
Citation: Shrestha, S.K.; Pokhrel, S.R.;

Kua, J. On the Fairness of Internet

Congestion Control over WiFi with

Deep Reinforcement Learning. Future

Internet 2024, 16, 330. https://

doi.org/10.3390/fi16090330

Academic Editor: Ping Wang

Received: 29 July 2024

Revised: 30 August 2024

Accepted: 3 September 2024

Published: 10 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

On the Fairness of Internet Congestion Control over WiFi with
Deep Reinforcement Learning
Shyam Kumar Shrestha , Shiva Raj Pokhrel * and Jonathan Kua

IoT & Software Engineering Research Laboratory, School of Information Technology, Deakin University,
Geelong 3220, Australia; shyam.shrestha@deakin.edu.au (S.K.S.); jonathan.kua@deakin.edu.au (J.K.)
* Correspondence: shiva.pokhrel@deakin.edu.au

Abstract: For over forty years, TCP has been the main protocol for transporting data on the Inter-
net. To improve congestion control algorithms (CCAs), delay bounding algorithms such as Vegas,
FAST, BBR, PCC, and Copa have been developed. However, despite being designed to ensure fairness
between data flows, these CCAs can still lead to unfairness and, in some cases, even cause data flow
starvation in WiFi networks under certain conditions. We propose a new CCA switching solution that
works with existing TCP and WiFi standards. This solution is offline and uses Deep Reinforcement
Learning (DRL) trained on features such as noncongestive delay variations to predict and prevent
extreme unfairness and starvation. Our DRL-driven approach allows for dynamic and efficient
CCA switching. We have tested our design preliminarily in realistic datasets, ensuring that they
support both fairness and efficiency over WiFi networks, which requires further investigation and
extensive evaluation before online deployment.

Keywords: TCP unfairness; starvation; WiFi; dynamic CCA switching; congestion control algorithms
(CCAs); Deep Reinforcement Learning

1. Introduction

The Transmission Control Protocol (TCP) and the congestion control algorithms (CCAs)
play a critical role in managing the flow of data across the Internet, directly impacting both
Quality of Service (QoS) and Quality of Experience (QoE) for a wide range of applications [1,2].
Over the past several decades, researchers have focused on developing and refining these
algorithms to ensure efficient and fair resource allocation at the transport layer, which is
essential for maintaining high network performance and user experience/satisfaction [1].
CCAs govern the behavior of data transmission, particularly in response to packet loss, hence
directly influencing key performance metrics such as throughput, end-to-end latency/Round
Trip Time (RTT), jitter, and overall network stability.

Despite significant progress in recent years, users of Internet services continue to face
substantial challenges, such as multi-second Request Completion Times (RCTs), which
remains a problem [3]. This delay is primarily attributed to the limitations of existing
delay-based CCAs, which adjust the congestion window (CWND) based on metrics such as
RTT and estimated sending rates. While delay-based CCAs have been designed to enhance
throughput and performance, particularly for interactive and real-time applications, their
performance is often inconsistent and sub-optimal under varying network conditions.

1.1. Gaps in Existing Studies

Inefficiency of Loss-Based CCAs: Traditional loss-based CCAs, such as NewReno [4],
CUBIC [5], and Compound TCP [6,7], increase their CWND in response to packet losses [8].
While these algorithms have been effective in maximizing throughput, they often result
in increased latency and jitter, making them unsuitable for applications that require low
latency, such as video conferencing and interactive online gaming. Moreover, these CCAs

Future Internet 2024, 16, 330. https://doi.org/10.3390/fi16090330 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090330
https://doi.org/10.3390/fi16090330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0006-2319-919X
https://orcid.org/0000-0001-5819-765X
https://orcid.org/0000-0001-9699-9418
https://doi.org/10.3390/fi16090330
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090330?type=check_update&version=1

Future Internet 2024, 16, 330 2 of 33

are reactive by nature, responding to congestion events after they have occurred, which
can lead to network inefficiencies and degraded user experience.

Limitations of Delay-Based CCAs: Delay-based CCAs, including Sprout [9], Remy [10],
Vegas [11], FAST [12], BBR [13], PCC [14,15], Copa [16], and Verus [17], have been developed
to address the limitations of loss-based algorithms by adjusting CWND based on delay
measurements rather than packet losses. While promising, these algorithms are prone
to performance degradation and fairness issues, particularly in networks where non-
congestive delay variations—such as those caused by ACK aggregation, thread variations,
or end-host scheduling—can significantly affect their operation. These variations can lead
to situations where some flows receive disproportionately low bandwidth, a condition
known as “starvation”, which severely impacts QoE [18].

Fairness and Starvation Issues: Although delay-based CCAs are designed to improve
network performance, they can inadvertently cause unfairness among competing flows,
particularly under heterogeneous network conditions. For instance, if non-congestive
delay variations exceed twice the equilibrium delay range, delay-based CCAs may become
unstable, leading to starvation for certain flows. This issue is particularly problematic
in WiFi networks, where varying signal strengths and interference can exacerbate these
effects [19–21]. Existing studies often fail to adequately address these fairness issues,
focusing instead on optimizing performance metrics like throughput or latency without
considering the broader impact on user experience.

The Need for Dynamic Adaptation: Current CCAs are typically designed with a
fixed logic that does not dynamically adapt to changing network conditions [22]. This
rigidity is a significant shortcoming in modern networks, where conditions can vary rapidly,
particularly in wireless and mobile environments [23]. The inability of these algorithms
to adapt to real-time changes in network conditions leads to suboptimal performance [24]
and exacerbates the fairness and efficiency issues described above. Moreover, the lack of
dynamic adaptation makes it difficult for CCAs to maintain optimal performance across
diverse environments, from stable wired connections to fluctuating wireless networks.

1.2. Why These Problems Need to Be Addressed

The challenges outlined above highlight the need for a more flexible and intelligent
approach to congestion control. The persistent issues of unfairness, inefficiency, and starva-
tion in existing CCAs undermine the potential of modern networks to deliver high QoS
and QoE, particularly as applications become more demanding and network environments
more complex.

Ensuring Fairness and Efficiency: Addressing the fairness and efficiency issues in
CCAs is critical in providing a more equitable network experience. As users increasingly
rely on real-time applications that require consistent and low-latency performance, the
ability to ensure that all flows receive a fair share of network resources becomes essen-
tial [18,21]. Without solving these issues, certain applications and users will continue to
suffer from poor performance, leading to widespread dissatisfaction [14] and potentially
limiting the adoption of advanced Internet services.

Adapting to Diverse Network Conditions: The modern Internet is characterized by
its diversity, with traffic patterns and network conditions varying widely across different
environments. The static nature of existing CCAs makes them ill-suited to cope with
this variability. Developing CCAs that can dynamically adapt to changing conditions in
real time is crucial for maintaining optimal performance [24] and avoiding the pitfalls of
traditional algorithms.

Leveraging Modern Technologies: The rise of machine learning and artificial intel-
ligence presents an opportunity to develop more intelligent CCAs that can learn from
network conditions and make real-time adjustments. By leveraging Deep Reinforcement
Learning (DRL), it is possible to design CCAs that are not only more adaptive but also
more capable of balancing the competing demands of throughput, latency, and fairness [19].

Future Internet 2024, 16, 330 3 of 33

DRL-based approaches can predict and mitigate the risks of unfairness and starvation,
leading to a more efficient and user-friendly Internet.

1.3. Proposed Solution and Contributions

To address these challenges, we propose a CCA switching mechanism that uses
Deep Reinforcement Learning (DRL) to adjust congestion control strategies based on
network conditions. This method is designed to work with existing TCP and WiFi standards,
allowing the system to adapt to different network environments. Our DRL models are
trained on features like noncongestive delay variations, helping to reduce the risk of
unfairness and starvation in data transmission.

Current TCP CCAs, which rely on loss or delay, struggle to maintain fairness and
efficiency under various network conditions. To improve this, we developed a DRL-based
CCA switching mechanism that aims to make data transmission more equitable and efficient.
Our key contributions are:

• CCA Switching Mechanism: We propose a DRL-based solution that adjusts conges-
tion control strategies based on real-time network conditions, compatible with existing
TCP and WiFi standards.

• Delay Variation Analysis: Our method uses DRL models trained on non-congestive
delay variations to help avoid extreme unfairness and starvation.

• Testing with Real Data: We tested our approach offline over simulated environment
using real data to ensure it aligns with the goals of fairness and efficiency in TCP.
Online training and evaluation is beyond the scope of this paper.

In this paper, we first discuss prevalent TCP issues and the role of DRL in optimizing
flow fairness, along with a review of relevant prior works in Section 2. Next, we present a
comprehensive analysis of four widely used CCAs, mathematically demonstrating how un-
fairness and starvation occur in Section 3. In Section 4, we propose a DRL model to address
these issues, detailing the model’s design, training, and validation processes. Following
this, Section 5 outlines our experimental setup, results, DRL model performance, and
relevant graphs. Finally, we conclude by summarize our findings, discuss the limitations of
our work, and provide directions for future work in Section 6.

2. Background and Related Works

Recently, several studies have shed light on fairness issues [21], including unfairness
in TCP and extreme unfairness, also known as starvation. In [18], the authors presented
experimental evidence demonstrating that achieving equal bandwidth distribution among
network users is challenging. Instead, users often experience unfairness or a low share of
available bandwidth, with at least one user receiving extremely low or zero bandwidth.
This phenomenon, known as “TCP Starvation”, is evident not only in delay-bounded
congestion control algorithms but also in loss-based CCAs.

CCAs are crucial in network protocols, influencing data transmission performance and
fairness. Traditionally, loss-based congestion control algorithms such as NewReno, CUBIC,
and Compound TCP have been widely used. These algorithms adjust the congestion
window size in response to packet loss, signaling network congestion. However, their
reactive nature often leads to suboptimal performance as delay increases, posing challenges
to maintaining fairness among flows [25].

In recent years, delay-bounding congestion control algorithms have garnered attention
for their ability to control network traffic delay. Unlike their loss-based counterparts, delay-
bounding algorithms prioritize delay as the primary congestion indicator. This approach is
particularly advantageous for real-time and interactive applications requiring low latency.
Notable delay-bounding algorithms include Vegas, FAST, BBR, PCC, and Copa, each with
distinct design principles and mechanisms for delay control.

Future Internet 2024, 16, 330 4 of 33

2.1. TCP Fairness and ML Approaches

Inter-flow fairness, ensuring equitable distribution of network resources among com-
peting flows, is a fundamental aspect of congestion control. However, achieving fairness
poses challenges, as highlighted by recent studies. These studies identify scenarios where
starvation can occur despite efforts to maintain fairness, particularly in delay-bounding
congestion control algorithms. Recently proposed solutions, including reinforcement
learning-based approaches that aim to optimize host CCAs and bottleneck Active Queue
Management (AQM) schemes [26], such as leveraging Deep Deterministic Policy Gradient
(DDPG) [27] and Asynchronous Advantage Actor Critic (A3C) [28], aim to simultaneously
improve throughput and ensure fairness [19].

Network delay variations significantly impact congestion control algorithm perfor-
mance and fairness among flows. Factors contributing to delay variations challenge tradi-
tional throughput and fairness models. Comparative studies of TCP congestion control
mechanisms emphasize the benefits of loss-based algorithms for latency-sensitive flows
and the fairness issues of delay-based algorithms [29,30]. Empirical evidence highlights the
potential for unfairness in delay-bounding congestion control algorithms, particularly when
non-congestive network delay variations exceed certain thresholds. Improved fairness and
performance have been achieved through adaptive and stable delay control algorithms.
These advancements aim to address issues such as bufferbloat [31], which can lead to
unfairness in network performance [32].

Metrics for fairness evaluation play a crucial role in assessing network protocols.
Throughput fairness, delay fairness, jitter fairness, and loss fairness are key metrics used to
evaluate the distribution of network resources among flows. These metrics help identify
potential issues and guide the development of fairer congestion control algorithms [3].

ML and DRL frameworks for TCP offer promising avenues for improving congestion
control algorithm fairness and performance. These frameworks enable the development of
models that optimize network resource allocation while considering various QoE metrics.
Integrating ML/DRL into congestion control algorithm selection processes can lead to
more efficient and equitable network experiences [3,33,34].

Traditional rule-based approaches, which employ predefined rules and logical conditions,
often struggle under varying network conditions due to their lack of flexibility. Heuristic
methods, while relying on rule-of-thumb strategies and practical experience, can also fall short
in complex and dynamic environments because they lack the ability to adapt to real-time
changes [35]. Thus, instead of directly comparing DRL methods against these more rigid
approaches, we chose to focus on a DRL-based dynamic switching mechanism. This approach
leverages DRL’s ability to continually learn and adapt to varying network conditions, offering
a significant advantage over static evaluation functions or less flexible methods.

2.2. Closest Works in Literature

Arun et al. [18] highlighted that delay-bounding CCAs like Vegas, FAST, BBR, PCC,
and Copa, while designed to ensure high network utilization and fairness, can lead to
starvation under certain conditions, particularly when non-congestive delay variations
exceed twice the equilibrium delay range. Their experiments with BBR, PCC Vivace, and
Copa demonstrated that these CCAs may not effectively address inter-flow fairness in
scenarios with significant delay variations, suggesting the need for CCAs to account for
non-congestive jitter to prevent starvation. Similarly, Zhang et al. [3] addressed the gap
between QoS optimization and actual application needs, proposing “Floo”, a QoE-oriented
mechanism that dynamically selects the most suitable CCA using reinforcement learning
to improve web service performance by optimizing Request Completion Times.

Yamazaki et al. [36] reviewed the evolution of TCP variants, emphasizing the limita-
tions of fixed-logic approaches in dynamic network environments and highlighting the
potential of adaptive solutions like QTCP, a Q-learning-based TCP, despite its fairness
issues. Zhang et al. [37] discussed the importance of congestion control mechanisms in
maintaining Internet stability, noting the limitations of traditional loss-based algorithms

Future Internet 2024, 16, 330 5 of 33

and the advancements in algorithms like BBRv2, Vivace, Copa, and C2TCP, which aim
to balance high throughput with low delays. Finally, Xiao et al. [38] introduced “TCP-
Drinc”, a DRL-based approach that addresses the shortcomings of traditional TCP variants
by adjusting the congestion window size using state features, demonstrating improved
throughput and delay while maintaining fairness.

2.3. Deep Reinforcement Learning in TCP

Recent research has extensively explored the application of DRL and ML techniques to
address fairness and performance issues in wireless networks and TCP congestion control.

In wireless networks, DRL-based approaches have demonstrated significant poten-
tial across various scenarios. For instance, DRL has been used to improve throughput
and reduce collision rates in IEEE 802.11 networks by optimizing contention window
parameters [39]. These techniques also enhance fairness and Quality of Service in wireless
scheduling problems while maximizing system throughput [40]. In wireless mesh net-
works, a distributed network monitoring mechanism using Q-learning has been proposed
to improve TCP fairness and throughput for starved flows [41]. Additionally, DRL-based
MAC protocols have shown the ability to coexist with other MAC protocols while maximiz-
ing sum throughput or achieving proportional fairness, even without prior knowledge of
the other protocols’ operating principles [42]. These studies underscore the transformative
potential of DRL in mitigating network unfairness and starvation issues across various
wireless network scenarios.

Similarly, DRL and ML approaches have been applied to enhance fairness and efficiency
in TCP congestion control. DRL techniques have improved fairness and performance in
both single-flow and multi-flow scenarios [19,20]. These methods aim to optimize conver-
gence properties such as fairness, fast convergence, and stability while maintaining high
performance [20]. Researchers have also addressed the selfish behavior of learning-based
congestion control algorithms by proposing new mechanisms that enhance fairness without
compromising throughput and latency [36]. Furthermore, ML-based estimation of competing
flows’ congestion control algorithms has been explored to improve per-flow fairness in en-
vironments where multiple congestion control algorithms coexist [43]. Another DRL-based
approach, TCP-Drinc [38], has been proposed to improve traditional TCP variants by adjusting
the congestion window size using extracted state features and addressing challenges like
delayed feedback and multi-agent competition, showing improved throughput and delay
while maintaining fairness.

Moreover, RL-based approaches that aim to optimize host CCAs and bottleneck
AQM schemes [26], such as leveraging Deep Deterministic Policy Gradient (DDPG) [27]
and Asynchronous Advantage Actor-Critic (A3C) [28], have been proposed to simultane-
ously improve throughput and ensure fairness [19].

These studies highlight the potential of ML and DRL techniques to significantly enhance
fairness and efficiency in TCP congestion control across diverse network environments. Exist-
ing DRL research has primarily focused on two approaches to enhance network performance,
fairness, and to prevent starvation. The first approach involves optimizing traditional rule-
based CCAs’ functionality, such as the optimization of contention window parameters [38–40],
convergence properties [20], and CCA and AQM [27,28]. The second approach involves de-
signing DRL-based algorithms, such as TCP-Drinc [38], Aurora [44], and Astraea [20]. These
efforts have mitigated many networking problems and reduced complexities.

However, implementing DRL in TCP is not straightforward. Some approaches are only
available offline [20], require rigorous training for CCA, and demand high CPU resources,
which are often lacking [45]. Additionally, existing approaches cannot guarantee fairness
among competing flows as they are still in the development phase [46]. Despite these
challenges, multiple studies have already demonstrated that DRL-based approaches are
becoming increasingly promising in TCP.

Upon reviewing the existing ML-, RL-, and DRL-based approaches in TCP, we iden-
tified the need for a novel approach to further address persistent network issues. While

Future Internet 2024, 16, 330 6 of 33

several DRL-based TCP protocols and optimization strategies have been proposed, no prior
research has explored the dynamic switching between available CCAs to enhance network
performance, improve flow fairness, and prevent starvation, especially in heterogeneous
environments, such as in WiFi networks. This paper introduces a DRL-based dynamic
switching mechanism designed to tackle these persistent TCP issues. Our results demon-
strate significant improvements in key performance metrics such as throughput, RTT, jitter,
packet loss, fairness, and the prevention of throughput starvation.

Despite advancements in congestion control algorithms, several challenges remain
unresolved. A comprehensive understanding of how delay-bounding algorithms adapt
to non-congestive network delay variations, the thresholds and characteristics of non-
congestive jitter, and the development of ML/DRL frameworks to quantify and mitigate
fairness issues is essential. Addressing these gaps will advance the development of conges-
tion control algorithms and contribute to enhanced network performance and fairness [19].

In this study, we focused on TCP unfairness by analyzing the underlying mathematical
principles, conducting real-world network tests, and dynamically switching CCAs using
DRL techniques. This involved assessing current CCAs’ performance under varying net-
work conditions and dynamically selecting the optimal CCA when significant disparities in
throughput, latency, loss rate, and sending rate were observed among competing flows. To
the best of our knowledge, this is the first study to investigate the dynamic switching of CCAs
using DRL to improve flow performance and prevent starvation. Therefore, this research aims
to contribute to the field by providing a DRL-based approach that dynamically switches CCAs
based on historical network data to better understand and respond to network fluctuations,
ultimately improving flow performance and preventing starvation.

3. Mathematical Interpretation of Unfairness and Starvation in Representative CCAs

Multiple TCP CCAs exist, but all have the common core philosophy of improving
users’ experience in reliable data transformation. Some of the CCAs explicitly in use
are Bottleneck Bandwidth and Round-trip propagation time (BBR), Performance-oriented
Congestion Control (PCC) Vivace, Vegas, Copa, CUBIC, NewReno, and Reno. In this
section, we aim to provide a detailed discussion of four key CCAs: BBR, PCC Vivace,
CUBIC, and Copa. The exposition will elucidate the comprehensive functioning of each
TCP variant, shedding light on their overall behavior and how they respond to packet loss
and variations in RTT across flows.

Before moving to the detailed mathematical interpretation, we briefly explain the
hypotheses formulated later in this section. Three key hypotheses are made for each
selected CCA:

• Equal Loss with Varying RTT: This hypothesis aims to investigate how a CCA man-
ages flows with different RTTs when they experience the same level of packet loss.
Specifically, it evaluates whether disparities in RTTs result in unequal congestion win-
dow allocation under identical loss conditions. The primary purpose is to ascertain
whether variations in RTT alone can lead to unfairness in congestion window sizes
across different flows.

• Equal RTT with Varying Loss: In this hypothesis, the focus is on how varying levels of
packet loss impact the congestion window of flows with the same RTT. It examines
whether changes in packet loss lead to fairness issues or potential starvation in flows
that experience identical network delays. The objective is to investigate whether
packet loss alone can disrupt fairness and lead to differential treatment of flows.

• Starvation Hypothesis: This hypothesis examines extreme cases of unfairness, where
one flow significantly underperforms compared to another due to variations in RTT
or packet loss. The aim is to assess the worst-case scenarios for fairness and evaluate
how effectively the CCA prevents starvation.

“TCP Starvation” [18] is a critical phenomenon that can significantly impact network
performance and fairness. It occurs when a TCP flow with a longer RTT receives a dispro-

Future Internet 2024, 16, 330 7 of 33

portionately smaller share of bandwidth/observed ratio compared to flows with shorter RTT.
This can lead to degraded throughput, increased latency, and unfair resource allocation.

TCP CUBIC performs the window growth functions in a cubic function. It sets
a Maximum Window (Wmax) at the point where the packet loss occurred. Then, the
congestion window decreases multiplicatively. It recovers the performance quickly and
enters the congestion-avoidance phase. Up to the inflection point, the window size increases
in concave style. However, it adjusts the window size after the congestion is detected and
maintains stabilized networks at Wmax before entering convex-style growth of the window
size. Concave and convex styles of window adjustments assist CUBIC to stand out from
the other existing congestion control algorithms, improving protocol and network stability
by maintaining high network utilization. Improvements are possible as the window size
remains stable around Wmax by forming a plateau. The detailed derivation are provided at
the end of this paper. With extensive analytic modeling, we consider two cases to explain
the causes of unfairness and starvation.

CASE I: Considering two CUBIC flows with different RTTs, τ1 and τ2, and experiencing
the same loss p, we can evaluate how the congestion windows W⋆

1 and W⋆
2 evolve as

W⋆
1

W⋆
2
= 4

√
τ3

1
τ3

2
(1)

using (1); if τ1 = 2τ2, then W⋆
1

W⋆
2
= 4

√
8, which explain the key reason for the observed unfairness.

CASE II: Considering two CUBIC flows with the same RTTs, τ, and experiencing different
losses, p1 and p2, we can evaluate how the congestion windows W⋆

1 and W⋆
2 evolve:

W⋆
1

W⋆
2
= 4

√
p3

2
p3

1
(2)

If p1 = 2p2, then W⋆
1

W⋆
2
= 4

√
1
8 .

As we know, Starvation is an extreme case of unfairness; the two cases discussed
above will have the following consequences:

CASE I: If p1 = np2, where n = 1, 2, 3, . . . , 20 W⋆
1

W⋆
2
= 4

√
1

n3 ;

CASE II: If τ1 = nτ2, where n = 1, 2, 3, . . . , 20 W⋆
1

W⋆
2
=

4√n3.

PCC Vivace borrows the PCC architecture: a utility function framework and a learning
rate-control algorithm and perceives both modules uniquely. This utility function rewards
throughput to maximize performance and minimize latency, while it penalizes when packet
loss occurs and increases latency [14,15]. The learning rate-control algorithm provides an
opportunity for the sender to select the sending rates that allow the senders to learn their
performance through statistic aggregation, such as achieved throughput, latency, and loss rate
of packets. Then based on the numerical utility value, they determine the sending rate [15].
The following equation helps to find out the utility value. With detailed derivation deferred
to the Appendix A, we consider two cases to explain the causes of unfairness and starvation.

CASE I: Considering two PCC flows with different RTTs, τ1 and τ2, and experiencing
the same loss p, we can evaluate how the congestion windows U⋆

1 and U⋆
2 evolve as

U⋆
1

U⋆
2
=

1 − b dτ1
dT − cLi

1 − b dτ2
dT − cLi

(3)

If τ1 = 2τ2, then U⋆
1

U⋆
2
=

1−2b dτ2
dT −cLi

1−b dτ2
dT −cLi

.

CASE II: Considering two PCC flows with same RTTs, τ, and experiencing different
losses, p1 and p2, we can evaluate how the congestion windows U⋆

1 and U⋆
2 evolve:

Future Internet 2024, 16, 330 8 of 33

U⋆
1

U⋆
2
=

(1 − b dτ
dT − cLi)(1 − p2)

(1 − b dτ
dT − cLi)(1 − p1)

=
1 − p2

1 − p1
(4)

If p1 = 2p2, then U⋆
1

U⋆
2
= 1−p2

1−2p2
.

As we know, Starvation is an extreme case of unfairness; the two cases discussed
above will have the following consequences:

CASE I: If p1 = np2, where n = {1, 2, 3, . . . , 20}

U⋆
1

U⋆
2
=

1 − p2

1 − np2

CASE II: If τ1 = nτ2, where n = 1, 2, 3, . . . , 20

U⋆
1

U⋆
2
=

1 − n(b dτ2
dT)− cLi

1 − (b dτ2
dT)− cLi

BBR has a strong influence on congestion control, which measures the available Bottle-
neck Bandwidth (Btlbw) and lowest RTT [47]. By using those measurements, BBR creates
a network path model to increase the delivery rate and decrease latency [47]. The BBR
congestion control algorithm also measures the maximum delivery rate and minimum
transmission delay to find Kleinrock’s optimal operating point [48], also known as Band-
width Delay Product (BDP). During this period, the delivery rate remains unchanged but
RTT increases. With extensive mathematical modeling detailed at the end of this paper, we
consider cases to explain the causes of unfairness and starvation as follows.

CASE I: Considering two BBR flows with different RTTs, τ1 and τ2, and experiencing
the same loss p, we can evaluate how the congestion windows W⋆

1 and W⋆
2 evolve as

W⋆
1

W⋆
2
=

τ1

τ2

(τ2 − 2τm

τ1 − 2τm

)
(5)

If τ1 = 2τ2, then

W⋆
1

W⋆
2
=

2τ2

τ2

(τ2 − 2τm

2τ2 − 2τm

)
CASE II: Considering BBR flows with the same RTTs, τ, and experiencing different

losses p1 and p2, we can evaluate how the congestion windows W⋆
1 and W⋆

2 evolve

W⋆
1

W⋆
2
=

τ − 2τm(1 − p2)

τ − 2τm(1 − p1)
(6)

If p1 = 2p2, then W⋆
1

W⋆
2
= 1−p2

1−2p2
.

As we know, Starvation is an extreme case of unfairness; the two cases discussed
above will have the following consequences:

CASE I: If p1 = np2, where n = 1, 2, 3, . . . , 20 W⋆
1

W⋆
2
= 1−p2

1−np2

CASE II: If τ1 = nτ2, where n = 1, 2, 3, . . . , 20 W⋆
1

W⋆
2
= 3n

5n−2

Copa is a delay-based end-to-end congestion control mechanism. It observes the delay
evolution to detect the existing buffer fillers and reacts with an additive increase/multiplicative
decrease [16]. While the detailed maths are deferred to the end of this paper, we obtain the
equilibrium congestion window W⋆ as

W⋆ =
τ⋆

δ(τ⋆ − Tm)
(7)

Future Internet 2024, 16, 330 9 of 33

We consider two cases to explain the causes of unfairness and starvation.
CASE I: Considering two Copa flows with different RTTs, τ1 and τ2, and experiencing

the same loss, p, we can evaluate how the congestion windows W⋆
1 and W⋆

2 evolve as

W⋆
1

W⋆
2
=

τ1

τ2

(τ2 − Tm

τ1 − Tm

)
(8)

If τ1 = 2τ2, then W⋆
1

W⋆
2
= 2τ2

τ2

(
τ2−Tm

2τ2−Tm

)
.

CASE II: Considering Copa flows with same RTTs, τ, and experiencing different losses
p1 and p2, we can evaluate how the congestion windows W⋆

1 and W⋆
2 evolve:

W⋆
1

W⋆
2
=

(τ − Tm)(1 − p2)

(τ − Tm)(1 − p1)
=

1 − p2

1 − p1
(9)

If p1 = 2p2, then W⋆
1

W⋆
2
= 1−p2

1−2p2
.

As we know, Starvation is an extreme case of unfairness; the two cases discussed
above will have the following consequences:

CASE I: If p1 = np2, where n = 1, 2, 3, . . . , 20 W⋆
1

W⋆
2
= 1−p2

1−np2

CASE II: If τ1 = nτ2, where n = 1, 2, 3, . . . , 20 W⋆
1

W⋆
2
= nτ2

τ2

(
τ2−Tm

nτ2−Tm

)
Figure 1a highlights the possibilities of flow starvation under different TCP variants

and congestion levels. An n represents the loss ratio, whereas the ratio observed by
TCP flows reflects the relative bandwidth allocation among the various flows of the PCC
Vivace, BBR, Copa, and CUBIC. Since n represents the loss ratio, higher n values mean
more packet loss, which indicates the intensity of congestion in the network. Each pair of
color-coded lines corresponds to two flows using the same TCP variants and highlights
how the bandwidth ratio between those flows varies as the loss ratio increases.

(a) (b)

Figure 1. Starvation in multiple TCP protocols (PCC Vivace, BBR, Copa, and CUBIC) with
(a) different loss ratio of 2 flows (p1 = np2, n = loss ratio = 1, . . . , 20), where p1 and p2 represent
flow 1 and flow 2 loss ratios, CASE I: Starvation from Table 1 with different loss ratios, n = 1, 2, . . .:
(b) (τ1 = nτ2, n = RTT ratio = 1, . . . , 20) , where τ1 and τ2 represents flow 1 and flow 2 RTT ratios,
CASE II: Starvation from Table 1 with different RTT ratios, n = 1, 2,

Future Internet 2024, 16, 330 10 of 33

Table 1. Summary of congestion control for CUBIC, BBR, PCC Vivace, and Copa.

Algorithms Window ⋆(W⋆) Unfairness Starvation

CUBIC [49] 4
√

τ3C
(p⋆)3 β

4

√
τ3

1
τ3

2
, 4

√
p3

2
p3

1

4
√

n3, 4
√

1
n3

BBR [50] ατ⋆

τ⋆−2τm
τ1
τ2

(
τ2−2τm
τ1−2τm

)
, τ−2τm(1−p2)

τ−2τm(1−p1)

1−p2
1−np2

, 3n
5n−2

PCC [14,15] 1 − b dτi
dT − cLi

1−b dτ1
dT −cLi

1−b dτ2
dT −cLi

, 1−p2
1−2p2

1−p2
1−np2

, 1−n(b dτ2
dT)−cLi

1−(b dτ2
dT)−cLi

Copa [16] τ⋆

δ(τ⋆−Tm)
τ1
τ2

(
τ2−Tm
τ1−Tm

)
, 1−p2

1−p1

1−p2
1−np2

, nτ2
τ2

(
τ2−Tm

nτ2−Tm

)

In Figure 1b, the RTT Ratio (n) quantifies the difference in Round-Trip Times between
competing flows, with higher values pointing to greater disparities. As the n increases,
lines for flows with longer RTT curves move downwards, indicating declining bandwidth
ratios. The ratio observed by TCP flows measures bandwidth distribution among flows,
and values falling significantly below 1 suggest starvation for the corresponding flows.
Notably, different TCP protocols, such as PCC, BBR, Copa, and CUBIC, demonstrate distinct
behaviors concerning starvation.

Based on our analysis of plots and equations associated with different TCP algorithms,
our hypothesis regarding resource allocation disparity seems to hold true. We initially
hypothesized that regardless of design principles aiming for TCP-friendliness, low latency,
low loss, and higher throughput, fairness issues related to resource allocation still arise.
Our observations within a specific congested network environment suggest that packets
experience significant queuing delays, leading to delivery time extensions or packet drops,
even when certain flows manage to deliver packets without issues. This scenario represents
a “starvation state” for some flows, and such intra- and inter-variant unfairness negatively
impacts overall network performance.

4. System Model of Proposed TCP-Switching Mechanism

This section details the design of our TCP-switching mechanism, which utilizes DRL
to optimize CCAs. The model integrates four key components, Unfairness Monitoring,
Collective Statistics, DRL-based Selection, and TCP Switching, each contributing to a
dynamic and responsive network management system.

Before presenting the details of our system model, we outline a set of metrics in
Tables 2 and 3 for monitoring unfairness and Collective Statistics in CCAs, respectively. An-
alyzing these metrics allows us to assess CCA fairness and identify the need for adjustments
or switching.

Table 2. Metrics to monitor the unfairness of CCAs.

Metric Interpretation

Thratio Throughput of flow A/Throughput of flow B
τ Travel time from source to destination and back to source
Delay One way delay—from source to the destination
Prate Number of loss packets/Total number of sent packets
Jitter Variability in packet arrival times

Goodput (Total transferred data—overhead data)/time taken
Sqsize Total amount of buffered data waiting to be transmitted
byterate Bytes the sender processes in the last selection period

Future Internet 2024, 16, 330 11 of 33

Table 3. Metrics accumulated by Collective Statistics.

Metric Interpretation

Thmax The optimum delivery rate
τmin The minimum Round Trip Time
τrate Average τ/τmin
Prate Number of lost packets/Total number of sent packets
CCAname Running CCA

Goodput (total transferred data—overhead data)/time taken
Sqsize Total amount of buffered data waiting to be transmitted
byterate Bytes the sender processes in the last selection period

Selecting effective CCAs requires addressing flow unfairness, which is pivotal for
optimizing QoS and QoE. We assert that CCAs failing to distribute bandwidth fairly among
all flows will not adequately enhance QoS and QoE. Our approach involves evaluating and
addressing the fairness of CCAs through various metrics and employing DRL to switch
CCAs based on these evaluations dynamically.

To detect unfairness in CCAs, we use a fixed-point approach that compares throughput
across different flows. If one flow consistently receives a higher throughput than others, it
indicates that the CCA may be unfair. This approach involves defining a fairness function
that evaluates the throughput ratio between flows and iteratively adjusting it until it reaches
a fixed point, reflecting an equitable bandwidth distribution. For example, one possible
function could be the ratio of the throughput of the flow to the average throughput of
all flows:

f (Th1) =
Th1

a.Thavg

where Th1 is the throughput of flow 1, a is the number of flows, and Thavg is the average
throughput of all flows.

The fixed-point approach then iteratively adjusts the throughput of each flow until
the function f (Th1) reaches a fixed point. A fixed point is a value of the function that does
not change when the throughput of the flows is adjusted. The fixed-point approach can be
shown in the following equation:

Th1(x + 1) = f (Th1(x))

where Th1(x) is the throughput of flow 1 in iteration x, Th1(x + 1) is the throughput of flow
1 in iteration x + 1, and f (Th1(x)) is the value of the function f (Th1) in iteration x. If the
fixed-point approach converges to a value where all flows have the same throughput, then
the congestion control algorithm is fair. However, if the fixed-point approach converges to
a value where one flow has more throughput than the others, then the congestion control
algorithm is unfair.

CCAs are deployed in the transport layer that settles behaviors of data transformation,
which rigorously affects the user experience [3]. The improvisation in QoS does not improve
the Quality of Experience. The gap between QoE and QoS must be filled; if not, it must be
minimized. Here, we do not upgrade any CCAs directly; however, we attempt to develop
a model between the transport layer and the application layer that assists in selecting the
right CCAs and ultimately provides better QoE. There is no such CCA that fits in every
situation and functions perfectly in all scenarios. Thus, the alternative for better QoE is to
autonomously select the effective and efficient CCA in varying scenarios.

However, it is challenging to select the right CCAs and to form the CCA-selection
policies [3] by observing the network conditions and QoE metrics. One of the main
challenges is to adapt to the dynamic network conditions. The networks are affected by
various factors [3] such as the overflow of traffic into the networks, the fading of wireless
channels, and user movement activities. The network’s condition does not stay stable.
Another difficulty in choosing the right CCA is the empirical characteristics of CCAs [51,52].

Future Internet 2024, 16, 330 12 of 33

The latest CCAs [14,16] are seriously difficult to model and characterize, as the existing
understanding of CCAs is empirical [51,52].

Another notable challenge is the difficulty in smooth switching. As [3] mentioned, there
is a very strong possibility of taking the place of CCA switching while the transmission is
happening because of unstable network conditions. Here, we have implemented unrestricted
switching. Unrestricted switching allows the new CCA to inherit all CCA-related variables,
encompassing connection-level variables (such as congestion window/sending rate and
RTT-related values), and private state variables of the CCA (e.g., minimum RTT, CWND
increment, etc.). Limited sSwitching, on the other hand, only inherits connection-level
variables. The private state variables of the new CCA are initialized from default values.

4.1. Model Interpretation

As shown in Figure 2, Collective Statistics aggregates data from the transport and
application layers. These metrics are integrated with inputs from unfairness monitoring.
The DRL-based selection then evaluates the fairness status of CCAs using these data, maps
the metrics provided by Collective Statistics, selects an optimal CCA, and recommends
TCP switching. Upon receiving the optimal CCA recommendation, TCP switching initiates
the transition from the current CCA to the newly selected optimal CCA, considering the
network dynamism and environments.

Figure 2. A high-level view of our model design with different components and their interactions.

4.1.1. Proposed DRL-Based CCA Switching

Our DRL framework utilizes a Deep Q-Network (DQN) to dynamically select and
switch CCAs based on real-time network conditions. DQN was chosen over other DRL
algorithms, such as DDPG, Double DQN, and DeepSARSA due to its superior performance
in fairness analysis, as highlighted by [53], and its effectiveness in handling large discrete
action spaces, which is relevant for CCA selection [54]. Furthermore, [55] demonstrated the
ability of DQN to manage complex decision-making tasks, further supporting its suitability
for our research.

State Space (S)

The state space captures key network metrics influencing the performance of CCA,
including throughput, RTT, loss rate, and jitter. These parameters allow the DQN to assess
and adjust the CCA based on real-time conditions.

Future Internet 2024, 16, 330 13 of 33

Action Space (A)

The action space consists of selecting between different CCAs, such as Cubic, BBR, or
PCC, where each action represents a potential CCA switch.

Reward Function (R)

The reward function is designed to improve network performance by addressing
disparities in metrics and promoting beneficial CCA switches. For simplicity, we use

R(st, at) =
1
2

log(Throughput(t))− 1
4

log(Latency(t))− 1
4

log(LossRate(t)),

but the constants can be tuned to encourage actions that emphasize throughput and reduce
RTT and the loss rate differently.

Q-Function (Q)

The Q function estimates the expected cumulative reward for each pair of state actions,
which guides the selection of the optimal CCA:

Q(st, at) = E
[

R(st, at) + γ max
a′

Q(st+1, a′)
]

with γ = 0.95 balancing immediate and future rewards. This function helps determine
actions that maximize long-term network performance. DRL trains a neural network
to solve problems to optimize our proposed approach, predicting and responding to
congestion indicators, effectively using the available bandwidth, and switching to the
optimal CCA. Due to current dependencies on user-space libraries, DRL implementations
must run in the user space (not in the kernel). The proposed DRL-Based TCP Switching
Algorithm is shown in Algorithm 1.

Given time and resource constraints, network environment complexity, data prepro-
cessing needs, and real-time modeling challenges, we implemented offline DRL as the sole
method for switching CCAs in this paper. The process was as follows.

Data Collection: Historical network traffic data were gathered using tools like iperf3 and
Wireshark, capturing metrics such as throughput, packet loss, RTT, and congestion levels.

Offline Training: The DRL model was trained offline with the collected data, learning
to identify network behavior patterns and select suitable CCAs. Validation: The model was
validated with separate datasets to ensure its effectiveness and generalization to unseen
network conditions, fine-tuning parameters as needed.

Validation The DRL model was validated with separate datasets to ensure its effective-
ness and generalization to unseen network conditions, fine-tuning parameters as needed.

Realtime Monitoring: The continuous monitoring of real-time network metrics was
conducted to update network condition variables. These metrics were inputted into the
trained DRL model to predict the optimal CCA for current network conditions.

Algorithm Selection Policy: A policy was developed based on the DRL model’s decisions,
determining CCA selection based on observed network conditions.

Simulation: The DRL-based congestion control mechanism was simulated in an offline
environment, evaluating performance and the ability to mitigate unfairness.

Optimization: The DRL model and selection policy were refined based on simulation
results and validation feedback, enhancing decision-making accuracy and robustness.

Preparation for Switching: The parameters of the predicted optimal CCA were retrieved,
potential disruptions during the transition were analyzed, and the current state of network
traffic was saved to facilitate a smooth migration to the new CCA.

Execution of Switching: New CCA parameters were communicated to the transport
layer, variables were migrated smoothly to minimize disruption, and the new CCA was
applied while monitoring initial performance.

Future Internet 2024, 16, 330 14 of 33

Algorithm 1 DRL-Based TCP Switching Algorithm

Input: Historical network data, Real-time network metrics
Output: CCA selection and smooth switching
Step 1: Data Collection
Collect historical network traffic data using tools (e.g., iperf3, Wireshark)
Gather metrics: throughput, packet loss, RTT, congestion levels
Step 2: Offline Training
Train DRL model with collected historical data
Model learns to identify patterns and select suitable CCA
DRL model analyzes historical network metrics (e.g., throughput, packet loss, RTT,
congestion levels)
the model identifies patterns and correlations within these metrics that impact network
performance
The model learns to predict the best-performing CCA under a different network
Select the optimal perfroming CCA
Step 3: Validation
Validate the DRL model with separate validation datasets
Fine-tune model parameters to improve generalization
Step 4: Real-time Monitoring
while network is operational do

Continuously monitor real-time network metrics
Update network condition variables
Input real-time metrics to the trained DRL model
Predict the optimal CCA for current network conditions

end while
Step 5: Algorithm Selection Policy
Develop policy based on the DRL model’s decision-making
Determine appropriate CCA based on observed conditions
Step 6: Prepare for Switching
Retrieve parameters of the predicted optimal CCA
Analyze potential disruptions during the transition
Save the current state of network traffic
Step 7: Execute Switching
Communicate new CCA parameters to the transport layer
Migrate CCA variables smoothly, ensuring minimal disruption
Apply the new CCA and monitor initial performance
Step 8: Post-Switch Evaluation
Continue monitoring network metrics post-switch
Compare performance with pre-switch metrics
if performance improves then

Confirm new CCA selection
else

Revert to the previous CCA or select an alternative
end if

5. Experimental Methodology, Results, and Discussion

In this section, we present our experimental methodology, including our experimental
testbed setup and test scenario design. We then present the result analysis and discussion
of each experiemtal scenario accordingly.

5.1. Experimental Testbed Setup

In our experimental testbed setup, as demonstrated in Figure 3, we configured the
client, router, and server components to facilitate comprehensive experimentation. As
shown in the Table 4, MikroTik RouterOS v6.49.4 serves as the network gateway, comple-
mented by Ubuntu 22.04.4 deployed on both client machines. Network traffic generation
is managed using Iperf3, while Wireshark captures data for detailed analysis. Our WiFi

Future Internet 2024, 16, 330 15 of 33

hAP ax (see https://mikrotik.com/product/hap_ax3, accessed on 27 June 2024, for details)
network configuration includes a 100 Mbps bottleneck and a queue buffer of 50 packets,
utilizing the Pfifo queuing discipline. Clients connect via WiFi, ensuring flexibility and
mobility, while the server maintains a stable Ethernet connection for robust data transmis-
sion. This setup allows us to rigorously test and analyze various algorithms such as CUBIC,
BBR, PCC, BB2, and BBR3 over a duration of 100 s, focusing on metrics like throughput,
throughout fairness Thratio, sending rate, packet loss ratio, RTT, and jitter.

Figure 3. Our experimental testbed with 2 clients, one WiFi router, and one server where the clients
are contending each other in the wireless bottleneck and the server is connected with ethernet.

Table 4. Experimental setup and network configuration.

Testbed Setup Network Setup

Operating System Ubuntu 22.04.4

Traffic Generator iperf3

Data Collection Tools Wireshark, tshark, Scapy

RouterOS MikroTik RouterOS 6.49.4; WiFi hAP ax
(https://mikrotik.com/product/hap_ax3, accessed on 27 June 2024)

Network Configuration

Bottleneck 100 Mbps

Queue Buffer 50 packets

Queue Discipline PFIFO

TCP CCAs CUBIC, BBR, PCC, BB2, BBR3

Experiment Duration 100 s

Metrics Throughput, Sending Rate, Packet Loss Ratio, RTT, Jitter

We first observed the disparities in throughput within and between the CCAs (through-
out fairness Thratio) and explored the RTT, jitter, and packet loss ratio within and between
the different CCAs before and after switching in both line graphs and box plots. The aim
was to minimize flow unfairness, optimize overall performance, and prevent flow starva-
tion. Our investigation encompassed a range of CCAs, including CUBIC, BBR, Reno, PCC,
BBR2, and BBR3. Each algorithm’s behavior was thoroughly scrutinized across various
experimental scenarios, evaluating the network stability, throughput, jitter, RTT, and packet
loss ratio under different configurations. We conducted experiments involving specific
intervals of CCA switching, such as transitioning from CUBIC, BBR, PCC, BBR2, and BBR3,
to capture the intricate interactions between CCAs. Throughout our experiments, spanning
100 s with 1 s intervals, data collection and analysis using Wireshark and iperf3 statistics

https://mikrotik.com/product/hap_ax3
https://mikrotik.com/product/hap_ax3

Future Internet 2024, 16, 330 16 of 33

enabled us to identify performance disparities and fairness issues among the tested al-
gorithms. This rigorous analysis contributed insights toward optimizing and selecting
algorithms tailored to diverse networking requirements.

The plots in Figure 4 highlight the behaviors of flows using the same CCA flows compet-
ing for bandwidth. Figure 4a, two CUBIC flows, and Figure 4b, two BBR flows, demonstrate
that throughput disparities are prevalent within CCA flows, unlike in the case of PCC flows
as shown in Figure 4c. Such throughput unfairness (quantifying throughout fairness using
Thratio) observed in BBR and CUBIC flows suggests that both CCAs inherit complex and
sensitive congestion mechanisms, which cannot always prevent unfairness among flows.
Moreover, flow fairness varies in the real world as network conditions dynamically change,
affecting each flow unevenly over time. PCC’s focus on fairness through learning mechanisms
explains its lower unfairness compared to other competitive CCAs.

(a) CUBIC vs. CUBIC (b) BBR vs. BBR (c) PCC vs. PCC

Figure 4. Understanding throughput fairness (Thratio) by a comparison of throughput between two
flows using the same CCA: (a–c). CUBIC flows showed higher fluctuations (a) compared to PCC
flows (b), while BBR flows exhibited a significant throughput gap (c).

Results in Sections 5.2–5.4 show the complexities of fairness in multi-CCA network
traffic. While all flows initially experience a slow throughput rise due to network learning
(latency, jitter, bandwidth), different CCAs exhibit varying behaviors due to their inher-
ent design philosophies. These design principles lead to unfairness when non-identical
CCAs compete. Additionally, factors like differing responsiveness to network changes
(e.g., sudden congestion events) and varying interpretations of “fairness” by different
algorithms can further exacerbate unfairness. Understanding these dynamics is crucial for
optimizing network performance. One potential avenue for improvement could be the
development of “fairness-aware” CCAs or “switching” for fairer CCAs that can dynami-
cally adjust their behavior based on the presence of other algorithms, promoting a more
cooperative approach to resource allocation.

In Figure 5, CUBIC and BBR are competing, the throughput variation slightly improves
over time. The influencing factor behind this is the adaptive nature of CCAs, which
improves the estimation of available bandwidth. However, throughput imbalance remains
unacceptably high in flows like in Figures 5. Not only do CCA flows such as CUBIC vs.
BBR and PCC vs. BBR show disparities flattening out over time as CCAs adjust their data
transfer aggressiveness, but distinct behaviors of CCAs with other CCA flows validate
the hypothesis that no two CCA flows are perfectly fair to each other. Thus, intelligently
assessing and switching available CCAs while studying changing network conditions
would be very beneficial.

Future Internet 2024, 16, 330 17 of 33

(a) (b)

Figure 5. Comparison of throughput between CUBIC and BBR, focusing on Client 2’s switch to
CUBIC at 25 s, understanding throughout fairness Thratio. Before the switch, Client 2 (BBR) had
4.08 Mbps compared to Client 1’s 79.44 Mbps CUBIC flow. After switching, Client 2’s average
throughput increased to 38.72 Mbps, stabilizing close to Client 1’s 40.64 Mbps CUBIC flow with
minimal fluctuations. (a) CUBIC vs. BBR->CUBIC. (b) CUBIC vs. BBR->CUBIC.

Motivation to Choose the Scenarios

The selected scenarios CUBIC vs. BBR-CUBIC, PCC vs. BBR-PCC, and BBR vs.
PCC-BBR were chosen to highlight the dynamic interplay between different CCAs under
varying network conditions. These scenarios were selected due to their representative
nature in demonstrating how dynamically switching between CCAs can optimize network
performance, fairness, and resource utilization. CUBIC and BBR were chosen for their
distinct approaches to congestion control, with CUBIC being widely used and BBR offering
a newer, bandwidth-centric methodology. PCC was included for its adaptive nature and
ability to handle diverse network conditions. By focusing on these specific pairings and
transitions, the paper aims to illustrate practical benefits and challenges of dynamic CCA
switching, providing insights into improving network performance and fairness in real-
world scenarios.

5.2. Scenario 1: CUBIC vs. BBR-CUBIC

Dynamically switching CCAs based on network conditions significantly enhanced
network performance and fairness among flows. The throughput graphs in Figure 5a clearly
illustrate this improvement. After switching Client 2 from BBR to CUBIC at the 25 s mark,
the throughput surged from near 0 Mbps (starvation) to approximately 40 Mbps by the 60 s
mark and remained stable thereafter. This contrasts with the initial BBR behavior, which
exhibited lower and more fluctuating throughput. Moreover, the box plot in Figure 5b
confirms the significant increase in median throughput and reduced variability for Client 2
post-switching. This indicates a more equitable distribution of bandwidth among flows.

RTT is a critical factor influencing network fairness and congestion avoidance, which
directly impacts throughput and sending rate. Despite a higher RTT, Client 1 achieved higher
throughput at 30 s compared to 80 s in Figure 6a. This suggests that algorithms such as BBR
and CUBIC optimize bandwidth utilization, mitigating the impact of high RTT on throughput.
However, significant RTT fluctuations causes higher jitter variation as shown in Figure 7
degrade performance, as observed in the variability of throughput for Client 2 using BBR
before switching in the Figures 5 and 6a,b.

The packet loss ratio reflects an algorithm’s ability to manage congestion, showing a
clear trend in Figure 8a. Before switching, BBR exhibited higher packet loss rates compared
to CUBIC, despite sending fewer bytes. This indicates BBR’s struggle to efficiently utilize
available bandwidth under varying network conditions. After switching Figure 8b, Client 2
experienced reduced packet loss with CUBIC, while the competing flow saw a slight
increase, suggesting CUBIC’s better adaptability and congestion control capabilities.

Future Internet 2024, 16, 330 18 of 33

(a) CUBIC vs. BBR->CUBIC (b) CUBIC vs. BBR->CUBIC

Figure 6. RTT comparison of CUBIC vs. BBR->CUBIC, Client 2, before and after switching. RTT
variation is significant: Client 1 (CUBIC) peaks at 170 ms at 5 s and drops to 20 ms, while Client 2
(BBR->CUBIC) ranges from 98 ms to 4 ms. Both reach 13 ms at 80 s (a). After switching, RTT variation
and median values for both clients have decreased (b).

(a) CUBIC vs. BBR->CUBIC (b) CUBIC vs. BBR->CUBIC

Figure 7. Jitter comparison of Client 1 (CUBIC) and Client 2 (BBR->CUBIC) before and after switching
at 25 s. Client 2’s jitter varied widely, ranging from 90 ms to almost 0 ms. After switching (a), Client 2’s
average jitter dropped from 23 ms to 0.84 ms. Client 1’s median jitter remained near 0 ms (b).

(a) CUBIC vs. BBR->CUBIC (b) CUBIC vs. BBR->CUBIC

Figure 8. Packet loss ratio comparison of Client 1 (CUBIC) vs. Client 2 (BBR->CUBIC) before and
after switching at 25 s. Client 2 (BBR) reduced its packet loss ratio from 19.35% to 11.45% after
switching to CUBIC, while Client 1 (CUBIC) fluctuated from 70% to 11% at 5 and 8 s (a). The packet
loss distribution for Client 2 (BBR), later CUBIC, had a median value of 20% before dropping to
around 13%, with Client 1 experiencing a slight increase after switching (b).

Low jitter indicates stable network conditions without noticeable variation in packet
arrival time. Inconsistent and higher jitter variations negatively impact the network,
resulting in lower throughput. The relationship between jitter and throughput is illustrated
in graphs (a) and (b) of Figures 5 and 6, respectively. It is noted that Client 2 experienced
higher variations in RTT and packet arrival times before switching to CUBIC and received
minimal throughput.

Future Internet 2024, 16, 330 19 of 33

5.3. Scenario 2: PCC vs. BBR-PCC

Similar to CUBIC and BBR, PCC and BBR exhibited competitive behavior when con-
tending for bandwidth under specific network conditions. Before the switch, Client 1 (PCC)
generally outperformed Client 2 (BBR) in terms of throughput by observing throughout fair-
ness Thratio. PCC’s adaptive nature effectively adjusts to bandwidth and latency variations
and contributed to its superior performance. Conversely, BBR demonstrated challenges in
maintaining fairness, particularly in networks with varying RTTs.

In Scenario 2, we investigated the impact of Client 2 switching from BBR to PCC at
25 s. Client 2 using BBR initially averaged throughput of 12.32 Mbps, but this surged
to 40.40 Mbps after the switch to PCC in Figure 9a,b. This suggests that PCC offered a
more efficient way to utilize bandwidth under these specific network conditions. BBR’s
congestion control strategy might not have been ideal, leading to underutilized resources.

(a) PCC vs. BBR->PCC (b) PCC vs. BBR->PCC

Figure 9. Comparison of the throughput of BBR and PCC, focusing on Client 2’s switch to PCC
at 25 s for understanding throughout fairness Thratio. Before switching, Client 2 (BBR) averaged
12.32 Mbps, which surged to 40.40 Mbps afterward (a). The distribution plot (b) shows Client 2’s
median throughput increasing from below 15 Mbps to above 35 Mbps.

Nevertheless, significant improvements were observed in latency and data loss.
Client 2 (BBR) initially experienced high variations in RTT (Figure 10a). This variabil-
ity suggests that BBR struggled to maintain consistent latency. Switching to PCC led to a
decrease in these variations, with both clients maintaining RTTs below 20 ms. Similarly,
jitter (variation in RTT) for Client 2 also decreased post-switch, as seen in Figure 11. These
improvements suggest PCC’s approach resulted in smoother data flow and lower latency
for Client 2, possibly due to better congestion management.

(a) PCC vs. BBR->PCC (b) PCC vs. BBR->PCC

Figure 10. RTT variation over time: Client 1 (PCC) peaks at 102 ms at 3 s, dropping to 6 ms; Client 2
(BBR->PCC) ranges from 155 ms to 4 ms. Both clients maintained RTTs below 20 ms (a). Post-switch
to Client 2 (PCC), RTT variation and median values decreased (b).

Future Internet 2024, 16, 330 20 of 33

(a) PCC vs. BBR->PCC (b) PCC vs. BBR->PCC

Figure 11. Jitter comparison of Client 1 (PCC) and Client 2 (BBR->PCC) in milliseconds over time before
and after switching at 25 s. Few fluctuations were observed for Client 1 (PCC) before switching (a).
Median jitter remained near 1 ms for Client 1 after Client 2 switched to BBR->PCC (b).

Packet loss measurements also saw a dramatic improvement. Client 2 (BBR) displayed
a high initial packet loss ratio (48.97%) (Figure 12a,b). This indicates significant data loss.
Interestingly, Client 1 (PCC) also experienced a high initial packet loss. However, after the
switch, the packet loss ratio for both clients dropped significantly. Client 2’s median packet
loss dropped to nearly 10%, while Client 1’s (PCC) also improved to 7%. This suggests
PCC’s congestion control strategy effectively mitigated packet loss for both clients, likely
by optimizing resource allocation and reducing network congestion.

(a) PCC vs. BBR->PCC (b) PCC vs. BBR->PCC

Figure 12. Packet loss ratio comparison of Client 1 (PCC) vs. Client 2 (BBR->PCC) before and after
switching at 25 s. The packet loss ratio for Client 1 (PCC) decreased from 48.97% to 9.22% after
switching to Client 2 (PCC) in (a). The packet loss distribution for Client 2 (BBR), later PCC, had a
median value of around 50% before dropping to nearly 10% (b).

5.4. Scenario 3: BBR vs. PCC-BBR

This analysis explores Scenario 3, where PCC and BBR compete for bandwidth. While
PCC initially offered higher throughput for Client 2 (infer throughout fairness Thratio),
significant fluctuations indicated potential instability. Switching Client 2 to BBR resulted in
more stable performance for both clients across key metrics: throughput, RTT, jitter, and
packet loss.

Initially, the competing CCA, PCC, provided Client 2 with significantly higher through-
put, exceeding 44 Mbps on average, as seen in Figure 13a. However, this advantage came
with substantial fluctuations in PCC’s throughput, hinting at potential instability in its
congestion control mechanism.

Future Internet 2024, 16, 330 21 of 33

(a) BBR vs. PCC->BBR (b) BBR vs. PCC->BBR

Figure 13. Comparison of throughput and sending rate in Mbps over time before and after switching
Client 2 (PCC->BBR) for an understanding of throughout fairness Thratio. Before switching to BBR at
25 s, Client 2 (PCC) had an average throughput of 44 Mbps, double that of the competing Client 1
(BBR) flow. After switching, Client 2 (BBR) received over 40 Mbps (a). The median value for Client 1
increased from 15 Mbps to 40 Mbps (b).

Client 2 switched from PCC to BBR, yielding positive impacts on network perfor-
mance for both clients across several key metrics. Notably, Client 2 (BBR) maintained a
stable throughput above 40 Mbps, demonstrating the effectiveness of BBR in achieving
good throughput while ensuring stability. Interestingly, considering Figure 13b, even
Client 1 (BBR) experienced improvement, with its median throughput rising to 40 Mbps.
This suggests that the overall network congestion was better managed after the switch,
potentially due to BBR’s identical strategy to adapt network variation and optimize re-
source allocation.

Prior to the switch, Client 2 (PCC) exhibited significant spikes in RTT in Figure 14a,
reaching as high as 104 ms at times. These fluctuations likely stemmed from the instability
in PCC’s throughput. After the switch, both clients displayed consistently lower and more
stable RTTs under 15 ms. Similarly, jitter in Figure 15, which measures the variation in RTT,
decreased significantly for both clients, with Client 2 (BBR) dropping to below 2 ms. This
jitter reduction highlighted the benefit of stable throughput in maintaining consistent data
flow and minimizing delays.

(a) BBR vs. PCC->BBR (b) BBR vs. PCC->BBR

Figure 14. RTT variation over time: Client 2 (PCC) peaks at 104 ms at 3 s, dropping to 4 ms; Client 2
(PCC->BBR) ranges from 155 ms to 4 ms. Both clients maintained RTTs below 15 ms (a). Post-switch
to Client 2 (BBR), RTT variation and median values decreased (b).

Future Internet 2024, 16, 330 22 of 33

(a) BBR vs. PCC->BBR (b) BBR vs. PCC->BBR

Figure 15. Jitter comparison of Client 1 (BBR) and Client 2 (PCC->BBR) before and after switching
at 25 s. Average jitter for Client 2 dropped from around 3 ms to nearly 1 ms after switching (a).
Median jitter for Client 1 remained near 0 ms (b).

The observed improvements can be explained by considering the interrelationships
between network performance metrics. High and unstable throughput in PCC could lead
to buffer overflows, causing packet drops in Figure 16 and increased jitter in Figure 15.
BBR’s focus on congestion avoidance likely contributed to its lower initial throughput but
resulted in greater stability across all metrics. This aligns with the established principle
that stable throughput, even if slightly lower than the peak offered by an unstable CCA,
leads to more efficient data flow and minimizes negative impacts on other metrics.

(a) BBR vs. PCC->BBR (b) BBR vs. PCC->BBR

Figure 16. Packet loss ratio comparison of Client 1 (BBR) vs. Client 2 (PCC->BBR) before and after
switching at 25 s. Reduced packet loss ratio from 32% to 10% after the switch (a). The median packet
loss for Client 1 (BBR) dropped from around 29% to near 10% (b).

Client 2 (PCC) also experienced a higher packet loss ratio compared to Client 1 (BBR)
before the switch. This is likely because the unstable throughput of PCC could have resulted
in buffer overflow and packet drops. Both clients benefited from reduced packet loss after
the switch. Client 1 (BBR) displayed a more significant improvement, with median packet
loss dropping from around 29% to near 10% in Figure 16. This further emphasizes the
positive impact of BBR’s congestion-avoidance strategy, which helps minimize packet
drops by ensuring a smoother and more predictable data flow.

RTT and Jitter

Analyzing Scenarios 1, 2, and 3 reveals the critical role dynamic CCA selection plays
in achieving fair resource allocation. Static CCAs can struggle to adapt, leading to underuti-
lized bandwidth or flow starvation. A DRL model, when coupled real-time network data
analysis, can choose the most suitable CCA for each flow, which prevents these issues.

Furthermore, fairness is crucial in ensuring a smooth user experience. A DRL model
trained with fairness objectives can select CCAs that optimize individual flow performance
while promoting fair resource distribution. This dynamic adaptation based on network
conditions ensures optimal performance and user experience across all connections.

Future Internet 2024, 16, 330 23 of 33

5.5. DRL Model

In the framework, we have employed a Deep Q-network (DQN) to optimize the
switching of CCAs based on network performance metrics. The environment constructed
using the OpenAI Gym framework has a state space comprising four key metrics: through-
put, latency, packet loss rate, and sending rate. The action space was discrete, with only two
possible actions: switch the CCA or maintain the current CCA.

The training data consisted of various network performance metrics recorded over
time, representing different network states. Our custom environment, CongestionControlEnv,
was designed to reset at the beginning of each episode, initializing the state with the current
network conditions. At each step, the agent could either choose to switch the CCA based
on an evaluation function or continue with the current CCA.

The evaluation function determines the best CCA by combining the current network
state with historical data. It scores each available CCA based on weighted metrics of 70%
for throughput, 20% for latency, and 10% for loss rate and selects the CCA with the highest
score as the optimal choice for managing network congestion. This approach ensures
that the most suitable algorithm is selected, effectively adapting to the dynamic nature of
the network.

The agent was trained over 1000 episodes, with each episode allowing the agent to
perform actions based on an epsilon-greedy policy, balancing exploration and exploitation.
Experiences were stored in a replay buffer, from which the agent sampled mini-batches
to train the Q-network. The Q-network, built using TensorFlow, consisted of two hidden
layers with 64 neurons each, followed by an output layer corresponding to the action space.
The training was performed using the mean squared error (MSE) loss function and the
Adam optimizer. The reward function penalized high disparities in network performance
metrics and the act of switching the CCA, encouraging the agent to maintain stable and
optimal network conditions.

After training, the DQN model was evaluated using a separate test dataset to validate
its performance. The test environment was configured similarly to the training environment,
with network states derived from the test dataset. The trained model was loaded, and the
agent’s actions were recorded over 200 test episodes. The evaluation focused on the total
reward, loss, and accuracy of the agent’s actions.

In this paper, the DQN agent’s neural network predicts actions by computing Q-values
for each possible action given the current state. The action with the highest Q-value is
selected as the predicted action. These predicted actions are then executed by the agent
in the environment, which responds by transitioning to a new state and providing a
reward based on the action taken. This dynamic interaction between the agent and the
environment allows the DQN to tackle the complex task of selecting the most suitable CCA
in ever-changing network environments.

To evaluate the performance of our DQN, we primarily focused on cumulative reward
as a metric. However, we also incorporated accuracy as a supplementary metric, following
the approach of [56]. Accuracy is calculated by comparing the predicted actions of the
DQN agent to the actual actions taken by the environment, providing insight into how
closely the agent’s decisions align with a reference policy during training.

Additionally, loss is computed as the mean squared error between the predicted Q-
values and the target Q-values. These target Q-values are derived from the reward received
and the maximum predicted Q-values of the next state, ensuring the DQN learns effectively
over time. This approach not only monitors the agent’s learning process but also provides
a more comprehensive evaluation of the DQN’s effectiveness, as emphasized by [57], in
real-time TCP congestion control scenarios.

5.5.1. Training Reward

Figure 17a, showing the convergence of training rewards, illustrates the evolution
of training rewards over 1000 epochs during the training of the DRL agent. The y-axis
represents the convergence rewards accumulated by the agent in each epoch, while the

Future Internet 2024, 16, 330 24 of 33

x-axis corresponds to the number of training epochs. The blue curve shows the sample
rewards from a single training run, reflecting the variability in the agent’s learning process,
while the red curve represents the average rewards over 50 training runs, providing a
smoothed view of the agent’s performance over time.

(a) Convergence of training rewards (b) Distribution of training rewards

Figure 17. Visualization of training a DRL model: The total rewards over 1000 epochs demonstrate
consistent improvement, with performance approaching a near-optimal policy after 700 epochs,
where the rewards stabilize around 75, as shown in line graph (a). The box plot (b) reveals that the
majority of training epochs achieve an average reward of 70, which represents the median value.

The curves indicate a general upward trend, signifying the agent’s progress towards
a near-optimal policy. As the epochs increase, the total rewards rise, demonstrating that
the agent is improving its decision-making capabilities. However, the blue curve exhibits
fluctuations and occasional plateaus, suggesting that the learning process involves an
exploration of the state–action space, which is inherent to DRL algorithms. The eventual
stabilization of the red curve toward the latter epochs suggests that the agent is converging
towards an optimal policy, where further improvements become marginal.

Figure 17b, showing the distribution of training rewards, visualizes the distribution of
rewards across different training episodes. The blue boxplot represents the sample rewards
from a single training run, while the green boxplot illustrates the average rewards across
50 training runs.

The median reward, located around 70, signifies the typical performance level of
the agent during training. The small inter-quartile range (IQR) suggests that the agent’s
performance was consistent across episodes, with the rewards generally clustering around
the median. There are a few outliers visible at the lower end of the range, indicating
instances where the agent received significantly lower rewards. However, the presence
of these outliers is limited, suggesting that the agent was mostly successful in selecting
high-performing CCAs that matched the current network conditions. This consistency
in performance highlights the model’s effectiveness in minimizing network issues like
unfairness and flow starvation.

5.5.2. Training Loss

The downward trajectory of the loss curve in Figure 18a indicates successful learning
by the DRL agent, progressively minimizing prediction errors over the training epochs.
Specifically, after 58 epochs, the loss becomes minimal, hovering close to zero with slight
fluctuations observed between epochs 176 to 179. This pattern suggests that the trained
model effectively identified and switched between the most suitable congestion control
algorithms (CCAs) for current network conditions, thereby maintaining flow fairness and
preventing starvation.

The corresponding box plot in Figure 18b illustrates fluctuations in loss values, in-
dicating challenges encountered during training. However, the fact that 88% of the loss
distribution is negligible (close to zero) underscores the agent’s ability to develop a ro-
bust policy.

Future Internet 2024, 16, 330 25 of 33

(a) Training loss curve (b) Training loss distribution

Figure 18. Visualization of training a DRL model: The loss over 500 epochs, shown in line graph (a),
approaches near zero after 58 epochs, with minimal fluctuations between epochs 176 and 179. The
box plot (b) indicates that 88% of the loss distribution is negligible (close to zero).

5.5.3. Training Accuracy

The accuracy graph in Figure 19a shows an exponential upward trend, indicating
highly accelerated improved decision-making by the DRL agent over time, with the model
reaching 100% accuracy after the 60-epoch mark. As depicted in Figure 19b, minor fluctua-
tions and outliers were typical during training and did not significantly detract from the
overall upward trajectory. The fact that 96.8% of epochs achieved 100% accuracy highlights
the model’s capability to make precise decisions and switch to the best available CCAs.
This trend suggests effective learning and policy improvement by the agent. However, the
fluctuations in accuracy during training indicate that there is still room for improvement,
which represents a limitation of this model.

(a) Evolution of training accuracy (b) The distribution of the training accuracy

Figure 19. Visualization of training a DRL model: The accuracy over 500 epochs, as shown in line
graph (a), attains 100% after the 60-epoch mark. The box plot (b) shows the distribution of training
accuracy, with 96.8% of epochs achieving 100% accuracy.

5.6. Our Key Findings

Table 5 summarizes our key findings with the performance metrics of various CCAs
over WiFi, comparing scenarios before and after switching the congestion control.

In Scenario 1, Client 1 (CUBIC) demonstrates superior throughput (79.44 Mbps) com-
pared to Cleint 2 (BBR) before switching (4.08 Mbps), but at the cost of higher RTT (21.44 ms
vs. 2.32 ms) and jitter (0.75 ms vs. 23.99 ms), with a packet loss of 12.8% versus BBR’s
19.35%. After switching, Client 1’s throughput decreased to 40.64 Mbps, while Client 2’s
improved to 38.72 Mbps, with RTTs of 16.30 ms and 13.01 ms, respectively. In Scenario 2,
Cleint 1 (PCC) exhibited higher throughput (77.36 Mbps) before switching compared to
Client 2 (BBR) (12.32 Mbps) but sufferd from greater packet loss (48.97% vs. 11.83%). After
switching, Client 1’s throughput decreased to 44 Mbps, while its packet loss improved to
9.22%, compared to Client 2’s throughput of 40.4 Mbps and loss of 7.21%. In Scenario 3,
Client 1 (BBR) before switching shows a throughput of 20.48 Mbps and RTT of 13.40 ms,

Future Internet 2024, 16, 330 26 of 33

with a packet loss of 29.44%. Post-switching, BBR’s performance dramatically improved to
42.56 Mbps in throughput, 15.78 ms in RTT, and 7.20% in packet loss.

Table 5. Summary of results from network emulation experiments.

Our Setup CCAs over WiFi Network Settings 2 Clients (C1, C2)
Aggregate Performance Metrics

Throughput RTT Jitter Loss

Scen. CUBIC vs. BBR CUBIC(C1) 79.44 Mbps 21.44 ms 0.75 ms 12.8%
(before) BBR(C2) 4.08 Mbps 2.32 ms 23.99 ms 19.35%

1 CUBIC vs. BBR->CUBIC CUBIC(C1) 40.64 Mbps 16.30 ms 1.09 ms 21.10%
(after) CUBIC(C2) 38.72 Mbps 13.01 ms 0.82 ms 11.45%

Scen. PCC vs. BBR PCC(C1) 77.36 Mbps 6.27 ms 0.84 ms 48.97%
(before) BBR(C2) 12.32 Mbps 22.02 ms 1.163 ms 11.83%

2 PCC vs. BBR->PCC PCC(C1) 44 Mbps 15.08 ms 1.722 ms 9.22%
(after) PCC(C2) 40.4 Mbps 15.98 ms 1.53 ms 7.21%

Scen. BBR vs. PCC BBR (C1) 20.48 Mbps 13.40 ms 2.85 ms 29.44%
(before) PCC(C2) 42.08 Mbps 15.76 ms 2.14 ms 4.17 %

3 BBR vs. PCC->BBR BBR(C1) 42.56 Mbps 14.63 ms 1.16 ms 9.35%
(after) BBR (C2) 45.6 Mbps 15.78 ms 1.53 ms 7.20%

Table 5 highlights the varied impacts of different CCAs and switching on throughput,
RTT, jitter, and packet loss, demonstrating the need for dynamic adaptation to optimize
network performance. Upon reviewing several rigorous CCA studies in the field, includ-
ing their driving principles, behaviors, and performance in different network conditions
summarized in Table 5, we draw the following findings:

• Mitigating Non-Congestive Delay Variations: Delay-bounding CCAs aim to manage non-
congestive delay variations by ensuring that delay adjustments comprise at least half
the expected non-congestive jitter along the network path [18]. If the delay oscillations
fall below this threshold, the CCA may struggle to maintain high throughput, bounded
delays, and fairness, potentially leading to inefficient network performance.

• Characteristics and Thresholds for Network Design: CCAs should adjust delays by at least
half the expected non-congestive delays to differentiate between congestion-related
and other delays. Failing to meet this threshold can cause the CCA to struggle with
throughput, delay management, and fairness [18].

• Dynamic Switching of CCAs and Insights into Fairness and Stability: This study reveals
that throughput unfairness persists within the same CCA, influenced by network path
characteristics. Dynamically switching between CCAs based on network conditions
can improve fairness and stability. These findings highlight the potential of using Deep
Reinforcement Learning to adapt CCAs dynamically for better network performance
and fairness.

6. Conclusions and Future Work

This paper presents an approach to improving the fairness of TCP CCA in WiFi
networks using DRL. To address unfairness and potential starvation issues in traditional
CCAs, we developed a dynamic CCA switching mechanism that uses offline DRL to
select the most appropriate CCA based on real-time network conditions. Our analysis and
experiments indicate that this approach can help reduce congestion and improve fairness
among competing network flows. Key aspects of our work include delay variation analysis,
the development of a CCA switching mechanism, and validation in a testbed environment.
The results show improvements in throughput stability, reduced RTT and jitter, and lower
packet loss, contributing to better overall network performance. Considering both QoS and
QoE metrics, our approach aims to balance technical performance with user experience.

Future Internet 2024, 16, 330 27 of 33

The study highlights the potential of DRL for adaptive network management, with offline
DRL offering a practical implementation path without the complexities of online learning.

Our work has certain limitations. The model was tested in offline environments
with precollected WiFi data, and its real-time performance in hybrid or wired networks
has not been explored. Furthermore, the study focused on common TCP variants such
as Cubic, PCC, BBR, and Copa, which may not extend to machine-learning-based TCP
algorithms such as Remy, Aurora, and Astraea. Future research should address these
limitations by testing the model in real-time network environments, integrating active
queue management, developing CCAs for noncongestive delay jitter, and using data from
a broader range of machine learning-based TCP algorithms to improve generalization.

Author Contributions: Conceptualization, J.K.; Methodology, S.K.S., S.R.P. and J.K.; Software, S.K.S.,
S.R.P. and J.K.; Formal analysis, S.R.P. and J.K.; Investigation, S.K.S., S.R.P. and J.K.; Writing—review
& editing, S.K.S. and S.R.P.; Visualization, S.K.S.; Supervision, S.R.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed Calculations

Appendix A.1. TCP CUBIC

As noted earlier in Section 3, TCP CUBIC dynamics can be mathematically modeled by
using the congestion window (W) as follows. W is time-varying; therefore, W(t) evolves as

W(t) =
(

s(t)− 3

√
Wmax(t)β

C

)3
+ Wmax(t) (A1)

where s(t) is the elapsed time since the last window reduction, W(t) is the current congestion
window at time t, and C refers to scaling constant and β is multiplicative decrease factor.

Using Equation (A1) with the fixed-point approach along the lines of [58], we obtain
the equilibrium congestion window, W⋆, as

W⋆ = 4

√
τ3C

(p⋆)3β
(A2)

We consider to cases to explain the causes of unfairness and starvation.
CASE I: Considering two CUBIC flows with different RTTs, τ1 and τ2, and experiencing

the same loss, p, we can evaluate how the congestion windows W⋆
1 and W⋆

2 evolve as

W⋆
1 = 4

√
τ3

1 C
(p⋆)3β

; W⋆
2 = 4

√
τ3

2 C
(p⋆)3β

W⋆
1

W⋆
2
= 4

√
τ3

1
τ3

2
(A3)

Using (A3), if τ1 = 2τ2, then W⋆
1

W⋆
2
= 4

√
8, which explains the key reason for the observed

unfairness.
CASE II: Considering two CUBIC flows with the same RTTs, τ, and experiencing dif-

ferent losses, p1 and p2, we can evaluate how the congestion windows W⋆
1 and W⋆

2 evolve:

Future Internet 2024, 16, 330 28 of 33

W⋆
1 = 4

√
τ3C

(p⋆1)
3β

; W⋆
2 = 4

√
τ3C

(p⋆2)
3β

W⋆
1

W⋆
2
= 4

√
p3

2
p3

1
(A4)

If p1 = 2p2, then W⋆
1

W⋆
2
= 4

√
1
8 .

As we know, Starvation is an extreme case of unfairness,and the two cases discussed
above will have the following consequences:

CASE I: If p1 = np2, where n = 1, . . . , 20 W⋆
1

W⋆
2
= 4

√
1

n3 ;

CASE II: If τ1 = nτ2, where n = 1, . . . , 20 W⋆
1

W⋆
2
=

4√n3.

Appendix A.2. PCC Vivace

PCC Vivace separates time into consecutive monitor intervals (MIs) [14,15,37]. Each MI
is responsible for transforming performance statistics presented at that MI to a numerical
utility value.

U = si − (bsi)
d(τi)

dT
− csiLi (A5)

where dRTTi
dT = dτi

dT is the RTT gradient in an MI, si is sender i’s the sending rate, Li is the
loss rate, T is the time unit, and b and c are constants (b ≥ 0, c < 1).

Using Equation (A5) with a fixed-point approach along the lines of [18], we obtain
the equilibrium U⋆ (utilityfunction) as

U⋆ =
W1

τi
− b

W1

τi

dτi
dT

− c
W1

τi
Li

U∗ = 1 − b
dτi
dT

− cLi (A6)

We consider two cases to explain the causes of unfairness and starvation.
CASE I: Considering two PCC flows with different RTTs, τ1 and τ2, and experiencing

the same loss, p, we can evaluate how the congestion windows U⋆
1 and U⋆

2 evolve as

U⋆
1

U⋆
2
=

1 − b dτ1
dT − cLi

1 − b dτ2
dT − cLi

(A7)

If τ1 = 2τ2, then U⋆
1

U⋆
2
=

1−2b dτ2
dT −cLi

1−b dτ2
dT −cLi

CASE II: Considering two PCC flows with same RTTs, τ, and experiencing different
losses p1 and p2, we can evaluate how the congestion windows U⋆

1 and U⋆
2 evolve:

U⋆
1 = 1 − b

dτ

dT
− cLi

U⋆
2 = 1 − b

dτ

dT
− cLi

U⋆
1

U⋆
2
=

(1 − b dτ
dT − cLi)(1 − p2)

(1 − b dτ
dT − cLi)(1 − p1)

=
1 − p2

1 − p1
(A8)

If p1 = 2p2, then U⋆
1

U⋆
2
= 1−p2

1−2p2
.

Future Internet 2024, 16, 330 29 of 33

As we know, Starvation is an extreme case of unfairness; the two cases discussed
above will have the following consequences:

CASE I: If p1 = np2, where n = {1, 2, 3, . . . , 20}

U⋆
1

U⋆
2
=

1 − p2

1 − np2

CASE II: If τ1 = nτ2, where n = 1, . . . , 20

U⋆
1

U⋆
2
=

1 − bn dτ2
dT − cLi

1 − b dτ2
dT − cLi

Appendix A.3. BBR

During this period, the delivery rate remains unchanged but RTT increases. Moreover,
BBR limits the data pacing rate, also known as the sending rate, and inflight data to one
BDP to control the congestion [47,48], where

BDP = Btlbw.RTprop

where RTTprop refers to Round Trip Propagation Time.
BBR considers the most recent estimated delivery rate and RTT to obtain its trans-

mission capability. In BBR, the current Btlbw is the maximum delivery rate of the last 10
RTT, and the current RTTprop is the maximum delay calculated in the past 10 s [47,48]. BBR
adjusts the pacing and CWND rate as follows, as mentioned in [47]:

pacing_rate = pacing_gain.Btlbw (A9)

CWND = cwnd_gain.BDP (A10)

Using a fixed-point approach along the lines of [18], we obtain the equilibrium
congestion window W⋆ as

W⋆ =
ατ⋆

τ⋆ − 2τm
(A11)

τm is the minimum RTT.
We consider cases to explain the causes of unfairness and starvation.
CASE I: Considering two BBR flows with different RTTs, τ1 and τ2, and experiencing

the same loss, p, we can evaluate how the congestion windows W⋆
1 and W⋆

2 evolve as

W⋆
1 =

ατ1

τ1 − 2τm
; W⋆

2 =
ατ2

τ2 − 2τm

W⋆
1

W⋆
2
=

τ1

τ2

(τ2 − 2τm

τ1 − 2τm

)
(A12)

If τ1 = 2τ2, then

W⋆
1

W⋆
2
=

2τ2

τ2

(τ2 − 2τm

2τ2 − 2τm

)
CASE II: Considering BBR flows with the same RTTs, τ, and experiencing different

losses, p1 and p2, we can evaluate how the congestion windows W⋆
1 and W⋆

2 evolve:

W⋆
1 =

ατ1

τ1 − 2τm
; W⋆

2 =
ατ2

τ2 − 2τm

Future Internet 2024, 16, 330 30 of 33

W⋆
1

W⋆
2
=

τ − 2τm(1 − p2)

τ − 2τm(1 − p1)
(A13)

If p1 = 2p2, then W⋆
1

W⋆
2
= 1−p2

1−2p2
.

As we know, Starvation is an extreme case of unfairness; the two cases discussed
above will have the following consequences:

CASE I: If p1 = np2, where n = 1, . . . , 20 W⋆
1

W⋆
2
= 1−p2

1−np2

CASE II: If τ1 = nτ2, where n = 1, . . . , 20 W⋆
1

W⋆
2
= 3n

5n−2

Appendix A.4. COPA

As mentioned, the first task is to set a target rate and achieve it, which can be expressed as

λ =
1

δdq
(A14)

where λ is the sending rate, dq is the measured queuing delay in seconds, and 1
δ

is the unit of packet size. The second is the window update rule that encourages the
sender to move toward the target rate. Finally, the TCP competitive strategy is to rival
buffer-filling flows.

λ =
W
τ

(A15)

where τ is the smallest observed RTT in the current window, where τ = srtt/2 [16,59]. τ
is considered as RTTstanding at [16]. τ also refers to the RTT corresponding to a standing
queue as it is the smallest observed RTT in the recent window, and srtt refers to the value
of the standard smoothed RTT estimation.

Copa demands the sender to track the target rate, and they do so by using
Equation (A14). The sender also estimates the queuing delay with the following equation:

dq = τ − Tm (A16)

where Tm is the minimum RTT measured over a long period.
Using Equations (A14)–(A16) with a fixed-point approach along the lines of [18], we

obtain the equilibrium congestion window W⋆ as

W⋆ =
τ⋆

δ(τ⋆ − Tm)
(A17)

We consider cases to explain the causes of unfairness and starvation.
CASE I: Considering two Copa flows with different RTTs, τ1 and τ2, and experiencing

the same loss, p, we can evaluate how the congestion windows W⋆
1 and W⋆

2 evolve as

W⋆
1 =

τ1

δ(τ1 − Tm)
; W⋆

2 =
τ2

δ(τ2 − Tm)

W⋆
1

W⋆
2
=

τ1

τ2

(τ2 − Tm

τ1 − Tm

)
(A18)

If τ1 = 2τ2, then W⋆
1

W⋆
2
= 2τ2

τ2

(
τ2−Tm

2τ2−Tm

)
.

CASE II: Considering Copa flows with same RTTs, τ, and experiencing different losses,
p1 and p2, we can evaluate how the congestion windows W⋆

1 and W⋆
2 evolve:

W⋆
1 =

τ1

δ(τ1 − Tm)
; W⋆

2 =
τ2

δ(τ2 − Tm)

Future Internet 2024, 16, 330 31 of 33

W⋆
1

W⋆
2
=

(τ − Tm)(1 − p2)

(τ − Tm)(1 − p1)
=

1 − p2

1 − p1
(A19)

If p1 = 2p2, then W⋆
1

W⋆
2
= 1−p2

1−2p2
.

References
1. Al-Saadi, R.; Armitage, G.; But, J.; Branch, P. A survey of delay-based and hybrid TCP congestion control algorithms.

IEEE Commun. Surv. Tutor. 2019, 21, 3609–3638. [CrossRef]
2. Kua, J.; Armitage, G.; Branch, P. A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP.

IEEE Commun. Surv. Tutor. 2017, 19, 1842–1866. [CrossRef]
3. Zhang, J.; Zhang, Y.; Dong, E.; Zhang, Y.; Ren, S.; Meng, Z.; Xu, M.; Li, X.; Hou, Z.; Yang, Z.; et al. Bridging the Gap between

QoE and QoS in Congestion Control: A Large-scale Mobile Web Service Perspective. In Proceedings of the 2023 USENIX Annual
Technical Conference (USENIX ATC 23), Boston, MA, USA, 10–12 July 2023; pp. 553–569.

4. Hoe, J.C. Improving the start-up behavior of a congestion control scheme for TCP. ACM SIGCOMM Comput. Commun. Rev. 1996,
26, 270–280. [CrossRef]

5. Ha, S.; Rhee, I.; Xu, L. CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 64–74.
[CrossRef]

6. Tan, K.; Song, J.; Zhang, Q.; Sridharan, M. A compound TCP approach for high-speed and long distance networks. In Proceedings
of the IEEE INFOCOM, Barcelona, Spain, 23–29 April 2006.

7. Pokhrel, S.R.; Williamson, C. Modeling compound TCP over WiFi for IoT. IEEE/ACM Trans. Netw. 2018, 26, 864–878. [CrossRef]
8. Floyd, S. TCP and explicit congestion notification. ACM SIGCOMM Comput. Commun. Rev. 1994, 24, 8–23. [CrossRef]
9. Winstein, K.; Sivaraman, A.; Balakrishnan, H. Stochastic forecasts achieve high throughput and low delay over cellular networks.

In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), Berkeley, CA,
USA, 2–5 April 2013; pp. 459–471.

10. Winstein, K.; Balakrishnan, H. Tcp ex machina: Computer-generated congestion control. ACM SIGCOMM Comput. Commun. Rev.
2013, 43, 123–134. [CrossRef]

11. Brakmo, L.S.; O’Malley, S.W.; Peterson, L.L. TCP Vegas: New techniques for congestion detection and avoidance. In Proceedings
of the Conference on Communications Architectures, Protocols and Applications, London, UK, 31 August–2 September 1994;
pp. 24–35.

12. Wei, D.X.; Jin, C.; Low, S.H.; Hegde, S. FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw.
2006, 14, 1246–1259. [CrossRef]

13. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. Commun. ACM 2017,
60, 58–66. [CrossRef]

14. Dong, M.; Meng, T.; Zarchy, D.; Arslan, E.; Gilad, Y.; Godfrey, B.; Schapira, M. PCC vivace:Online-Learning congestion control. In
Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), San Francisco, CA,
USA, 16–18 April 2018; pp. 343–356.

15. Jay, N.; Gilad, T.; Frankel, N.; Meng, T.; Godfrey, B.; Schapira, M.; Chung, J.W.; Siwach, V.; Salim, J.H. A PCC-Vivace Kernel
Module for Congestion Control. University of Illinois Urbana-Champaign, Hebrew University of Jerusalem in Israel, Verizon.
2018. Available online: https://pbg.web.engr.illinois.edu/papers/jay18pcc-kernel.pdf (accessed on 2 September 2024)

16. Arun, V.; Balakrishnan, H. Copa: Practical Delay-Based Congestion Control for the Internet. In Proceedings of the 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18), Renton, WA, USA, 9–11 April 2018; pp. 329–342.

17. Zaki, Y.; Pötsch, T.; Chen, J.; Subramanian, L.; Görg, C. Adaptive congestion control for unpredictable cellular networks. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 17–21 August 2015;
pp. 509–522.

18. Arun, V.; Alizadeh, M.; Balakrishnan, H. Starvation in end-to-end congestion control. In Proceedings of the ACM SIGCOMM
2022 Conference, Amsterdam, The Netherlands, 22–26 August 2022; pp. 177–192.

19. Seo, S.J.; Cho, Y.Z. Fairness enhancement of TCP congestion control using reinforcement learning. In Proceedings of the 2022
International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic of Korea,
21–24 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 288–291.

20. Liao, X.; Tian, H.; Zeng, C.; Wan, X.; Chen, K. Towards fair and efficient learning-based congestion control. arXiv 2024,
arXiv:2403.01798.

21. Pokhrel, S.R.; Panda, M.; Vu, H.L. Fair Coexistence of Regular and Multipath TCP over Wireless Last-Miles. IEEE Trans. Mob.
Comput. 2019, 18, 574–587. [CrossRef]

22. Hamzah, M.F.; Athab, O.A. A Review of TCP Congestion Control Using Artificial Intelligence in 4G and 5G Networks. Am. Acad.
Sci. Res. J. Eng. Technol. Sci. 2022, 88, 172–186.

23. Pokhrel, S.R.; Panda, M.; Vu, H.L.; Mandjes, M. TCP Performance over Wi-Fi: Joint Impact of Buffer and Channel Losses.
IEEE Trans. Mob. Comput. 2016, 15, 1279–1291. [CrossRef]

24. Wang, L. Low-Latency, High-Throughput Load Balancing Algorithms. J. Comput. Technol. Appl. Math. 2024, 1, 1–9.

http://doi.org/10.1109/COMST.2019.2904994
http://dx.doi.org/10.1109/COMST.2017.2685630
http://dx.doi.org/10.1145/248157.248180
http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1109/TNET.2018.2806352
http://dx.doi.org/10.1145/205511.205512
http://dx.doi.org/10.1145/2534169.2486020
http://dx.doi.org/10.1109/TNET.2006.886335
http://dx.doi.org/10.1145/3009824
http://dx.doi.org/10.1109/TMC.2018.2840701
http://dx.doi.org/10.1109/TMC.2015.2456883

Future Internet 2024, 16, 330 32 of 33

25. Haile, H.; Grinnemo, K.J.; Ferlin, S.; Hurtig, P.; Brunstrom, A. End-to-end congestion control approaches for high throughput and
low delay in 4G/5G cellular networks. Comput. Netw. 2021, 186, 107692. [CrossRef]

26. Kua, J.; Nguyen, S.H.; Armitage, G.; Branch, P. Using active queue management to assist IoT application flows in home broadband
networks. IEEE Internet Things J. 2017, 4, 1399–1407. [CrossRef]

27. Pokhrel, S.R.; Kua, J.; Satish, D.; Ozer, S.; Howe, J.; Walid, A. DDPG-MPCC: An Experience Driven Multipath Performance
Oriented Congestion Control. Future Internet 2024, 16, 37. [CrossRef]

28. Satish, D.; Kua, J.; Pokhrel, S.R. Active Queue Management in L4S with Asynchronous Advantage Actor-Critic: A FreeBSD
Networking Stack Perspective. Future Internet 2024, 16, 265. [CrossRef]

29. Liu, Q.; Yang, P.; Yang, M.; Yu, L. CKCD: A fair and low latency queue control algorithm for heterogeneous TCP flows. In
Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA,
17–20 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 725–730.

30. Bazi, K.; Nassereddine, B. Comparative analysis of TCP congestion control mechanisms. In Proceedings of the 3rd International
Conference on Networking, Information Systems & Security, Marrakech, Morocco, 31 March–2 April 2020; pp. 1–4.

31. Gettys, J. Bufferbloat: Dark buffers in the Internet. IEEE Internet Comput. 2011, 15, 96. [CrossRef]
32. Ye, J.; Leung, K.C. Adaptive and stable delay control for combating bufferbloat: Theory and algorithms. IEEE Syst. J. 2019, 14,

1285–1296. [CrossRef]
33. McNair, D.S. Preventing disparities: Bayesian and frequentist methods for assessing fairness in machine learning decision-support

models. In New Insights Into Bayesian Inference; IntechOpen: London, UK, 2018; Volume 71.
34. Kang, M.; Li, L.; Weber, M.; Liu, Y.; Zhang, C.; Li, B. Certifying some distributional fairness with subpopulation decomposition.

Adv. Neural Inf. Process. Syst. 2022, 35, 31045–31058.
35. Valli, S.; Sankar, S.; Mehata, K. A Heuristic Method for Improving Tcp Performance by a Greedy Routing Algorithm. J. Theor.

Appl. Inf. Technol. 2017, 95, 5215–5223.
36. Yamazaki, M.; Yamamoto, M. Fairness improvement of congestion control with reinforcement learning. J. Inf. Process. 2021, 29,

592–595. [CrossRef]
37. Zhang, S.; Lei, W.; Zhang, W.; Li, H. An evaluation of bottleneck bandwidth and round trip time and its variants. Int. J. Commun.

Syst. 2021, 34, e4772. [CrossRef]
38. Xiao, K.; Mao, S.; Tugnait, J.K. TCP-Drinc: Smart congestion control based on Deep Reinforcement Learning. IEEE Access 2019, 7,

11892–11904. [CrossRef]
39. Ke, C.H.; Astuti, L. Applying Deep Reinforcement Learning to improve throughput and reduce collision rate in IEEE 802.11

networks. KSII Trans. Internet Inf. Syst. (TIIS) 2022, 16, 334–349.
40. Kim, M.; Hwang, S.; Lee, I. Deep Reinforcement Learning approach for fairness-aware scheduling in wireless networks.

In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC),
Jeju Island, Republic of Korea, 19–21 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1229–1232.

41. Arianpoo, N.; Leung, V.C. How network monitoring and reinforcement learning can improve tcp fairness in wireless multi-hop
networks. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 278. [CrossRef]

42. Yu, Y.; Wang, T.; Liew, S.C. Deep-reinforcement learning multiple access for heterogeneous wireless networks. IEEE J. Sel. Areas
Commun. 2019, 37, 1277–1290. [CrossRef]

43. Maeta, K.; Kitagata, G.; Hasegawa, G. Improving per-flow fairness by ML-based estimation of competing flows’ congestion
control algorithm. In Proceedings of the 2022 13th International Conference on Ubiquitous and Future Networks (ICUFN),
Barcelona, Spain, 5–8 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 376–381.

44. Jay, N.; Rotman, N.; Godfrey, B.; Schapira, M.; Tamar, A. A Deep Reinforcement Learning perspective on Internet congestion
control. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR:
Birmingham, UK, 2019; pp. 3050–3059.

45. Naqvi, H.A.; Hilman, M.H.; Anggorojati, B. Implementability improvement of Deep Reinforcement Learning based congestion
control in cellular network. Comput. Netw. 2023, 233, 109874. [CrossRef]

46. Giacomoni, L. Enhancing Design and Evaluation Methods for Reinforcement Learning-based Congestion Control: A Large Scale
Experimental Study of Fairness, Efficiency, Responsiveness and a Novel Simulation Framework as a Training and Evaluation
Playground. Ph.D. Thesis, University of Sussex, Sussex, UK, 2024. Available online: https://hdl.handle.net/10779/uos.26135407.v1
(accessed on 2 September 2024).

47. Pan, W.; Li, X.; Tan, H.; Xu, J.; Li, X. Improvement of RTT fairness problem in BBR congestion control algorithm by gamma
correction. Sensors 2021, 21, 4128. [CrossRef]

48. Njogu, C.K.; Yang, W.; Njogu, H.W.; Bosire, A. BBR-With Enhanced Fairness (BBR-EFRA): A new enhanced RTT fairness for BBR
congestion control algorithm. Comput. Commun. 2023, 200, 95–103. Available online: https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=4123862 (accessed on 28 July 2024). [CrossRef]

49. Raiciu, C. Coupled Congestion Control for Multipath Transport Protocols. IETF RFC 6182. 2011. Available online: https:
//www.rfc-editor.org/info/rfc6182 (accessed on 2 September 2024).

50. Khalili, R.; Gast, N.; Popovic, M.; Boudec, J.-Y.L. MPTCP Is Not Pareto-Optimal: Performance Issues and a Possible Solution.
IEEE/ACM Trans. Netw. 2013, 21, 1651–1665. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2020.107692
http://dx.doi.org/10.1109/JIOT.2017.2722683
http://dx.doi.org/10.3390/fi16020037
http://dx.doi.org/10.3390/fi16080265
http://dx.doi.org/10.1109/MIC.2011.56
http://dx.doi.org/10.1109/JSYST.2019.2929157
http://dx.doi.org/10.2197/ipsjjip.29.592
http://dx.doi.org/10.1002/dac.4772
http://dx.doi.org/10.1109/ACCESS.2019.2892046
http://dx.doi.org/10.1186/s13638-016-0773-3
http://dx.doi.org/10.1109/JSAC.2019.2904329
http://dx.doi.org/10.1016/j.comnet.2023.109874
https://hdl.handle.net/10779/uos.26135407.v1
http://dx.doi.org/10.3390/s21124128
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4123862
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4123862
http://dx.doi.org/10.1016/j.comcom.2022.12.015
https://www.rfc-editor.org/info/rfc6182
https://www.rfc-editor.org/info/rfc6182
http://dx.doi.org/10.1109/TNET.2013.2274462

Future Internet 2024, 16, 330 33 of 33

51. Chen, K.; Shan, D.; Luo, X.; Zhang, T.; Yang, Y.; Ren, F. One rein to rule them all: A framework for datacenter-to-user congestion
control. In Proceedings of the 4th Asia-Pacific Workshop on Networking, Seoul, Republic of Korea, 3–4 August 2020; pp. 44–51.

52. Cao, Y.; Jain, A.; Sharma, K.; Balasubramanian, A.; Gandhi, A. When to use and when not to use BBR: An empirical analysis and
evaluation study. In Proceedings of the Internet Measurement Conference, Amsterdam, The Netherlands, 21–23 October 2019;
pp. 130–136.

53. Quevedo Caballero, E.; Donahoo, M.; Cerny, T. Fairness Analysis of Deep Reinforcement Learning based Multi-Path QUIC
Scheduling. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, 27–31 March 2023;
pp. 1772–1781.

54. Ming, F.; Gao, F.; Liu, K.; Zhao, C. Cooperative modular reinforcement learning for large discrete action space problem. Neural
Netw. 2023, 161, 281–296. [CrossRef] [PubMed]

55. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjel, A.K.; Ostrovski, G.;
et al. Human-level control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]

56. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with double q-learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.

57. Bellemare, M.G.; Dabney, W.; Munos, R. A distributional perspective on reinforcement learning. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6–11 July 2017; PMLR: Birmingham, UK, 2017; pp. 449–458.

58. Vardoyan, G.; Hollot, C.V.; Towsley, D. Towards stability analysis of data transport mechanisms: A fluid model and its applications.
IEEE/ACM Trans. Netw. 2021, 29, 1730–1744. [CrossRef]

59. Wang, Z.; Ni, H.; Han, R. Copa-ICN: Improving Copa as a Congestion Control Algorithm in Information-Centric Networking.
Electronics 2022, 11, 1710. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neunet.2023.01.046
http://www.ncbi.nlm.nih.gov/pubmed/36774866
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/TNET.2021.3075837
http://dx.doi.org/10.3390/electronics11111710

	Introduction
	Gaps in Existing Studies
	Why These Problems Need to Be Addressed
	Proposed Solution and Contributions

	Background and Related Works
	TCP Fairness and ML Approaches
	Closest Works in Literature
	Deep Reinforcement Learning in TCP

	Mathematical Interpretation of Unfairness and Starvation in Representative CCAs
	System Model of Proposed TCP-Switching Mechanism
	Model Interpretation
	Proposed DRL-Based CCA Switching

	Experimental Methodology, Results, and Discussion
	Experimental Testbed Setup
	Scenario 1: CUBIC vs. BBR-CUBIC
	Scenario 2: PCC vs. BBR-PCC
	Scenario 3: BBR vs. PCC-BBR
	DRL Model
	Training Reward
	Training Loss
	Training Accuracy

	Our Key Findings

	Conclusions and Future Work
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4

	References

