applications. Sensors 2021, 21, 8039. [Google Scholar] [CrossRef]
- Lakhan, A.; Sodhro, A.H.; Majumdar, A.; Khuwuthyakorn, P.; Thinnukool, O. A Lightweight Secure Adaptive Approach for Internet-of-Medical-Things Healthcare Applications in Edge-Cloud-Based Networks. Sensors 2022, 22, 2379. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnamurthi, R.; Nayyar, A.; Sharma, K.; Grover, V.; Hossain, E. A Novel Smart Healthcare Design, Simulation, and Implementation Using Healthcare 4.0 Processes. IEEE Access 2020, 8, 118433–118471. [Google Scholar] [CrossRef]
- Maksymyuk, T.; Gazda, J.; Bugár, G.; Gazda, V.; Liyanage, M.; Dohler, M. Blockchain-Empowered Service Management for the Decentralized Metaverse of Things. IEEE Access 2022, 10, 99025–99037. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Abdulkareem, K.H.; Jaber, M.M.; Nedoma, J.; Martinek, R.; Zmij, P. Delay Optimal Schemes for Internet of Things Applications in Heterogeneous Edge Cloud Computing Networks. Sensors 2022, 22, 5937. [Google Scholar] [CrossRef]
- Bojović, P.D.; Malbašić, T.; Vujošević, D.; Martić, G.; Bojović, Ž. Dynamic QoS Management for a Flexible 5G/6G Network Core: A Step toward a Higher Programmability. Sensors 2022, 22, 2849. [Google Scholar] [CrossRef]
- Kim, J.A.; Park, D.G.; Jeong, J. Design and performance evaluation of cost-effective function-distributed mobility management scheme for software-defined smart factory networking. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 2291–2307. [Google Scholar] [CrossRef]
- Pandya, S.; Srivastava, G.; Jhaveri, R.; Babu, M.R.; Bhattacharya, S.; Maddikunta, P.K.R.; Mastorakis, S.; Piran, M.J.; Gadekallu, T.R. Federated learning for smart cities: A comprehensive survey. Sustain. Energy Technol. Assess. 2023, 55, 102987. [Google Scholar] [CrossRef]
- Talaat, F.M. Effective prediction and resource allocation method (EPRAM) in fog computing environment for smart healthcare system. Multimed. Tools Appl. 2022, 81, 8235–8258. [Google Scholar] [CrossRef]
- Shumba, A.-T.; Montanaro, T.; Sergi, I.; Fachechi, L.; De Vittorio, M.; Patrono, L. Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications. Sensors 2022, 22, 7675. [Google Scholar] [CrossRef] [PubMed]
- Nasser, N.; Fadlullah, Z.M.; Fouda, M.M.; Ali, A.; Imran, M. A lightweight federated learning based privacy preserving B5G pandemic response network using unmanned aerial vehicles: A proof-of-concept. Comput. Netw. 2022, 205, 108672. [Google Scholar] [CrossRef]
- Lin, B.; Yu, T.; Peng, C.; Lin, C.; Hsu, H.; Lee, I.; Zhang, Z. Fall Detection System with Artificial Intelligence-Based Edge Computing. IEEE Access 2022, 10, 4328–4339. [Google Scholar] [CrossRef]
- Velichko, A. A Method for Medical Data Analysis Using the LogNNet for Clinical Decision Support Systems and Edge Computing in Healthcare. Sensors 2021, 21, 6209. [Google Scholar] [CrossRef]
- Shynu, P.G.; Menon, V.G.; Kumar, R.L.; Kadry, S.; Nam, Y. Blockchain-Based Secure Healthcare Application for Diabetic-Cardio Disease Prediction in Fog Computing. IEEE Access 2021, 9, 45706–45720. [Google Scholar] [CrossRef]
- Mutlag, A.A.; Ghani, M.K.A.; Mohammed, M.A.; Lakhan, A.; Mohd, O.; Abdulkareem, K.H.; Garcia-Zapirain, B. Multi-Agent Systems in Fog–Cloud Computing for Critical Healthcare Task Management Model (CHTM) Used for ECG Monitoring. Sensors 2021, 21, 6923. [Google Scholar] [CrossRef]
- Gómez-Valiente, P.; Benedí, J.P.; Lillo-Castellano, J.M.; Marina-Breysse, M. Smart-IoT Business Process Management: A Case Study on Remote Digital Early Cardiac Arrhythmia Detection and Diagnosis. IEEE Internet Things J. 2023, 10, 16744–16757. [Google Scholar] [CrossRef]
- Hassan, S.R.; Ahmad, I.; Ahmad, S.; Alfaify, A.; Shafiq, M. Remote Pain Monitoring Using Fog Computing for e-Healthcare: An Efficient Architecture. Sensors 2020, 20, 6574. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; He, T.; Liu, H.; Chen, H.-Y.; Zhang, T.; Lee, C. Advances in Chemical Sensing Technology for Enabling the Next-Generation Self-Sustainable Integrated Wearable System in the IoT Era. Nano Energy 2020, 78, 105155. [Google Scholar] [CrossRef]
- Syed Sabir Mohamed, S.; Gopi, R.; Thiruppathy Kesavan, V.; Kaliyaperumal, K. Adaptive heuristic edge assisted fog computing design for healthcare data optimization. J. Cloud Comput. 2024, 13, 127. [Google Scholar]
- Liu, Q.; Tian, Z.; Wang, N.; Lin, Y. DRL-based dependent task offloading with delay-energy tradeoff in medical image edge computing. Complex. Intell. Syst. 2024, 10, 3283–3304. [Google Scholar] [CrossRef]
- Kumar, R.H.; Rajaram, B. Design and Simulation of an Edge Compute Architecture for IoT-Based Clinical Decision Support System. IEEE Access 2024, 12, 45456–45474. [Google Scholar] [CrossRef]
- Sachin, D.N.; Annappa, B.; Hegde, S.; Abhijit, C.S.; Ambesange, S. FedCure: A Heterogeneity-Aware Personalized Federated Learning Framework for Intelligent Healthcare Applications in IoMT Environments. IEEE Access 2024, 12, 15867–15883. [Google Scholar]
Screening Phase Inclusion Criteria | Eligibility Phase Exclusion Criteria |
---|---|
Type of paper: Article | Not available (could not be retrieved) |
Timeline: 2020–2024 | Not related to the edge in healthcare topic |
Main Research Areas: Computer Science, Engineering, Healthcare Sciences | Not connected to the computer science domain |
Language: English | Low number of citations (for 2020–2023 articles) |
High-Impact journals of top 4 publishers: MDPI, IEEE, Elsevier, and Springer | Q3 or lower-quartile-indexed articles |
Open Access: Gold and Gold-Hybrid |
Articles | Addressed Issues | Security/Privacy/AI Technique/Technology |
---|---|---|
[25] | Authentication; User privacy and data quality | Authentication using heart rate variability (HRV) from wearable devices + ML classifiers |
[51] | LRAKE protocol | |
[26] | EHR data management; Health data privacy; Scalability and compliance with regulations | Blockchain + Attribute-based encryption |
[31] | Blockchain | |
[34] | Privacy-aware FL | |
[33] | Blockchain + InterPlanetary File System (IPFS) | |
[39] | Cryptography | |
[46] | Distributed ledger technologies (DLT) + masked authenticated messaging | |
[48] | Two-phase encryption + RL | |
[27] | Blockchain + DApps | |
[28,30,32,38] | Authorization; Real-time data processing; Privacy; Scalability | Blockchain + Cryptography |
[42] | Differential privacy + six-way authentication | |
[49] | Symmetric polynomials + NTRU encyption + Symmetric ecryption | |
[29] | IoMT Data Management; Scalability; Computational overhead | Blockchain + FL |
[41] | Blockchain + DL | |
[52] | Certificate-based signcryption | |
[35] | Blockchain + Smart Agent | |
[36] | Distributed data privacy | DISTPAB algorithm + FL |
[40] | 5G technologies + FL | |
[37] | Data privacy; Anonymity | F-Classify privacy-preserving model |
[53] | Fully homomorphic encryption | |
[43] | Cyber-attack detection in IoMT; Anomaly detection and pattern recognition | DL + supervised ML + IDS technique |
[50] | ML + bio-inspired + IDS techniques | |
[44] | FL + blockchain + IDS techniques | |
[45] | Transformer + FL + Support Vector Data Description (SVDD) | |
[47] | DL + IDS techniques |
Article | Healthcare Use Case | Optimization Objective | Algorithms/Techniques |
---|---|---|---|
[54] | Cardiovascular disease monitoring | Reduce power consumption and optimize computational capabilities of edge devices | CNN |
[56] | Lung cancer detection | Reduce the computational demand of edge devices; Improve the response time. | DCNN + Grey Wolf Optimization |
[57] | Detection and classification of arrhythmias | Improve the quality of monitored signals by optimizing edge devices operation | CNN + CNN-LSTM + CNN-GRU |
[68] | Remote monitoring | Improve edge processing time for the detection algorithms | Transfer learning |
[58] | COVID-19 detection | Improve classification accuracy on edge devices | LogNNet |
[69] | Human activity recognition | Optimize energy efficiency of smart homes | NILM |
[70] | Skin disease diagnosis | Improve energy consumption and response times in distributed edge devices | DL + Tiny AI |
[63] | Remote monitoring | Improve feature extraction and reduce computational load at the edge | MobileNetV2 |
[72] | Human activity recognition | Optimize the processing of sensor data | Bi-CRNN |
[61] | Oral cancer detection | Optimize the image classification task at the edge | CNN + AO + GTO |
[73] | Human activity recognition | Optimize distributed data labeling processes | FL + DRL |
[62] | Real-time health monitoring | Improve communication in edge networks | Cognitive computing |
[64] | Emergency IoMT | Improve edge processing | FL |
[59] | COVID-19 and pneumonia diagnostics | Improve communication speed between edge devices | MOMHTS + RF + DL |
[60] | Vaccine administration management | Improve throughput and scalability of distributed data sharing and processing | Blockchain |
[55] | Real-time ECG monitoring | Reduce energy consumption and hardware requirements on edge devices | Greedy |
[65] | Long-term care for elders | Optimize resource allocation | DL |
[71] | Diagnosis of skin diseases | Improve adaptation of edge resources | DL |
[74] | Affective state recognition | Improve precision and response time | Fuzzy C-means |
[75] | Remote monitoring | Improve edge computation and processing | FSIRA |
[66] | Stroke prediction | Reducing the diagnostic time at the edge | LSTM |
[76] | Hospital IoMT-enabled data management | Optimize of workflows across edge nodes | LSEOS |
[67] | Elderly fall detection | Reduce and optimize deployment on edge devices | CNN-LSTM with attention layer |
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
Real-time data monitoring, processing and analysis | Limited computational resources | Growing demand for remote monitoring and telehealth | Security and vulnerabilities of healthcare edge devices |
Enhanced patient data security and privacy | Complex data orchestration and healthcare management processes | Personalized care with edge AI advancements | Patient safety, data privacy, and integrity |
Reduced network overhead | Low scalability | Growth in IoT devices adoption for telecare | Network infrastructure limitations in data transmission, processing, and intermittent connectivity |
Improved reliability for eHealth services | Interoperability and data integration challenges | Development of efficient distributed and federated AI models including LLMs | Fragmented healthcare systems and vendor lock-in |
AI enabled support for healthcare professionals | High costs for infrastructure setup | Advancements in data encryption | Regulatory constraints |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rancea, A.; Anghel, I.; Cioara, T. Edge Computing in Healthcare: Innovations, Opportunities, and Challenges. Future Internet 2024, 16, 329. https://doi.org/10.3390/fi16090329
Rancea A, Anghel I, Cioara T. Edge Computing in Healthcare: Innovations, Opportunities, and Challenges. Future Internet. 2024; 16(9):329. https://doi.org/10.3390/fi16090329
Chicago/Turabian StyleRancea, Alexandru, Ionut Anghel, and Tudor Cioara. 2024. "Edge Computing in Healthcare: Innovations, Opportunities, and Challenges" Future Internet 16, no. 9: 329. https://doi.org/10.3390/fi16090329
APA StyleRancea, A., Anghel, I., & Cioara, T. (2024). Edge Computing in Healthcare: Innovations, Opportunities, and Challenges. Future Internet, 16(9), 329. https://doi.org/10.3390/fi16090329