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Abstract: Task offloading and resource allocation is a research hotspot in cloud-edge collaborative
computing. Many existing pieces of research adopted single-agent reinforcement learning to solve
this problem, which has some defects such as low robustness, large decision space, and ignoring
delayed rewards. In view of the above deficiencies, this paper constructs a cloud-edge collaborative
computing model, and related task queue, delay, and energy consumption model, and gives joint
optimization problem modeling for task offloading and resource allocation with multiple constraints.
Then, in order to solve the joint optimization problem, this paper designs a decentralized offloading
and scheduling scheme based on “task-oriented” multi-agent reinforcement learning. In this scheme,
we present information synchronization protocols and offloading scheduling rules and use edge
servers as agents to construct a multi-agent system based on the Actor–Critic framework. In order to
solve delayed rewards, this paper models the offloading and scheduling problem as a “task-oriented”
Markov decision process. This process abandons the commonly used equidistant time slot model but
uses dynamic and parallel slots in the step of task processing time. Finally, an offloading decision
algorithm TOMAC-PPO is proposed. The algorithm applies the proximal policy optimization to the
multi-agent system and combines the Transformer neural network model to realize the memory and
prediction of network state information. Experimental results show that this algorithm has better
convergence speed and can effectively reduce the service cost, energy consumption, and task drop
rate under high load and high failure rates. For example, the proposed TOMAC-PPO can reduce the
average cost by from 19.4% to 66.6% compared to other offloading schemes under the same network
load. In addition, the drop rate of some baseline algorithms with 50 users can achieve 62.5% for
critical tasks, while the proposed TOMAC-PPO only has 5.5%.

Keywords: mobile edge computing; computing offloading; resource allocation; multi-agent

1. Introduction

Research shows that the number of Internet of Things (IoT) devices is expected to reach
30.9 billion in 2025, and the amount of data generated will exceed 175 zebytes [1,2]. The
number of mobile devices is growing exponentially, and the communication and computing
capabilities of devices are facing serious challenges [3,4]. As one of the solutions, cloud
computing usually causes high delay and privacy leakage due to the long distance of
deployment [5,6]. Mobile edge computing (MEC) aims to make up for the shortcomings of
cloud computing, decentralize computing resources to the network edge user side, and
provide mobile users with short-distance and low-delay computing services. Although
computing offloading has been a research hotspot in the field of MEC, the majority of
existing schemes have the following problems: (1) Many studies have failed to consider the
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actual situation, ignoring the possibility of terminal mobility management and network
failure, and also failed to consider the information observation and synchronization of
network equipment. (2) Some studies have used reinforcement learning (RL) technology
to solve the offloading decision problem, but do not consider the training difficulties that
may be caused by the delayed reward feature of the MEC environment [7]. (3) Although
some studies have taken into account the distributed characteristics of MEC, they have
failed to decompose the decision problem. Instead, they choose single-agent RL to solve
the decision problem of the whole system, which may lead to problems such as too large a
dimension of decision space or difficult convergence of training.

Given the uncertainties faced in real network environments such as system failures and
user mobility for crossing regions, how to ensure reliable communication and collaboration
among MEC network devices, and how to handle efficiently task offloading and resource
allocation on edge servers, are all challenges currently faced in the MEC field. Therefore,
this paper proposes a distributed task offloading and resource allocation scheme based on
“task-oriented” multi-agent reinforcement learning, which can effectively reduce system
average cost, delay, energy consumption, and task drop rate. The main contributions of
this paper are as follows:

(1) This paper constructs a cloud-edge collaborative computing model, and related task
queue, delay, and energy consumption model, and gives joint optimization problem
modeling for task offloading and resource allocation with multiple constraints.

(2) In order to solve the joint optimization problem, this paper designs a decentralized
task offloading and resource allocation scheme based on “task-oriented” multi-agent
reinforcement learning. In this scheme, we present information synchronization
protocol and offloading scheduling rules and use edge servers as agents to construct a
multi-agent system based on the Actor–Critic framework.

(3) An offloading decision algorithm TOMAC-PPO (Task-Oriented Multi-Agent
Collaborative-Proximal Policy Optimization) is proposed. The algorithm applies
the proximal policy optimization to the multi-agent system and combines the Trans-
former neural network model to realize the memory and prediction of network state
information. Experimental results show that this algorithm has better convergence
speed, and can effectively reduce the service cost, energy consumption, and task drop
rate under high load and high failure rates.

The structure of this paper is as follows. Section 2 introduces the related works;
Section 3 establishes a cloud-edge collaborative model; Section 4 proposes a distributed task
offloading and resource allocation scheme based on task-oriented multi-agent reinforcement
learning; Section 5 verifies the performance of the algorithm proposed in this paper;
Section 6 summarizes this paper and gives future research directions.

2. Related Works

Many scholars have conducted extensive research on optimizing the task offloading
scheduling scheme of MEC networks to improve network service quality. Traditional
offloading optimization schemes usually establish mathematical programming models to
solve optimization problems. For example, the authors established a 0-1 integer program-
ming model for joint optimization of energy consumption and delay in [8], and designed a
service request distribution method based on game theory in [9]. However, such schemes
ignore the mobility of devices and information observation, making it difficult to adapt
to dynamic and highly random large-scale network environments. The authors used a
filling method based on linear programming to solve resource allocation problems and
conduct joint optimization with dynamic pricing problems in [10]. The authors proposed
an asynchronous computing framework, and the general benders decomposition method
is used to decompose and iteratively solve the problem of user scheduling and resource
allocation in [11]. These traditional optimization schemes typically have high operational
efficiency and a solid theoretical foundation but often require accurate system state infor-
mation, which is challenging in practical MEC systems. Moreover, traditional optimization



Future Internet 2024, 16, 333 3 of 20

schemes often struggle to cope with the high-dimensional decision space in optimization
problems due to their high computational complexity.

Artificial intelligence solutions utilizing neural networks have been proven to be
effective for complex task offloading and resource allocation problems. RL techniques
are often used to solve offloading decision problems. Due to the fundamental idea of RL
being to enable agents to interact with their environment and learn the optimal strategy to
achieve their goals, RL is suitable for solving offloading decision problems.

In recent years, traditional RL methods have gradually been replaced by deep rein-
forcement learning (DRL), such as the DRL method used to solve offloading decisions,
while also addressing the allocation of bandwidth, cache, and computing power in [12].
The authors combined DRL to solve the optimal offloading strategy and federated learning
methods to address data privacy issues in [13]. Compared with the previous optimization
methods, this type of scheme does not require the establishment of a mathematical model
for solving and can autonomously explore the optimal offloading strategy without prior
knowledge, making it more suitable for high-dimensional state spaces in large-scale net-
works. However, these studies typically require a significant amount of time and data to
train neural networks, and all adopt centralized decision architectures, resulting in a high
dependence on the central control node, leading to low robustness, poor scalability, and
other issues. In addition, DRL has been applied to unmanned aerial vehicles (UAVs) for
navigation, trajectory planning, and radio resource management [14,15].

The performance differences between traditional Q-learning and deep Q network
(DQN) algorithms in solving task offloading scheduling problems were compared in [16].
However, such schemes do not consider distributed architecture, which reduces robustness
while increasing training difficulty. Therefore, the authors adopt the asynchronous advan-
tage Actor–Critic algorithm to achieve a distributed architecture, which accelerates training
while reducing the correlation between state transition samples in [17]. However, unlike
parallel RL architectures such as A3C, all nodes in MEC networks are not in independent
environments that do not affect each other. Therefore, distributed offloading decision-
making is a multi-agent problem, and using traditional single-agent or parallel RL schemes
may make it difficult for the algorithm to converge [18]. Furthermore, some scholars have
also begun to use multi-agent reinforcement learning (MARL) technology to solve task-
offloading decision problems. For example, reference [19] proposed a multi-agent DQN
algorithm based on value decomposition for task offloading strategy problems. The authors
used the multi-agent deep determining policy Gradient (MADDPG) algorithm to solve
the multi-agent task offloading problem [20]. However, existing research on DRL-based
offloading decisions has not taken into account the training difficulties that may arise from
reward delay in MEC network environments.

3. Preliminaries: Network Model and Problem Definition
3.1. Cloud-Edge Collaboration Model for MEC Network

As shown in Figure 1, the cloud-edge collaboration model can be divided into user
layer, edge layer and cloud layer. The user layer is composed of m mobile devices used
by all users in the service area, and it can be denoted by UD = {ud1, ud2, · · · udm}. User
equipment may move locations and generate computing tasks at any time. The edge layer
includes n edge nodes, which are represented as EN = {en1, en2, · · · enn}. Each node
consists of a wireless base station and an edge server.

3.2. Task Queue Description

The queue model of this paper is shown in Figure 2. Each user device maintains a
cache, a computing queue, and a transmission queue. After a task is generated, it first enters
the cache to wait for an offloading decision. After the offloading decision is determined, the
task can enter the calculation queue to perform local computing or enter the transmission
queue to offload to edge layer devices. The udi lengths of the cache area, computing queue,
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and transmission queue recorded are qcomp
i , qcache

i , and qtran
i , respectively. The available

cache capacity of the user’s device is Rud.
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Each edge server maintains a wireless transmission queue, a wired transmission queue,
and numcore (the number of CPU cores in the edge server) computing queue. If a task is
offloaded to the edge server, it can enter the server’s computing queue or enter the server’s
wired transmission queue to be sent to other nodes or the cloud. If the task is completed
within the edge server or cloud server, the computing result can be sent back to the user
in the wireless transmission queue of the edge server. The enj length of the computing
queue and transmission queue, as well as the cache capacity of a single edge server, are Ren,
qen-tran

j , and qen-comp
j , respectively, and all queues comply with FIFO (First In First Out).

Due to the different priorities of various tasks, a simple FIFO queue is difficult to meet
practical needs. Therefore, this paper allows computing devices to perform queue insertion
arrangements when receiving tasks. When the decision node makes an offload decision on
task xi

t, the priority weight q fi,t of the task can be determined. Task xi
t is queued according

to weight q fi,t when it enters any queue, and, the higher the weight, the higher the priority.
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To further solve queue congestion and improve throughput and delay performance,
this paper also introduces an active queue management mechanism, which is described
as follows:

1. If the average queue length is less than the minimum threshold thmin, newly arrived
tasks are pushed into the queue;

2. If the average queue length is greater than the minimum threshold thmin and less
than the maximum threshold thmax, randomly drop the newly arrived task according
to probability;

3. If the queue length has reached the maximum threshold thmax, the newly arrived task
is dropped pdrop.

3.3. Task Model

Let xi
t denote the generated task at the time t of the mobile device udi, and its deadline

is τi,t. The 0-1 variable Dk
i,t(0 ≤ k ≤ n + 2) indicates the offloading status of the task xi

t, and
we have the following.

Dk
i,t =

{
1 , For xi

t, the offloading goal is enk
0 , the offloading goal is not enk

, 1 ≤ k ≤ n (1)

Here, if D0
i,t is 1, the task xi

t will be performed in local server. If Dn+1
i,t is 1, xi

t will be
offloaded at edge sever. If Dn+2

i,t is 1, xi
t will be discarded by the user. The offloading decision

vector Di,t =
(

D0
i,t, D1

i,t, · · ·D
n+2
i,t

)
can uniquely determine the offloading direction of the

task xi
t. When the task xi

t is offloaded to a node enj, the weight of CPU computing resources

allocated to the task xi
t is expressed as f f j

i,t. When the server is running, it dynamically
allocates its computing resources to each task according to its weight. Specifically, the
computing power f f j

i,t that can be occupied by the task xi
t executed on nodes can be

expressed as follows:

f j
i,t =

f f j
i,t

f f j
sum

· f edge (2)

where f edge represents the computing power owned by a single edge node and f f j
sum

represents the total computing power weight of all tasks performing computing in the
node enj.

This paper categorizes computing tasks into four categories based on their require-
ments for security and delay: high-priority tasks, critical tasks, low-priority tasks, and
regular tasks. The specific classification description is as follows:

(1) High-priority tasks have high requirements for delay, which are related to security
and have hard indicators for task completion rate.

(2) The key task is a computing task that requires extremely high security and can
appropriately lower delay requirements but cannot be discarded.

(3) Low-priority tasks are not related to security but are in scenarios that require energy
savings, or tasks with excessive data volume and computation time.

(4) Except for the above three types of computing tasks, all other computing tasks are
routine tasks.

3.4. Network Communication and Observation Model

Suppose the radio channel bandwidth resource of a single base station is B, and the
service radius is r. In addition, we assume that the base station has dynamic channel
allocation capability, the user udi allocated bandwidth weight for the node enj is b fi,j, and
then the allocated bandwidth Bi,j can be expressed as follows:

Bi,j =
b fi,j

∑m
x=1 b fx,j

· B (3)
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Here, if the user udi leaves the service area, the b fi,j = 0. The above Formula (3)
represents the proportion of the bandwidth allocated by the base station to a user in the
total bandwidth of the base station. So, the maximum data transmission rate between udi
and enj can be expressed as follows:

Ci,j = Bi,jlog2

(
1 +

PGi,j

σ2

)
(4)

where P is the transmission power of the sender’s equipment. Gi,j is the channel gain
between udi and enj. σ2 is the Gaussian noise power of the channel.

Electromagnetic waves travel at the speed of light Vspace in the service area. For wired
communication, the link transmission rate is Cfiber and the link propagation rate is Vfiber.
Each line has a fault probability pfiber in every minute, and communication capability can
be recovered after maintenance time Trepair.

The MEC network model considered in this paper also has the problem of local
observation. A single device only has the ability of local observation, and the global state
information of the network can only be obtained by synchronous communication between
devices. In addition, for user equipment, the computing density and computing result size
of the task cannot be estimated.

3.5. Network Delay and Energy Consumption Model

The task xi
t generated by the node udi is performed on any device at any time t, the

delay can be expressed as follows:

Tcomp
i,t =

λi,tρi,t

f
(5)

where λi,t is the amount of input data for xi
t, and ρi,t is the computing density of xi

t. That is
the number of CPU cycles required to process each bit of data for xi

t. f is the CPU frequency
of the computing device.

The sum of transmission delay and propagation delay generated by communication
between udi and enj can be expressed as follows:

Tspace
i,j =

λ

Ci,j
+

di,j

Vspace
(6)

where λ is the size of the sent data and di,j is the distance between udi and enj.
The sum of transmission delay and propagation delay generated by communication

between adjacent edge nodes can be expressed as follows:

Tfiber =
λ

Cfiber
+

dedge

Vfiber
(7)

where dedge is the distance between adjacent nodes.
The delay caused by edge node communication with cloud server can be expressed

as follows:
Tcloud =

λ

Cfiber
+

dcloud
Vfiber

+ Tcloud
delay (8)

where dcloud is the distance between edge nodes and cloud server, and Tcloud
delay is the for-

warding delay of core network.
Local calculated energy consumption for xi

t can be expressed as follows:

Ecomp
i,t = κλi,tρi,t( f user

i )2 (9)
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where κ is the energy consumption efficiency coefficient of user equipment. f user
i is the

CPU frequency of udi. If data are sent from udi to enj, the duration Tspace
i,j can be calculated

by (6), and the energy consumption of user equipment during the period can be expressed
as follows:

Etran
i,j = PiT

space
i,j (10)

where Pi is the transmission power of udi.

3.6. Offloading Decision and Resource Allocation Problem Modeling

The cost of computing task in this paper can be expressed as follows:

Z
(

xi
t

)
= ϕ1

Ttotal
i,t

τi,t
+ ϕ2

Etotal
i,t

µ1λi,tρi,t
+ dropi,t (11)

where Ttotal
i,t is the total processing delay of task xi

t and Etotal
i,t is the total energy consumption

of xi
t. ρi,t is the calculated density of xi

t. λi,t is the amount of input data for xi
t. τi,t is the

upper limit of the tolerable delay of xi
t. The constant µ1 is the scaling factor, so that

0 <
Etotal

i,t
µ1λi,tρi,t

≤ 1. In order to achieve the effect of normalization, variable dropi,t is defined
as follows:

dropi,t =

{
1 , xi

t is discarded
0 , xi

t completes the calculation
(12)

For each task in this paper, ϕ is set as follows. The optimization target for high-
priority tasks does not include energy consumption, so there is ϕ2 = 0 for high-priority
tasks. The optimization target for critical mission only considers the drop rate, so there
is ϕ1 = ϕ2 = 0 for critical missions. The optimization goal of low-priority tasks does not
include delay, so there is ϕ1 = 0 for low-priority tasks. The optimization of routine tasks
needs to comprehensively consider the delay, energy consumption, and drop rate, so there
is ϕ1 = ϕ2 = 1 for routine tasks.

The goal of this paper is to optimize the task offloading decision of each decision-
making device and the bandwidth allocation decision of the server to the user equipment,
so as to minimize the sum of all system task costs in a long period of time. Thereby reducing
network delay, drop rate and user energy consumption. The above optimization problem
can be modeled as follows:

min
D,ff,qf,bf

 ∑
1≤i≤m

∑
t∈Ttask

i

Z
(
xi

t
)

s. t. C1 : Dk
i,t ∈ {0, 1} , ∀i ≤ m, ∀t ∈ Ttask

i

C2 :
n+2
∑

k=0
Dk

i,t = 1 , ∀i ≤ m, ∀t ∈ Ttask
i

C3 : f f j
i,t ∈ [0, 1], xi

t is calculated in enj, ∀i ≤ m, ∀t ∈ Ttask
i

C4 : q fi,t ∈ [0, 1], ∀i ≤ m, ∀t ∈ Ttask
i

C5 : b fi,j ∈ [0, 1], communication between udi and enj, ∀i ≤ m, ∀j ≤ n
C6 : qcache

i + qcomp
i + qtran

i ≤ Rud
i , ∀i ≤ m

C7 : qen−comp
j + qen−tran

j ≤ Ren , ∀j ≤ n
C8 : Ttotal

i,t ≤ τi,t , ∀i ≤ m, ∀t ∈ Ttask
i

C9 : di,j ≤ r , communication between udi and enj, ∀i ≤ m, ∀j ≤ n

(13)

where D is the set of offloading decision vectors Di,t corresponding to all tasks. f f is the set
of weights f f j

i,t assigned to the computing power corresponding to all tasks. q f is the set
of queue priority weights corresponding to all tasks. b f is the set of bandwidth allocation
weights b fi,j for all users. Ttotal

i,t is the total delay for task processing. Setting Ttask
i contains

all the moments that generate tasks within the system runtime. Constraint C1 indicates that
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each task has only two states for offloading the target device: completing offloading and no
offloading. Constraint C2 indicates that each task has and only has one offloading decision
result. Constraints C6 and C7 indicate that the sum of the queue and cache lengths of user
devices or edge nodes does not exceed their cache capacity. Constraint C8 indicates that the
total processing delay of the task does not exceed its upper of tolerance delay. Constraint
C9 indicates that the distance between the user and the edge node during communication
does not exceed the service radius of the node base station.

4. A Joint Optimization Scheme for Task-Oriented Multi-Agent PPO Offloading
Decision and Resource Allocation
4.1. Network Information Synchronization Protocol

At the user layer, users periodically report their own location coordinates to the edge
nodes. After receiving the information, the node regards itself connected to the user and
records the location information. At the edge layer, each edge node sends synchronous
data to all adjacent nodes, so the node can obtain the topology of the edge layer and
construct a routing table after receiving the data and store the status information of the
remaining nodes in its own database. In the cloud layer, cloud server periodically sends
synchronization information to all edge nodes to confirm link connectivity. As shown in
Figure 3, all synchronization information is sent periodically. If synchronization is not
received after a period of timeout, the node considers that it has disconnected from the
device and does not retransmit.
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4.2. Distributed Offloading Scheduling Rules

Considering the mobility of users in MEC network and the hidden trouble of nodes
and lines, it is necessary to design a set of offloading scheduling rules to deal with a variety
of unexpected situations. In an ideal situation, the offloading scheduling rules are shown
in Figure 4.

The description is as follows:

(1) If the user is within the service area, when they generate a task, they first report
the summary information of the task to the nearest edge node they are connected to
(referred to as the “decision node”).

(2) The decision node makes an offloading decision based on this summary information
and network conditions and sends it back to the user.

(3) Users perform local calculations or offload tasks to decision nodes based on the
received decision results.

(4) After receiving task data, the node forwards the task to the offloading target node
for calculation.

(5) After the calculation is completed, offloading the target node will determine the node
closest to the user as the “return node”, and then send the calculation result to the
return node in the shortest path.

(6) The final calculation result is sent back to the user by the return node.
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order in which the scheduling rules are executed).

4.3. Multi-Agent System Based on Actor–Critic Framework

This section proposes a multi-agent system architecture suitable for MEC networks
based on the classic strategy learning framework Actor–Critic. The multi-agent system that
was designed is shown in Figure 5.
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The system adopts the region partitioning method, dividing the entire network into
multiple subnets based on the hop distance. If an undirected graph is used to represent a
node network, the system will select the node with the highest degree as the commentator
node for each subnet in the network graph every time the network topology changes. The
commentator node will act as the sole agent in the subnet, making decisions for all nodes
within the subnet. Ordinary nodes only need to submit their observed information to
the commentator node as a decision basis and execute the action values issued by the
commentator node. The commentator node maintains multiple policy networks and a
value network internally, with each policy network corresponding to the offloading strategy
of each node in the subnet. The intelligent agent can make decisions and execute actions
based on the output values of the policy network. Subsequently, the intelligent agent will
use the value network to evaluate this action based on environmental feedback rewards
and new observation information. The policy network and value network will update their
parameters accordingly.
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4.4. Task-Oriented Markov Decision-Making Process

This paper proposes a task-oriented MDP model for MEC networks, which has an
indefinite length of time steps and multiple time steps are performed simultaneously. As
shown in Figure 6, the xi

t1
time step corresponding to the task starts at the time of its

generation t1 and ends at the time of xi
t1

completion of processing t1 + Ttotal
i,t1

. xi
t1

After a
brief delay, the intelligent agent t′1 observes the state at all times s(xi

t1
) and performs an

offloading action on the task a(xi
t1
). When xi

t1
is processed completing, reward feedback

for environmental is r(xi
t1
). Multiple tasks are processed in parallel.
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The TOMDP model includes elements such as state, action, and reward, defined
as follows:

(1) Status

The state information is composed of the observations of the node itself and the
observations of all nodes it can connect to. Assuming that the node enj receives the xi

t
summary information of the task at a certain moment, define the relevant xi

t state as s(xi
t).

We have the following.

s(xi
t) ,

[
λi,t

µ2
,

τi,t

µ3
, TPi,t, Hi,

qcache
i + qcomp

i + qtran
i

Rud ,
qen−comp

j + qen−tran
j

Ren ,
j
n

, Linkj, thmin, thmax

 (14)

where λi,t represents the amount of input data for xi
t. τi,t represents the maximum tolerance

for delay for xi
t. Constants µ2 and µ3 are scaling factors used to achieve normalization

effects. Vector TPi,t represents the type of task. The matrix Hi represents the enj user
coordinate records stored in. j represents the objective function of strategy learning. The
vector Linkj represents the enj connectivity with other nodes. The capacities of the udi

cache area, calculation queue, transmission queue, and total cache are qcache
i , qcomp

i , qtran
i ,

and Rud, respectively. The capacities enj of the calculation queue, transmission queue,
and total cache are qen-comp

j , qen-tran
j , and Ren, respectively. The minimum and maximum

thresholds for the queue are thmin and thmax. Define the “completion state” observed by
enj when xi

t1
finishes processing as sc(xi

t).

(2) Action

The decision vector includes the offloading target selection of the task Di,t, computing
power allocation weight f f j

i,t, queue priority weight q fi,t, bandwidth allocation weight b fi,j,
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and thresholds thmin and thmax in the queue. Assuming the xi
t offloading goal of the task is

enj, define the xi
t action related to it as a

(
xi

t
)
. Specifically, it is expressed as follows:

a(xi
t) ,

[
Di,t, f f j

i,t, q fi,t, b fi,j, thmin, thmax

]
(15)

(3) Rewards

The definition of rewards xi
t in this paper is as follows:

R(xi
t) , 1− Z(xi

t)

∑t′∈Ttask
i

Z(xi
t′ )

∑t′∈Ttask
i

1

+
1
2
− PEN(xi

t) (16)

where
∑t′∈Ttask

i
Z(xi

t′)

∑t′∈Ttask
i

1 represents the udi average cost of all generated tasks. PEN
(
xi

t
)
∈ {0, 1}

indicates the penalty value of xi
t given by the decision constraint module for the initial decision.

4.5. Neural Network Structure Used by TOMAC-PPO

In order to enable intelligent agents to have a certain degree of memory and solve the
local observation problem in network models, the TOMAC-PPO algorithm proposed in
this paper combines the Transformer model with a fully connected network. The strategy
network structure used by TOMAC-PPO is shown in Figure 7. The network input is
state s, and the output is action probability density π(a

∣∣s; θj) , where θj represents the j
policy network parameters of the agent. Firstly, the strategy network inputs s into the
Transformer model. Next, learn the mapping relationship between state information and
action probability distribution through three fully connected layers, and finally output
the probability corresponding to each action in that state. The final fully connected (FC)
layer specifically adopts the Softmax activation function to ensure that the output value
probabilistically satisfies the definition of the probability density function. Similarly, the
value network also adopts an almost identical structure, as shown in Figure 8. The goal of
the value network is to fit the S state value of the current state Vπ(s), so only one output
value is needed v

(
s; ωj) (where ωj represents the agent’s j value network parameters). The

structure of the target value network is completely consistent with the value network, and
its parameters are represented as ω̂j.
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4.6. TOMAC-PPO Algorithm Process

The PPO algorithm, proposed by Open AI and DeepMind, is widely regarded as one
of the most successful DRL algorithms due to its excellent performance, high efficiency, and
stable characteristics [21]. PPO is a strategy learning method, based on the Actor–Critic
framework, which can be well adapted to the multi-agent system proposed in this paper.
Therefore, this paper combines PPO with Transformer and applies it to the TOMDP model
and multi-agent system built in this paper, ultimately forming the TOMAC-PPO algorithm
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framework. During the training process of the TOMAC-PPO algorithm, constant θnow is
used to represent the current parameters of the policy network. θ indicates the parameters
of the policy network during the next update, which is the optimization variable of the
algorithm. The objective function in TOMAC-PPO theory is denoted as J(θ). Due to the
J(θ) difficulty in obtaining the expression, when θ is in the confidence domain N (θnow),
an expression L(θ) can be constructed that is close enough to approximate J(θ) and easy
to solve, and L(θ) can be used instead of J(θ) as the approximate objective function to
solve [22].
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To satisfy the confidence domain constraint θ ∈ N (θnow), the divergence needs to be
used to measure and limit the difference between the new strategy π(A|S; θ) and the old
strategy π(A|S; θnow) . The TOMAC-PPO algorithm proposes a scheme of approximate
optimization objective pruning. The approximate objective function L(θ) is clipped so that
θ does not exceed the confidence domain N (θnow) when the gradient ascent algorithm is
run. In this scheme, the constraints in the objective function are removed, and the constraint
function on θ is retained, which makes the optimization problem easier to solve.

Here, s
(

xi
t
)
, a
(

xi
t
)

and r
(
xi

t
)

will be simplified as st, at and rt.

Note that ratiot(θ) =
π(at |st ;θ)

π(at |st ;θnow)
; the derivation process in reference [23] yields the ap-

proximate objective function LCLIP(θ) after being trimmed by the approximate optimization
target clipping method in the TOMAC-PPO algorithm.

LCLIP(θ) = Et{min[ratiot(θ) · Advt, clip(ratiot(θ), 1− ς, 1 + ς) · Advt + c
· H(st; θ)]} (17)

where ς and c are hyperparameters. clip(ratiot(θ), 1− ς, 1 + ς) means that the maximum
value of ratiot(θ) is truncated in the interval θ ∈ [1− ς, 1 + ς], so that the LCLIP(θ) function
must have a global maximum value in the interval [1− ς, 1 + ς] as shown in Figure 9.
H(st; θ) is based on the entropy reward introduced in references [17,22], which can encour-
age agents to fully explore more actions and avoid premature convergence of strategies to
local optima. The advantage function Advt can be expressed as follows:

Advt = Qπ(st, at)−Vπ(st) (18)

It is hard to find the specific values of Qπ and Vπ in actual training, so it is necessary
to approximate Advt. Firstly, TOMAC-PPO causes the agent to collect the T step trajec-
tory {st, at, rt} with the current strategy π(A|st; θnow) so that it can get a discount return
ut = rt + γ · rt+1 + · · ·+ γT−t · rT . Then, in (18), the Qπ(st, at) approximation is replaced
by ut, and the Vπ(st) approximation is replaced by the value network output v(st; ω), so
that the approximate advantage Adv′t can be obtained:

Adv′t = rt + γ · rt+1 + · · ·+ γT−t · rT − v(st; ω) (19)
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So far, the variables in the expression of the approximate objective function LCLIP(θ)
can be obtained, and the gradient ascent method can be used to continuously update the
strategic network parameter θ of each agent to increase LCLIP(θ).

θ← θnow + β · ∇θLCLIP(θnow) (20)

where β is the learning rate, which is the training value network, and the value network
loss function is defined as follows:

LV(ω) , −
T

∑
t=1

(Adv′t)
2 (21)

The larger the approximate advantage Adv′t in (21), the smaller the loss of the value
network. The purpose of defining the loss function in this way is to encourage the agent to
try to increase the dominance value and choose the action that increases the dominance as
much as possible. The value network parameter ω can be updated by the gradient descent
method to reduce the loss LV(ω):

ω← ωnow − α · ∇ωLV(ωnow) (22)

where α is the learning rate. The target value network parameter ω̂ can be updated in a
similar way as shown in (23).

ω̂← σ ·ω + (1− σ) · ω̂ (23)

where parameter σ ∈ (0, 1) is the update ratio for the target network.
The specific steps of the TOMAC-PPO algorithm are shown in Algorithm 1.

Algorithm 1. Task-Oriented Multi-Agent Collaborative-Proximal Policy Optimization
(TOMAC-PPO)

Input: Training rounds emax, pruning parameters ς, value network α learning rate, strategy
network learning rate α, discount rate γ, target value network update ratio σ.
Output: Optimal task offloading and resource allocation strategy π(a|s; θj).
1. Randomly initialize the parameter θ of each strategy network, as well as each value network
parameter ω, and the target value network parameter ω̂;
2. For episode = 1, 2, . . . , emax do
3. For all agents j, where 1 ≤ j ≤ n do in parallel
4. According to the current strategy π(A|st; θ

j
now), collect T step trajectory {st, at, rt};

5. According to (19), calculate the approximate advantage Adv′t;
6. Update the policy network parameter θj of agent j according to (20);
7. According to (22) and (23), the value network parameter ωj and the target value network
parameter ω̂j of j are updated.
End for
End for
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In the following, we give the complexity analysis of the TOMAC-PPO algorithm. The
main time spent on this algorithm is in the second step, which is a training round loop
with emax training rounds and a time complexity of O (emax). The third step is that the agent
operates in parallel, with a time complexity of O (n). So, the overall time complexity is
O (nemax).

5. Experimental Results and Analysis

To evaluate the optimization effect of the proposed scheme on MEC network perfor-
mance, we compare the following four offloading decision schemes with TOMAC-PPO.

(1) TOMAC-A2C (Task-Oriented Multi-Agent Cooperative Advantage Actor–Critic).
A2C algorithm is one of the classic strategy learning algorithms in the RL field.

(2) TO-A3C (Task-Oriented Asynchronous Advantage Actor–Critic). TO-A3C belongs to
the parallel RL method and does not use multi-agent systems. The A3C algorithm
improves its performance by establishing multiple independent single agent A2C
training environments, enabling them to train in parallel [24].

(3) CCP (Cloud Computing Priority). CCP adopts the principle of “deliver tasks to upper
level processing as much as possible”, and prioritizes offloading all tasks to the cloud
for processing.

(4) LC (Local Computing). After the task is generated, skip the information reporting
process and directly calculate locally by the user.

We build the algorithm environment for active queue management, offloading schedul-
ing rules, and multi-agent systems described in this paper to run the TOMAC-PPO algo-
rithm. We give convergence analysis, and test average cost, average delay, average energy
consumption, and drop rate.

5.1. Experimental Environment and Parameter Settings

The experimental environment is implemented using Python language, and the real
dataset used includes the longitude and latitude of mobile users and the maximum CPU
frequency as user device data. This paper stipulates that the probabilities of users generating
high-priority tasks, critical tasks, low-priority tasks, and regular tasks are [0.2, 0.2, 0.2, 0.4],
respectively. The specific parameters are shown in Table 1.

5.2. Convergence Analysis

For 50 users and a probability of failure pen = p f iber = 0.1%, we give convergence
results for the TOMAC-A2C algorithm and the TOMAC-PPO algorithm.

The cumulative reward convergence of TOMAC-A2C and TOMAC-PPO during train-
ing is shown in Figure 10. We can see that the moving average reward curves of both
algorithms gradually converge with the increase in training episodes, proving the effec-
tiveness of TOMAC-A2C and TOMAC-PPO algorithms. TOMAC-PPO not only has a
significant advantage in convergence speed compared to TOMAC-A2C but also improves
the final convergence value by about 23.9% compared to MAC-A2C, demonstrating its
outstanding performance advantage. From the stability of the convergence curve, although
the final convergence value of TOMAC-PPO is significantly higher than TOMAC-A2C, its
vibration amplitude is also obviously larger. This may be a phenomenon caused by the
introduction of entropy in the approximate objective function LCLIP(θ) of TOMAC-PPO,
which leads to a higher desire for agents to explore randomly.

5.3. Optimization Performance Evaluation

To evaluate the performance of various offloading schemes under different network
load levels, this experiment tested the variation of average task cost with the number of
users under the pen = p f iber = 0.1% setting of failure probability. As shown in Figure 11,
the TOMAC-PPO method always maintains the lowest task overhead under various load
conditions, and its performance advantage continues to expand with the increase in the
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number of users. When the number of users is 50, TOMAC-PPO reduces the average cost
by 19.4% to 66.6% compared to other solutions.

Table 1. Parameters setting.

Symbol Meaning Value

n Number of edge nodes 10
Rud User device cache capacity 49, 152 Mbit
Ren Edge node cache capacity 262, 144 Mbit
B Base station bandwidth resources 20 MHz
r Base station service radius 100 m
Pedge Base station transmission power 200 W
Puser User device transmission power 0.2 W

κ User device energy efficiency coefficient U (4.13, 66.16)× 10−27

σ2 Gaussian noise power 1.5× 10−8 W
Vspace The propagation rate of electromagnetic waves in the air 3× 108 m/s
Vfiber The propagation rate of electromagnetic waves in a circuit 2× 108 m/s
Cfiber The transmission rate of wired communication 1000 Mbit/s
Trepair Fault repair duration U(10, 60) s
λ Task input data volume N(5100) Mbit
λout Task calculation result data volume N(1, 50) Mbit
ρ Task computing density N(0.297, 0.1) G.c./Mbit
numcore Number of CPU cores on edge servers 14
f edge Edge server CPU frequency 2.4 GHz
f cloud Cloud server CPU frequency 10 GHz
Tcloud

delay Core network forwarding delay N(50, 15) ms
dedge The distance between adjacent nodes 150 m
pdrop RED Dropped Task Probability 1/50
α, β Learning rate 3× 10−4

emax Training epochs 1000
γ Discount rate 0.95
σ Target network update ratio 0.01
ς Crop parameters 0.2
c Entropy weight 0.01
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To test the response capability of various offloading schemes to line faults, this ex-
periment tested the average task cost with the variation of the failure probability of edge
servers and lines under the setting of a large number of users (50).

As shown in Figure 12, when the failure rate is less than 70%, the task overhead
corresponding to TOMAC-PPO and TOMAC-A2C methods is significantly lower than
other schemes. When the failure rate reaches over 70% and continues to increase, the task
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overhead of TOMAC-PPO and TOMAC-A2C increases sharply and gradually approaches
the curve of the LC scheme, and the gap between the two also decreases. When the failure
rate reaches 100%, it is equivalent to the entire edge layer device being in a disconnected
state. At this time, except for the LC scheme, the average cost of the other schemes is around
2.3, slightly higher than the average cost of the LC scheme, which is 2.24. This indicates
that, when the failure rate is 100%, each optimization plan has no other countermeasures
besides performing local calculations. Due to the fact that users still need to attempt to
report task information at this time, the cost incurred is slightly higher than that of the LC
scheme. When the failure rate is less than 50%, the cost curve of the CCP scheme shows
a downward trend. This is because line failures force more tasks to be handed over to
edge layers with lower latency, reducing unnecessary tasks from cloud migration. When
the failure rate exceeds 50%, the CCP overhead curve gradually increases and approaches
the LC scheme, because the reduction in the number of available servers results in a large
number of tasks that cannot be offloaded and can only be processed at the user layer. In the
vast majority of failure rate scenarios, the TOMAC-PPO scheme can maintain the lowest
average cost, which proves that compared to other optimization schemes, TOMAC-PPO
has better robustness in dealing with various failure situations.
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To test whether each offloading scheme adopts targeted offloading processing for
different types of tasks, we test the processing effect of each scheme on different types of
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tasks under the conditions of 50 users and failure probability with pen = p f iber = 0.1%, as
shown in Figure 13.
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As shown in the figure, besides energy consumption, the TOMAC-PPO method can
achieve the best optimization results in various evaluation indicators that are important for
tasks. Due to the significant energy-saving advantages of the LC scheme, the TOMAC-PPO
method falls short in optimizing energy consumption for low-priority tasks compared to
LC. However, TOMAC-A2C not only focuses on the energy consumption of this type of
task but also considers the optimization of the task dropout rate. If too many low-priority
tasks are delegated to local processing, it may result in a high dropout rate due to weak
local computing power. Therefore, TOMAC-A2C generates more energy consumption
by balancing these two evaluation indicators. Except for LC, TOMAC-PPO still has the
best energy optimization effect on low-priority tasks. The results demonstrate that the
TOMAC-PPO scheme can more accurately respond to diverse task requirements compared
to other schemes when dealing with different types of tasks.

5.4. Experiment Results Discussion

In the above experiments, we compare the four offloading decision schemes with
TOMAC-PPO at average cost, average delay, average energy consumption, and drop rate.
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TOMAC-PPO proposed can effectively reduce the average task cost in MEC network envi-
ronments with different numbers of users and system failure probabilities. Compared to
the other four baseline methods, the proposed scheme has better optimization performance
in the vast majority of cases, and its advantages are particularly prominent in dealing with
high-load situations. For example, the proposed TOMAC-PPO can reduce the average cost
by from 19.4% to 66.6% compared to other offloading schemes under the same network
load. In addition, the drop rate of some baseline algorithm with 50 users can achieve 62.5%
for critical task, while the proposed TOMAC-PPO only has 5.5%. The main reasons are that
(1) multi-agent parallel offloading and task allocation are introduced in the TOMAC-PPO
and (2) active queue management and offloading scheduling rules have been implemented
for different tasks. Certainly, the proposed TOMAC-PPO has some limitations: (1) With
the continuous increase in network scale, the scalability of multi-agent systems will be
challenged. The information synchronization protocol used within the system can further
reduce communication overhead, and the information lag of large-scale systems is also a
major issue that needs to be addressed. (2) Due to various limitations, this paper can only
use Python code to implement a simulation system for simple simulation of MEC networks.
In future research, professional simulation software can be further used to achieve more
realistic simulations, and consideration can be given to MEC computation offloading in
more scenarios such as drones and connected vehicles.

6. Conclusions and Further Works

Task offloading and resource allocation is a research hotspot in cloud-edge collabora-
tive computing. This paper constructs a cloud-edge collaborative computing model, and
related task queue, delay, and energy consumption model, and gives joint optimization
problem modeling for task offloading and resource allocation with multiple constraints.
Furthermore, it designs a decentralized task offloading and resource allocation scheme
based on “task-oriented” multi-agent reinforcement learning. In this scheme, we present
information synchronization protocol and offloading scheduling rules and use edge servers
as agents to construct a multi-agent system based on the Actor–Critic framework. The
proposed TOMAC-PPO applies the proximal policy optimization to the multi-agent system
and combines the Transformer neural network model to realize the memory and prediction
of network state information. Experimental results show that this algorithm has better con-
vergence speed and can effectively reduce the service cost, energy consumption, and task
drop rate under high load and high failure rates. For example, the proposed TOMAC-PPO
can reduce the average cost by from 19.4% to 66.6% compared to other offloading schemes
under the same network load. In addition, the drop rate of some baseline algorithms
with 50 users can achieve 62.5% for critical tasks, while the proposed TOMAC-PPO only
has 5.5%.

In future works, due to the innovation of the TOMDP dynamic time slot model
proposed in this paper, it conflicts with existing DRL code patterns, resulting in certain
encoding difficulties. Therefore, how to be compatible with existing DRL code frameworks
is an area that TOMDP needs to optimize. In addition, the design of states, actions, and
rewards in TOMDP is also a decisive factor in the optimization effect of the algorithm and
can be further improved.
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TOMAC-PPO Task-Oriented Multi-Agent Collaborative-Proximal Policy Optimization
PPO Proximal Policy Optimization
IoT Internet of Thing
MEC Mobile Edge Computing
RL Reinforcement Learning
DRL Deep Reinforcement Learning
UAVs Unmanned Aerial Vehicles
DQN Deep Q Network
MARL Multi-Agent Reinforcement Learning
MADDPG Multi-Agent Deep Determining Policy Gradient
FIFO First In First Out
FC Fully Connected
TOMAC-A2C Task-Oriented Multi-Agent Cooperative Advantage Actor–Critic
CCP Cloud Computing Priority
LC Local Computing
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