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Abstract: In the past two decades, there has been a noticeable decoupling of machines and operating
systems. In this context, WebAssembly has emerged as a promising alternative to traditional virtual
machines. Originally designed for execution in web browsers, it has expanded to executing code in
restricted and secure environments, and it stands out for its rapid startup, small footprint, and porta-
bility. However, WebAssembly presents significant challenges in data transfer and the management
of interactions with the module. Its specification requires each module to have its own memory, re-
sulting in a “share-nothing” architecture. This restriction, combined with the limitations of importing
and exporting functions that only handle numerical values, and the absence of an application binary
interface (ABI) for sharing more complex data structures, leads to efficiency problems; these are
exacerbated by the variety of programming languages that can be compiled and executed in the same
environment. To address this inefficiency, the Karmem was designed and developed. It includes a
new interface description language (IDL) aimed at facilitating the definition of data, functions, and
relationships between modules. Additionally, a proprietary protocol—an optimized ABI for efficient
data reading and minimal decoding cost—was created. A code generator capable of producing
code for various programming languages was also conceived, ensuring harmonious interaction with
the ABI and the foreign function interface. Finally, the compact runtime of Karmem, built atop a
WebAssembly runtime, enables communication between modules and shared memory. Results of
the experiments conducted show that Karmem represents an innovation in data communication for
WASM in multiple environments and demonstrates the ability to overcome challenges of efficiency
and interoperability.

Keywords: Data-Oriented Design; inter-process communication; performance optimization; serialization;
WebAssembly

1. Introduction

For years, web development was almost exclusively in JavaScript (JS). Although
various technologies such as Microsoft Silverlight, Java Applets, and Google Native Client
(NaCL) have been used to support other languages in the browser, these solutions have
never been universally adopted natively by all browsers. WebAssembly (WASM) has
recently emerged as a complementary solution to JS. It is a new bytecode with instructions
closely resembling those of a conventional processor, but it runs in a sandbox, which limits
access to memory and communication with the external world; this makes it secure and fast.
The instructions are like those found in most processor architectures, somewhat akin to the
Dis Virtual Machine used in InfernoOS [1]. WASM was designed to be general-purpose and
usable in any language, although it initially emphasizes C/C++. This concept differs from
other bytecodes, such as the Java Virtual Machine (JVM), which was originally developed
for just one language, Java, and may have limitations when used to express programs in
other languages [2].

Due to the security and portability features of WASM, and its growing adoption as a
compilation target by various languages, the technology has been used in other scenarios
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beyond the browser context. Currently, it can be found in cloud computing [3], edge
computing [4], embedded devices [5], and blockchain [6]. However, with these new
possibilities, new challenges have also emerged. The issue of efficient data communication
between WASM modules has become a clear obstacle. Transferring data, such as text or
vectors, between different modules is not a trivial task for many programmers [7], and
the binary format of WASM 1.0 does not provide native features for transferring more
complex data structures. In some applications, this can imply serious performance issues
when communicating with the module’s external environment [8]. The specification of this
technology, with its “share-nothing” nature, requires frequent copying to the memory of
each of the modules [9]. This need for copying and data transformations has been observed
as a problem in some applications, such as Proxy-WASM [10]. The requirement to copy for
each individual module can be particularly exacerbated in computational architectures with
a “one-to-many” (fanout) pattern, or when large volumes of data need to be transferred to
multiple distinct modules.

Karmem aims to overcome the limitations of WASM by disregarding the share-nothing
concept [11] and enabling more efficient communication. Its goal is to facilitate improved
communication between WebAssembly modules through the implementation of a new
interface description language (IDL) and its own communication protocol. Therefore,
Karmem makes a meaningful contribution to the realm of WASM development by pro-
viding solutions for effective data communication among modules written in different
languages. This holds practical significance for distributed applications built on WASM,
thereby enhancing efficiency and interoperability.

In addition to the research objective, motivation, and identification of the main con-
tributions presented in this section, this article consists of five further sections. Section 2
provides a theoretical contextualization of WASM. Then, Section 3 summarizes the current
state of alternative solutions and their goals, such as Karmem, in the context of communica-
tion in WASM. Section 4 elaborates on the goals and priorities of the Karmem approach. It
introduces the features of the IDL designed to describe types, data structures, functions, and
shared memory regions. The section also outlines the communication protocol specification
and introduces a multifunctional development tool employed for code generation in vari-
ous languages. Section 5 describes the tests conducted using Karmem to assess its ability
to address challenges related to efficiency and interoperability in data communication be-
tween modules written in different languages. Finally, Section 6 concludes by summarizing
the conclusions, limitations, and challenges that remain for future explorations.

2. Background

The development of WebAssembly began in 2015, drawing inspiration from ASM.js
and NaCL. WASM’s primary goal was to enable web browser applications to achieve
performance levels comparable to native applications [12]. WASM is supported by all major
web browsers, such as Chrome, Firefox, Safari, and Edge, to ensure consistent execution
across various browser environments.

WASM is a virtual instruction set architecture (ISA), consisting of a set of instructions,
memory, and a system for communicating with the external environment, and it is executed
by a virtual machine (VM). The interaction between the VM and the module can follow
certain patterns. As it is a binary format, the WebAssembly Text Format (WAT) was
also created, where instructions are written in text, in a more understandable way for
humans. The VM, also referred to as “runtime”, is responsible for executing WASM,
which is either compiled or interpreted. The bytecode must be loaded and validated to
ensure functionality and compatibility with supported extensions. Generally, there are
three execution strategies: interpreted; Just-In-Time (JIT); and Ahead-Of-Time (AOT). The
operating mode can affect Karmem, with only AOT being considered due to its superior
runtime performance. By definition, WASM only allows access to information within
an isolated and unique memory for each module, which makes it impossible to read
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the memory regions of other modules. Furthermore, communication with the external
environment is conducted through imported functions exposed by the VM.

For a module to communicate with the external environment, it is necessary for it
to import functions, and for another module to export those functions. This is the basic
operating principle, like a dynamic-link library (DLL). Conversely, the opposite is also
possible: the module can be called and utilized by the VM.

The bytecode’s design also addresses the challenge of data transmission over the
internet by emphasizing a compact size to allow faster parsing and compilation without
the need to download the entire file. This is because bytecode lacks instructions and
native support for AES-NI. The WASM bytecode was designed to serve as a unified
format, capable of execution across diverse processor architectures, operating systems, and
various browsers. Thus, the instructions and operations available in WASM are generally
common to all platforms or are virtually possible. WASM extensions introduce additional
instructions, some of which align with the introduction of instructions by processors. New
instructions are regularly integrated [13], thereby enabling native software to achieve faster
execution for specific tasks, while WASM may not have this advantage.

Like JS, this technology runs in its own isolated sandbox. WASM is restricted from
accessing information and data from other addresses or programs, and it cannot violate
the constraints imposed by the browser, including cross-origin limitations. Its behavior
is intended to be highly predictable and deterministic, maintaining consistency across all
architectures. This requirement is more stringent than mere portability; WASM outlines
specific contexts that might lead to non-deterministic behavior [14]. Examples of such
scenarios include the use of shared memory, multiple threads, or attempts to allocate
additional memory. Its capability to deliver near-native performance, portability, language
independence, and security has made WASM a versatile and powerful technology for
web development.

3. Related Work

Inter-module communication in WASM is a common difficulty. Thus, various technolo-
gies exist to mitigate this issue. Among them, we will categorize two types: technologies
developed for inter-module communication, and technologies for data serialization. The
former technologies address protocols that allow data sharing between different modules,
compiled to WASM. Serialization technologies focus on the characteristics of each serializa-
tion format and are very common for enabling data transfer between different languages
and software. Hence, there is an overlap between both technologies.

3.1. Inter-Module Communication

Currently, WASM Interface Type (WIT) [15] is the most popular technology for defining
types and interfaces, as used by WASI Preview 1 [16,17]. Alternatives such as waPC
use MessagePack for serialization to enable host–WASM communication, with ease of
implementation and support across multiple languages [18]. Language-specific options,
including Go-Plugin, use Google Protobuf for communication between the host and TinyGo
modules [19].

The component model extends WASM, using WIT for description and establishing a
specific ABI termed “Canonical ABI” [20], which features a sophisticated type conversion
system, “Lifting and Lowering Values”, for interoperability across different languages and
binary representations. However, it requires a specialized code generator and new WASM
instructions and, thus, demands adaptability from languages, compilers, and runtimes to
support the proposed extensions. Currently, this extension is still under development and
is not fully implemented or defined [21].

Other projects like Extism [22] simplify data transfer for simple data types such as
text, and JSON is suggested as one means of sharing more complex data [23], but this may
be inefficient for data-conversion needs. The rise of WASM in cloud and edge computing
services has led to companies creating their own communication protocols and defining
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their own foreign function (FFI) and ABI interfaces. Projects like Envoy and WasmCloud
are examples of such solutions [3,24].

All alternatives follow the “share-nothing” philosophy, which prevents data sharing
by reference and requires data to be copied. Communication from guest to host can be
zero-copy, but communication from host to guest or guest to another guest requires memory
copies, and, in some cases, serializations such as JSON, Google Protobuf, or MessagePack
are still necessary, which potentially impacts performance.

3.2. Serialization

Considering that WASM is a compilation target for many programming languages and
compilers, which implies different memory representations for each language, serializers
can be used to establish a standardized data organization. This enables different languages
to interpret and access information regardless of their internal memory structure.

In this field, Google reported that 5% of its data center’s computational cycles were ded-
icated to data serialization in 2015 [25], with estimates suggesting a potential increase [26].
Meta, formerly Facebook, disclosed that a mere 18% of CPU cycles were used for core
application logic, with the remainder spent on common operations not central to app logic,
such as I/O processing, logging, and compression. Serialization and deserialization alone
could account for up to 14% of CPU cycles [27].

We compare several data serialization types most used in WASM and IPC:
JSON (JavaScript Object Notation): JSON is widely recognized for its human-friendly

text format and adaptability. It is schema-less, with no need for predefined data structures,
and thus offers flexibility in data types and structures at the expense of computational
efficiency. Its high readability and adaptability entail higher memory consumption for
parsing and lack of random access, which make it less suitable for scenarios with heavy
binary and numeric data communication.

Google Protocol Buffers (Protobuf): A binary serialization framework that requires
predefining data schemas. This enables more efficient data access due to the use of known
data types. It has greater data compactness than JSON and is a superior choice for data
transfer across networked devices. It requires generated code for each data structure [28]
and often outperforms other serializers in resourceful environments but lacks random
access reads and partial reads.

MessagePack: This binary format aims to combine the best of JSON and Protobuf. It
avoids the need for predefined schemas and operates in binary mode [29]. In general, Mes-
sagePack offers better efficiency than JSON without compromising on the self-describing
feature. However, MessagePack does include metadata, which may lead to larger sizes
than Protobuf, and it does not support random or partial decoding.

Google FlatBuffers: Designed for performance, FlatBuffers allows in-place data access
without a parsing step, making it fast and suitable for environments with limited resources.
It demands predefined schemas but allows for partial data reads without full decoding,
which enhances its efficiency. However, security concerns arise due to the absence of bounds
checking. This potentially leads to sensitive data exposure or application crashes [30]. The
generated code can be complex, as the optional bounds checking, when available, impacts
performance and negates the advantage of random access [31]. Furthermore, each access
may require one lookup-table due to dynamic structures and the possibility of omitting
non-used fields.

Cap’n’Proto: Developed by a former Google Protobuf developer, Cap’n’Proto is a
binary serialization format that enables data reading without prior decoding while allowing
for random and partial reads. It needs a schema and uses code generation for various
languages and offers security benefits over FlatBuffers through built-in memory bounds
checking. Although it introduces a slight performance penalty, it maintains efficiency by
not requiring a full data scan for access [32].

Karmem: The initial versions of Karmem shared objectives with FlatBuffers and
Cap’n’Proto. Karmem emphasized memory reuse and enabled random data access without
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the need for decoding. It used its schema and description language and supported various
programming languages. Compared to other alternatives, initial versions of Karmem did
not require any data transformation between big-endian and little-endian formats, and
while it was limited to 4 GB and could not directly support arrays of arrays, it included
bounds checking for each accessed field. Dynamic structures were already supported.

Table 1 provides a comprehensive comparison of various serialization formats, detail-
ing each feature and its level of support across the different serializers. The table highlights
key characteristics, such as schema requirements, schema evolution, compression, security,
random access, availability, and other specific capabilities.

Table 1. Comparison between serializers.

Feature JSON MessagePack ProtoBuf FlatBuffers Cap’n’Proto Karmem

Requires schema description No No Yes Yes Yes Yes
Schema evolution N/A N/A Yes Yes Yes Yes

Compression None Low High Low None None
Supports random access No No No Yes Yes Yes

Security High High High Low High Medium
Languages coverage High High High Medium Medium Low

Generator integration N/A N/A External Built-In External Built-In
Reference implementation JS C C++ C++ C++ Go and Zig

Maximum Size N/A N/A N/A 2 GB 16 EB 4 GB
Supports custom default

value N/A N/A Yes Yes Yes No

Supports fixed-size vector N/A N/A Yes Yes No Yes
Supports vector of vectors N/A N/A No No Yes No
Supports map/dictionary N/A N/A Yes No No No

Since JSON and MessagePack do not offer schema definitions, evaluating features
such as fixed-size vectors, vectors of vectors, and dictionaries is not feasible. The com-
pression aspect attempts to highlight potential output sizes: ProtoBuf provides variable
size integers and omits undefined values, while FlatBuffers only omits undefined values.
Security considerations are challenging to synthesize due to varying attack models. No-
tably, FlatBuffers lacks built-in boundary checks, which implies the highest risk. In contrast,
Karmem and Cap’n’Proto offer these verifications, though Karmem lacks a mechanism
for limiting recursion depth in arrays, potentially leading to infinite loops. Cap’n’Proto
addresses this issue by allowing for a customizable threshold.

3.3. Conclusions

Considering that different standards have different objectives, they are difficult to
compare directly. However, all popular solutions define specific functions to be imported
by the module and exported by the host. A common issue among these systems is potential
incompatibility, which is notably seen in WASI. As standards evolve and new functions
are added, outdated hosts may not support these functionalities. This potentially renders
the module inoperable. By contrast, the component model attempts to handle evolution
and extend the communication between modules, but it is still under development and
requires copying and transforming data between each module.

When analyzing existent serialization formats, JSON is versatile and popular due to
its wide support across programming languages. However, it is inefficient for inter-process
communication (IPC) and does not allow for partial reading. MessagePack and Protobuf are
efficient in compression and performance, requiring a description language and generating
specific code for each data field. They excel in scenarios with full data reads and efficient
memory management.

Zero-copy serializers such as FlatBuffers, Cap’n’Proto, and Karmem enable direct data
reading, making them useful for random access without full message decoding. FlatBuffers
support the omission of empty fields, unlike Karmem and Cap’n’Proto. However, Flat-
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Buffers’ default lacks data verification, which poses security risks, and its generated code
may be less efficient in some languages. Additionally, table lookups and multiple pointer
traversals can introduce performance penalties, especially with large amounts of data.

4. Karmem Approach

The primary goal of Karmem is to enable efficient communication between WASM
modules. It aims to establish a high level of portability and ensure compatibility with many
programming languages and with WASM 1.0 without requiring any additional extensions.
This is achieved by creating a new protocol for binary representation and decoding.

Performance and security are also a priority. Instead of using “share-nothing”,
Karmem aims to improve performance through memory mapping techniques, thus en-
abling direct access to data without the need for additional decoding or copying. Karmem
prioritizes error handling over crash susceptibility and emphasizes data integrity and
runtime safety with bounds checks. Karmem is designed to be adaptable, supporting
both fixed and dynamic structures in its description language. This ensures backward
compatibility and allows for careful evolution without disrupting communication with
older module versions. As stability is paramount post-standardization, Karmem maintains
consistency across various versions and enables the creation of third-party generators,
which is currently a common issue for WIT.

4.1. Schema Language

Karmem uses its own description language, KarmemIDL. Other alternatives and
strategies were considered, which might avoid the need for a new language but would
introduce different problems. Among the possibilities, KarmemIDL could be replaced by
pre-compilation attributes (known as decorators/hints/annotations) being integrated into
a programming language (Section 4.1.1), or the use of an existing description language
(Section 4.1.2).

4.1.1. Compilation Attributes

Some programming languages, such as Rust, Java, C#, and PHP, allow the definition
of “decorators” (the functionality may have different names depending on the language).
It is also possible to analyze the syntax tree of any language and interpret comments and
custom attributes. However, the use of this implementation method was discarded because
of the direct link to a specific programming language. Karmem aims to support multiple
languages, and defining it within a specific language could hinder understanding and
cause greater problems for feature equivalences. This alternative could offer a better user
experience when used exclusively in that language.

4.1.2. Existing Language

Another option is to employ other description languages, such as WIT and Protobuf,
which are well-known. Although using an existing language may have advantages in terms
of ease of use and implementation, it might not be adequate to express the functionalities
of Karmem. Thus, creating a language enables a more natural expression of Karmem’s
features and usage characteristics.

4.1.3. KarmemIDL

KarmemIDL is a custom IDL, specifically made for Karmem. This language is designed
to be easily understandable, like C++ and Java, which are widely used for educational
purposes [33]. However, it overcomes the syntax limitations of these languages by drawing
inspiration from Zig and Odin.

Karmem adopts numeric type names, such as “u64”, for greater clarity and less
ambiguity, in contrast to terms like “long” or “long long”. Unlike many programming
languages, Karmem lacks native support for strings, similarly to C and Zig. Strings are
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represented as arrays of “u8” or “u16”, depending on the encoding. There is an additional
attribute to flag them as strings, but sentinels are not used to identify their ending.

The major difference between KarmemIDL and other types of IDL and programming
languages is the ability to specify the layout of the array, such as Struct-of-Arrays (SoA)
and Arrays-of-Struct (AoS), as well as representation of Unions arrays, which can also use
new technics named Bunch-of-Values-of-Arrays (BoVoA) and Bunch-of-Values-of-Struct
(BoVoS). The ways of exporting or importing interfaces are not only limited by functions
(or methods) but extend further to support shared memories and communications patterns,
such as FanOut, Direct, Singleton, and Pool.

Figure 1 describes one struct and one interface, using some unique features from
Karmem. The “struct_name” struct contains two fields, which are arrays of “another_struct”;
the usage of “#aos” and “#soa” changes the memory layout. The “dynamic” flag makes
it possible to extend the struct with new fields after the last existent one. The “updater”
interface is also a “dynamic” interface, enabling extension with more methods and memo-
ries, and “fanout” is the communication pattern, which defines how other packages will
communicate with them.
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The memory regions can be declared using “memory” and later declared in the
function argument to enforce that such data must live in that memory zone.

4.2. Data Layout

Each programming language and serialization format defines its own ABI and memory
layout, as previously discussed. Karmem attempts to take advantage of this data layout to
improve its performance and interoperability.

In this context, Karmem aims to follow the Data-Oriented Design (DOD) paradigm,
which prioritizes data organization while avoiding abstractions that do not consider the
hardware and execution environment, aiming for better performance and easier data
processing. Noel Llopis popularized the term in 2009 [34]. This paradigm is widely used
in high-performance computing, especially in games and game engines, such as Titanfall,
Battlefield 3, and Sunset Overdrive [35–37]. The Unity Engine developed the Data-Oriented
Technology Stack (DOTS) to leverage the performance advantages of DOD, utilizing the
Unity Burst compiler and the High-Performance C# (HPC#) language [38,39].

Additionally, new languages such as Odin, Jai, and Zig, which are still in develop-
ment, facilitate the use of DOD [40–42]. Richard Fabian highlights that, despite being
controversial, DOD can coexist with other programming paradigms [43]. However, there
is little formal and academic definition of DOD, as it is more discussed in the video game
industry [44,45]. Implementations of Object-Oriented Design (OOD) can cause performance
issues due to the coupling of data with behaviors, thereby compromising cache efficiency
and the use of SIMD [46–48]. Karmem is designed to optimize data communication by
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proposing an appropriate memory layout, minimizing overheads in reading large volumes
of data, and offering the flexibility to describe data optimally for different platforms, such
as WASM.

Karmem is focused on WASM, and due to limitations inherent in that technology,
offsets (also named pointers) are limited to 32 bits, which restricts the maximum size to
4 GB.

4.2.1. Structs

Structs can store different data types and can be either inline or dynamic. Inline structs
are the most basic as they do not support evolution and will be in line with the parent
structure. In contrast, dynamic structs can be modified by adding new fields at the end to
maintain backward compatibility with previous versions.

The resulting memory layout is similar to C but uses a fixed padding size of 64 bits,
the ordering of the declaration is the same as the memory layout, and no optimization or
reordering is performed. However, when the struct is used as a type for arrays, we offer
different kinds of optimizations.

4.2.2. Arrays

Arrays represent a common data structure that allows for the storage of multiple items
and iterations through them. In this document, we will consider “arrays” as dynamic-
sized arrays. Each programming language can implement this feature differently, but,
usually, we can distinguish between three types of implementations: Arrays-of-Struct
(AoS), Struct-of-Arrays (SoA), and Arrays-of-Pointers (AoP).

Usually, OOD tends to use AoP or AoS, which makes it harder to use SIMD instruc-
tions [46,47] and also introduces additional performance penalties in handling scheme
evolutions. KarmemIDL allows the programmer to specify the layout type. The default
one is SoA, which is a method of representing homogeneous data structures in vectors
instead of representing a vector of heterogeneous data structures. This technique offers
several advantages, particularly by enabling the use of SIMD and always having a fixed
step size. Due to the data-access pattern, SoA can be beneficial by allowing partial data
reads and avoiding cache pollution with unnecessary data. Furthermore, it can save space
by eliminating paddings between each field. This method is particularly useful in scenarios
that benefit from sequential data access and efficient cache usage, as was highlighted in
a study by Mattias Karlsson [45]. While DOD has received limited research attention, we
hypothesize that Karmem can benefit from DOD. This approach simplifies implementation
across multiple languages and leverages compiler optimizations such as auto-vectorization.
This advantage is due to the usage of a stable homogeneous array representation, which is
native in most programming languages, unlike the abstracted representations offered by
other serializers such as FlatBuffers and Cap’n’Proto.

Karmem also uses consistent alignment across all languages and architectures. Ar-
rays are aligned by 512 bits, which is a recommendation from Intel to take advantage of
AVX512 [49]. It is important to note that WASM is currently limited to 128-bit SIMD lanes.

Considering the shared-memory aspect of Karmem and the potential reusability of
such arrays, they include not only the size but also the capacity. This design helps to avoid
reallocations and reduces the performance cost associated with copying and shifting data.

Figure 2 illustrates the binary representation of an array of 2D Point (X, Y), ignoring
padding and additional data (such as sizes) for simplification. The AoS method (A) is used
in C, Go, Zig, and many other languages, whereas the AoP method (C) is commonly found
in languages based on OOD, such as Java. Karmem uses the SoA (B) by default.

4.2.3. Unions

Unions are one of the most basic data structures to enable polymorphism, even though
each programming language names this type differently. It can be classified as Tagged-
Union or Untagged-Union, relative to the explicit knowledge of the type being stored. It can
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also be classified as direct or indirect, relative to how it uses the space and how much space
it can take. For instance, C uses the largest value size as the union size and for additional
paddings, and it does not store the type of data. Languages such as Go or Java implement
their interface using a fixed size and use pointers to the actual data and metadata.
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Karmem stores the metadata of the current type inline but does not necessarily use
the naïve approach of Go, which stores two words (one pointer to metadata and another
to the actual data). Instead, we can also gain some advantages when combining unions
with arrays.

When used as a single value, Karmem’s storage mechanism includes an identifier
number (a tag) and the offset to the actual data. By default, the tag is 32 bits, though this
can be adjusted in the schema. While using smaller numeric types (such as uint8) does
not provide an advantage in this context, the feature is supported for reasons that will be
discussed later.

Using unions within arrays allows for various memory layout configurations. Karmem
enables programmers to define these arrays using different layouts such as AoS, SoA, and
Bunch of Values (BoV). Due to the lack of formal nomenclature, we name BoV a data type,
which contains multiple vectors for each of the data types represented in a union; this
method lacks the proper insertion ordering. BoV’s name is inspired by “Just a Bunch of
Disks” (JBOD), which is used in data-storage systems where multiple hard drives operate
independently without any interrelation. This definition can be extended to BoVoA (Bunch
of Values of Arrays) and BoVoS (Bunch of Values of Structures), which combines the
representation of the inner union as AoS or SoA, respectively.

The code, in Figure 3, defines a structure for a particle that contains an array, “pos”,
which can consist of either 2D or 3D points. The union definition (any_point) employs an
8-bit tag, with each tag explicitly defined, although this is entirely optional.

Figures 4–7 illustrate the memory layout of each representation, with padding and size
considerations omitted for simplicity. The AoS (depicted in Figure 4) is the most common
method. However, searching for a specific tag can be inefficient due to the constant 32-bit
offset between each tag. Additionally, AoS cannot leverage shorter tag types effectively,
resulting in an additional 24 bits of padding when using an 8-bit tag.

SoA can optimize linear search and enable the use of SIMD (single instruction, multiple
data) instructions. Specifically, with an 8-bit tag, it is possible to compare one tag against
64 tags per loop using a single AVX512 instruction. In contrast, using the same AVX512
instruction with AoS limits the comparison to a maximum of eight tags due to padding and
pointer data. Furthermore, accessing the pointer can lead to cache misses if prefetching is
not employed for the second array.

In cases where the order is not important, BoV (either BoVoA or BoVoS) can be
advantageous. These configurations create separate arrays for each type declared in the
union, thus eliminating the need for searching and enabling the use of non-polymorphic
functions. Figures 6 and 7 illustrate this type of construction.
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4.2.4. Evolution

Typically, the evolution of structures is not a concern for compiled languages with-
out an IPC requirement, since types are well-known at the time of compilation and only
consumed by the application itself. However, for Karmem, it is possible to have multiple
versions of the same definition, all of which must be able to communicate seamlessly across
multiple applications. Changing an existent structure usually changes paddings and dis-
tances between each field in an array or demands the usage of pointers and indirect access.

The construction of dynamic structures may impose performance issues since each
structure can have an unknown internal layout. The strategy employed by FlatBuffers is to
use one pointer to an internal lookup table for each structure. This can be useful for omitting
unused fields and reducing the space required for the serialization format. However, it
introduces new steps, prevents the usage of SIMD instructions, and can populate the CPU
cache with unnecessary data.

Karmem takes advantage of SoA, which enforces a consistent memory layout and a
single lookup table. It requires only three bound checks independent of the number of
items in one array. This allows the program to take advantage of SIMD while fully ignoring
the existence of newer fields. In this case, a single table lookup is responsible for returning
a pointer of an array of homogenous-type data (numbers).

Dynamic structs can store different types of data and can be modified by adding new
fields at the end, thereby maintaining backward compatibility with previous versions. This
functionality is implemented by checking the size of the structs and comparing it with the
offset of the data to be read. However, checking the size of each item in one large array can
be inefficient; this is how Cap’n’Proto works.

Figures 8–10 demonstrate this functionality by adding new fields while preserving
compatibility with previous versions. Although this technique is widely used for IPC, it
requires the use of pointers, which can cause inefficiencies in data access, especially in the
case of arrays.
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Figure 10. Struct dynamic example, version 3.

When dealing with a single struct, there is only one offset to access that single struct,
as shown in Figure 11. The total size is stored in 29 bits, while the remaining three bits
store the unused space (up to seven bytes). By applying delta encoding, the used value
can be determined based on the total size (which is always multiplied by eight bytes):
(size_total × 8) − size_wasted.



Future Internet 2024, 16, 341 12 of 31

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 35 
 

 

 
Figure 8. Struct dynamic example, version 1. 

 
Figure 9. Struct dynamic example, version 2. 

 
Figure 10. Struct dynamic example, version 3. 

When dealing with a single struct, there is only one offset to access that single struct, 
as shown in Figure 11. The total size is stored in 29 bits, while the remaining three bits 
store the unused space (up to seven bytes). By applying delta encoding, the used value 
can be determined based on the total size (which is always multiplied by eight bytes): 
(size_total × 8) − size_wasted. 

 
Figure 11. Memory layout of a single dynamic struct. 

Assuming the data definition in Figure 4, which has 16 bytes with 10 bytes used, it 
would result in Figure 12. 

 
Figure 12. Memory layout example assuming the definition of Figure 13. 

 
Figure 13. Struct using example as array. 

Figure 11. Memory layout of a single dynamic struct.

Assuming the data definition in Figure 4, which has 16 bytes with 10 bytes used, it
would result in Figure 12.
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If the structure is used in a SoA, it is represented by an additional structure containing
the offsets of each vector. All offsets are always multiplied by 512 bits, as shown in Figure 14.

To maintain compatibility and support for structure evolution, an auxiliary lookup
structure was created. The lookup consists of two arrays: one for the hash and another for
the respective offsets of each array. The hash considers the position of each element defined
in the struct, following one hash-chain for flattening structs, to ensure stability regardless
of modifications to other intermediate structs.

Karmem uses a linear search to find the entry point of each array in the SoA. This linear
search is optimized with SIMD, when possible, to drastically reduce the number of required
comparisons. Therefore, such arrays are always a multiple of 64 bytes, which enables
the use of AVX512. The hash value is limited to 4 bytes, allowing up to 16 comparisons
per loop. Once a matching hash value is found, it retrieves the pointer, as shown in
Figure 15. To prevent malicious crafted message to exhaust resources with large linear
search, a maximum number of fields can be defined. This limitation can cause legitimate
messages to be invalidated if the threshold is too tight. However, a similar issue also exists
on Cap’n’Proto when decoding deeply nested messages, and a traversal limit is used to
prevent such exploit [32].
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4.2.5. Flatten

The technique known as “flatten” involves removing the intermediate internal struc-
tures of a more complex inner structure. This approach has the benefit of simplify-
ing data reading by eliminating heterogeneous internal structures. Karmem uses this
technique to facilitate faster data access and simplify implementation across various
programming languages.

This method is combined with SoA, as previously mentioned, which reduces the
number of table lookups and pointers to traverse. However, the generated code can
be confusing.

4.3. Communication

Karmem enables communication between different WASM modules that are on the
same virtual machine. Due to its serialization format, it also allows reading in any language.

In the current state of WASM, it is mandatory to copy data for each instance. The
existence of shared memory, which is a proposal part of Threads [21], is not supported by
all programming languages, compilers, or runtimes. Also, shared memory is insufficient
because it requires all programs to know the stack area of each program and carefully
orchestrates memory allocations. Accordingly, another extension can be used, such as
multiple memories, but that can be challenging to implement and is usually not supported
by multiple languages and compilers.

Karmem consists of two steps: code generator and runtime. The code generator
generates code in multiple languages. This is restricted to a pre-compiler and does not
require patching the bytecode. Karmem also has a new runtime, which is built on top
of a WASM runtime, such as Wazero. The runtime is responsible for managing shared
memories and handling calls between different modules.

4.3.1. Code Generator

Like other technologies such as FlatBuffers, Protobuf, and Cap’n’Proto, Karmem also
requires a custom code generator, which enables the program to read and write data in
a consistent layout while disregarding specific internal memory representations. Acting
as a pre-compiler, it does not alter the generated bytecode or introduce new instructions
or opcodes. Currently, the prototype can generate code for Go, Zig, and C, with plans
to support Swift, Python, Odin, and Rust in the future. Language selection is based on
popularity within the WASM scope [50], maturity of the supported compilers, and the
programming language paradigm.

Some programming languages can be difficult to implement and, in some cases, might
offer limited features. To briefly mention some issues, Java, PHP, and JS cannot handle
unsigned integers with a 64-bit size. Languages such as Java and C# use mark-and-compact
garbage collectors, which can move the used memory, whereas Go uses a mark-and-sweep
approach, but this might change in the future [51].
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The generated code can provide better performance and mitigate security issues. In
the 2021 OWASP report, deserialization of untrusted data is listed among the top 10 security
issues. It can lead to a potential application of logic abuse, denial of service, or arbitrary
code execution, especially in PHP, Java, and C# [52,53]. Oracle acknowledges that Java’s
serialization poses significant security risks. Indeed, it accounts for over one-third of its
security issues [54] due to the nature of dynamic programming.

While a sandbox like WASM can mitigate some security concerns, internal security
checks, such as bound checks, remain essential to prevent unauthorized data access and
application logic issues. However, the generated code cannot provide a native way to
manage concurrent or conflicting access in a shared-memory region. That responsibility
lies with the modules themselves, and non-parallel operation is the default.

Unlike protocols such as WebStorage [55], Karmem does not treat stored and trans-
ferred data as confidential and sensitive by default. To prioritize performance, the generated
code does not fully erase data between serializations and thus potentially allows access to
partial or complete data through paddings and unused areas. The generated code supports
in-place mutability of data, including resizing an array when it is smaller than the initially
allocated capacity. In such cases, the code will only erase the remaining bytes of the last
512-bit block of the array to prevent SIMD instructions from reading potentially dirty data.
However, any other data will not be erased, and it is the programmer’s responsibility to
evaluate if such action is required and can be performed manually.

In a WASM environment, the host system is responsible for executing the guest
code. Consequently, encryption and authentication of communication are useful in lim-
ited scenarios. However, in a networked environment, counter-based stream ciphers like
ChaCha20 can be employed to encrypt data while maintaining the random-access capa-
bilities of Karmem without requiring the decryption of the entire message. However,
verifying the integrity and authenticity of the message may require analyzing the entire
encrypted message.

The generated code, particularly for the host, allows the programmer to specify a
custom timeout to prevent resource exhaustion when running untrusted WASM modules,
which will be later discussed in Section 4.3.3. However, synchronization features such
as atomic operations over shared memories are not available and might cause undefined
behavior. The host is solely responsible for the synchronization and schedule of execution
of multiple concurrent guests.

4.3.2. Interface and Patterns

Similarly to WASM, Karmem allows import and export functions through interfaces.
Such interfaces are also dynamic and mutable, allowing for the addition of new functions.
Furthermore, Karmem was inspired by RabbitMQ applications.

RabbitMQ defines some communication patterns such as “Fanout”, “Direct”, or
“Topic” message exchanges [56]. Additionally, initialization types such as “Singleton”
and “Multion” were considered, along with considerations for parallelism, similar to
forking processes. While not exhaustive, communication patterns can be categorized in
multiple ways. Notably, the well-known “Gangs of Four” design patterns [57] are some-
times critiqued as compensating for a lack of such features in the language itself [33,58,59].
Although Karmem is not a programming language, its ability to define communication,
initialization, and parallelization patterns within an interface may simplify usage and
enhance performance by reducing unnecessary inter-module calls.

The direct mode is the most common, in which a WASM module communicates with
another WASM module, even if multiple modules export the same interface. Figure 16
illustrates this scenario. The selection of a module can be decided by the host and the
importing module itself.

The fanout mode aims to communicate with multiple different modules that imple-
ment the same interface. Figure 17 demonstrates how this feature works. In this mode,
whenever a new WASM module exports an interface that is imported by the module, it
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will automatically bind and be called along with all the others. The Singleton mode is
an initialization method that has only one instance, meaning that all imports are directed
to the same module. This does not prevent multiple modules from exporting the same
interface. In essence, it is the opposite of fanout, where all importers use the same exporter.
Figure 18 illustrates its operation, assuming there is only one exported module. The key
difference here is that when the module does not use pure functions, the altered state is
persistent between “Importer 1” and “Importer 2”. This method can cause performance
issues when frequently called, as there is only one instance for handling all calls from all
importing modules.
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4.3.3. Shared Memories

Using KarmemIDL, it is possible to describe memory areas that will be shared across
the imports and exports of such an interface. Unlike a Threads extension, Karmem
offers a minimum permission level, thereby restricting modules from writing into the
shared memory.
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Memories can be defined within the interface. This should include the access level
from the perspective of both importers and exporters, as well as their maximum size,
defined in 64 KB pages, the same as WASM. Although this memory limitation might seem
significant, it is necessary to analyze the context of WASM usage, especially in serverless
computing. In this scenario, services such as Amazon Lambda@Edge, Vercel Functions, and
Shopify Functions, among others, also have limitations regarding memory and processing
time [60–63]. While processing time is important, defining it in an IDL does not seem
appropriate since processing times can vary due to the underlying hardware and business
logic. Therefore, the generated codes and communication system may contain options to
add some timeout.

4.3.4. Runtime

Karmem introduces a specialized runtime that deviates from traditional WASM by
managing module memory uniquely, focusing on shared memory regions. It leverages
the existing Wazero virtual machine, which offers JIT/AOT compilation capabilities but
allows for customization to suit various programming languages. This approach ensures
optimized performance across different hosts. Karmem requires specific OS functionalities,
such as mmap for shared memory management, which constrains its deployment based on
available OS resources and needs custom implementation for each OS.

Runtime prioritizes Linux and FreeBSD due to their popularity [64] and license, re-
spectively. Windows, while being the most popular OS for desktops, has inconsistencies in
its support for certain memory allocation techniques across different versions of Windows.
These inconsistencies can complicate the implementation of the Karmem runtime and its
tests, particularly when the process involves allocating memory addresses without the
immediate commitment of physical memory. Some operating systems introduce signif-
icant limitations. iOS/iPadOS/tvOS are noticeable examples due to a lack of MAP_JIT
support, which prevents WASM runtimes from creating executable memory. The feasi-
bility of Karmem on mobile and non-traditional platforms such as gaming consoles and
other BSD variants remains largely unexplored, but they potentially align with existing
Linux and FreeBSD implementations. The integration challenges across different plat-
forms emphasize the need for adaptable and flexible software solutions within diverse
hardware environments.

Communication between modules, whether guest–guest or guest–host, is facilitated
by the host. This enables the calling of WASM modules that implement the interfaces
defined in KarmemIDL.

To allow communication and function calls, a common interface has been defined so
that all WASM must export all functions described, as shown in Figure 19. This communica-
tion interface is similar to waPC as it allows for the dynamic invocation of other functions.
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When a WASM module is loaded and initialized via _start, the runtime calls the
“KarmemInit()” function. This function must report the number of interfaces it exports
and imports. Subsequently, the runtime calls the “KarmemImport()” and “KarmemEx-
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port()” functions to obtain information about the interfaces that are imported and exported.
Memory allocations are handled by KarmemAlloc functions.

5. Results and Discussion

This section presents the tests conducted using Karmem to assess its ability to address
challenges related to efficiency and interoperability in data communication between mod-
ules written in different languages. The section is divided into two subsections. The first
contains the initial experiments conducted in multiple environments to evaluate Karmem’s
efficiency in reading and writing data. The second subsection presents the tests conducted
to evaluate Karmem’s performance regarding serialization times, comparing it to the
performance achieved by FlatBuffers and JSON.

5.1. Performance Analysis

The main priority of Karmem is performance and memory layout. Therefore, it has
been carefully developed to reduce the overhead caused by dynamic structures. Using DOD
also allows for greater efficiency in reading and writing data and avoids the additional cost
of size checks. Some studies related to the use of DOD confirm the performance difference
compared to the OOD model [65], but these tests were conducted on fixed-size structures,
consequently with a fixed stride, at compilation time (i.e., the native structs of the language),
which allowed for more aggressive optimizations.

Karmem needs to provide backward compatibility and data-structure evolution. Al-
lowing for the evolution of structures is achieved by creating them without a fixed size
at compilation time. However, this may sacrifice performance when used in the Array of
Structures (AoS). Therefore, the hypothesis that DOD could still offer better performance
in the Karmem context also needs to be evaluated. This hypothesis is proposed because
vectors always have a fixed spacing between elements, and adding new vectors at the
end does not affect the existing ones. In this section, we will test this hypothesis and
its motivations.

5.1.1. Methodology

The tests conducted follow some of the recommendations described in the article
“Producing wrong data without doing anything obviously wrong!” [66], which recommends
conducting tests in multiple environments and mentions the impact of the linker’s order and
the operating system’s “environment variables”. Based on this article, a simplified variation
was created by modifying Wazero, the WASM virtual machine. The modification consists
of placing each WASM function, in assembly, on a different memory page. This means
there is a 64 KB padding between each WASM function. This approach should prevent
potential advantage due to instruction cache, ensuring that the observed performance is
attributable to the code itself rather than incidental compiler and runtime optimizations,
such as the placement of frequently executed functions in contiguous memory or the
inadvertent alignment of dependent functions within the same instruction cache line. To
increase the diversity of the tests, different devices and virtual machines were used. While
virtual machines can cause greater variation in results, it is essential to recognize that cloud
computing is an important execution environment. All tests were conducted using four
different processors, with the configurations listed in Table 2. PC1 and PC2 are identical,
differing only in their operating systems, running FreeBSD and Ubuntu, respectively, on
two virtual machines. PC5 represents a cloud server. It is an expandable series server from
Azure, which has a base CPU performance of 10% but allows for short bursts of higher CPU
usage [67]. We chose to test on as many operating systems and architectures as possible.
The operating systems were selected based on their popularity, license, availability, and
compatibility with the CPU architecture and Karmem runtime. Tests on Windows were
not conducted due to limitations, as previously discussed in Section 4.3.4. Tests on macOS
were performed because it is the only compatible OS for the Apple M2 Max processor at
the time of writing.
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Table 2. Hardware configurations of the devices used for testing.

Configurations PC1 PC2 PC3 PC4 PC5

Operating System FreeBSD 13.2 Ubuntu 22.04.3 Debian 10 macOS 14.0 Ubuntu 22.04.3

Virtualization Proxmox (7.3-6) None None Azure (B1s)
RAM size 8192 MB 65,536 MB 32,768 MB 1024 MB
RAM type DDR4 DDR4 LPDDR5 - 1

ECC Multi-bit Multi-bit - 2 - 2

RAM Bandwidth 2400 MT/s 3200 MT/s 6400 MT/s - 2

CPU
AMD

EPYC 7551P
(2017)

AMD
Ryzen 7 3700X

(2019)

Apple
M2 Max
(2023)

Intel Xeon
Platinum 8272CL

(2019)
Threads number 4 3 16 12 14 4

CPU clock speed 2000.00
MHz

2194.70
MHz

2424.00
MHz

2600.00
MHz

Cache size
L1: 96 KB
L2: 512 KB
L3: 64 MB 4

L1: 512 KB
L2: 4 MB

L3: 32 MB 5

L1: 192 KB
L2: 32 MB 5

L3: 48 MB 5

L1: 64 KB
L2: 1 MB

L3: 36 MB 5

Cache line size 64 bytes 64 bytes 128 bytes 64 bytes
TLB size 2560 4KB Page 3072 4KB Page 2048 16KB Page 1536 4KB Page

1 Due to virtualization, this information cannot be obtained. 2 There is no publicly available information regarding
the type of error correction present in the memory integrated into the Apple M2 Max. 3 This number differs
from the maximum number of threads of the processor due to virtualization. 4 Shared across all cores. 5 The last
commit has the hash 27624049dc46c307f0fc6c4771b7df0609c63ff1.

All tests were conducted using Go 1.21, with Wazero 1.6.0 as the WASM virtual
machine modified to create functions in different memory pages. Additionally, all tests
were implemented using Go’s built-in testing tool [68]. The WASM modules were compiled
using Zig 0.11.0 and TinyGo 0.30.0 for Zig and Go, respectively.

5.1.2. Dynamic Structures Test

This test aims to validate the tests previously conducted in another article [65], as
well as to validate the hypothesis that DOD could be even better considering dynamic
structures, which will be used in Karmem. The test consists of the structure demonstrated
in Figure 20. Within it, there are three data structures, in AoS, SoA, and AoP, used in
the variables “scooters_aos”, “scooters_soa”, and “scooters_aop”. Additionally, there is
“scooters_aos_u32”, which uses AoS as a vector of u32. This vector points to the same
location as “scooters_aos”. The structure is exactly 64 bits (8 bytes) to allow for SIMD use,
as WASM only supports 128 bits, although this may be subject to change in the future.

The function to be executed is demonstrated in Figure 20, where all fields of “distance”
are updated by a single variable at runtime. The host is responsible for providing the
values, and the guest exports the functions, which always receive an input value.

Since there are tests in shared environments (PC1, PC2, and PC5), all tests were
executed in random order and repeatedly. All tests were performed 64 times, except for the
native test, which was executed 65 times.

Different variations were created to achieve the goal of adding value to all distances.
These different implementations allow for an analysis of the impact of data organization and
the possible optimizations performed automatically by the compiler, which may not be ap-
plicable to non-native (or non-fixed) structures. The implementations are explained below.

Native: The native test aims to test the performance of the language’s native structure
in AoS format. Its implementation is as natural as possible, as can be seen in Figure 21.
This code iterates through each scooter and increments its velocity without any explicit
optimization. This code is automatically vectorized by the compiler, which will utilize
SIMD when possible.
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Fixed: This has the same objective but uses “scooter_aos_u32” and directly utilizes
“u32” instead of the language’s native struct. This would resemble an implementation of
reading serialized binary data. Figure 22 demonstrates the operation of this test, with the
values of stride and offset constant at compilation time.
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Stride: Similar to the fixed test, but the jump sizes are not known at compilation time
and are defined at runtime in a global variable “scooters_runtime_stride”. Figure 23 is
similar to Figure 3, with the difference that the stride is not a constant and is initialized at
runtime, thus preventing potential optimizations.
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Fixed+SIMD: This has an implementation identical to fixed but uses the manual
vectorization feature of the Zig programming language. This allows for SIMD usage,
consequently adding two elements at a time, which are the second and fourth elements of
a lane of 4xu32.

Figure 24 represents the implementation of this test. Since the size is fixed, we know
that the second number is the distance. SIMD can operate with up to four numbers of
“u32”, so it is possible to create a mask and add four numbers. However, we need to ignore
the “id”. To do so, we use zero, then summed with zero, as exemplified in Figure 25.
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SoA: This performs the same functionality as the other tests but uses a different form
of data organization, as demonstrated in Figure 26, where each field becomes a vector.

SoA+SIMD: Similar to fixed+SIMD, this uses the SoA data organization structure
but manually employs SIMD using the features available in Zig. This function, unlike
Fixed+SIMD, allows the addition of four numbers at a time instead of two due to the
continuity of the values.

Figure 27 demonstrates the implementation of this test. A mask is created, containing
four numbers, and then added to another four numbers in a single instruction with the
help of SIMD, as illustrated in Figure 28.
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AoP: Finally, AoP uses a different data structure, where all the values in a vector are
pointers to the structs. This is also the traditional organization in object-oriented languages.
Figure 29 demonstrates the implementation of this test.
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5.1.3. Dynamic Structures Test Results

All tests were conducted as defined in Sections 5.1.1 and 5.1.2, and the results were
obtained using Go and benchstat [69]. Figure 30 shows the comparison with different
types of implementations using the same amount of data. In general, it confirms that
the Stride version is the slowest among all methods. The Fixed+SIMD has less precise
results but typically maintains the performance of the native, which confirms the use of
auto-vectorization in the native version.
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Figure 30. Performance comparison chart between different tests and machines, running the code
described at Sections 5.1.1 and 5.1.2. PC1, PC2, PC3, PC4, and average use the vertical scale on the
left, while PC5 uses the vertical scale on the right, with time in microseconds. The X-axis describes
each type of test: “Native”, “Fixed”, “Stride”, “Fixed+SIMD”, “SoA”, “SoA+SIMD”, and “AoP”, as
previously mentioned in Section 5.1.2.

The results of this test coincide with the results of another study [65], thus demon-
strating that SoA, even without any manual optimization, offers better performance across
all architectures. The SoA+SIMD implementation manages to be even more efficient due
to a simplified SIMD implementation. This indicates that this data layout is particularly
efficient for the type of computations being measured. This efficiency can be attributed to
better cache utilization, reduced memory access overhead, and the ability to leverage SIMD
instructions effectively. Notably, this performance improvement was consistent across all
tested CPU architectures.

An extra observation can be made about PC5, an Azure virtual machine with low
computational power, which shows the same performance gains as the others. Further-
more, the SoA test on PC5 takes an average of 290 microseconds, while on PC1, it takes
311 microseconds in the dynamic size test (“Stride”).

Table 3 summarizes the performance differences, in proportion, relative to the native.
Table 4 shows the variation in performance between different runs of the same test, which
highlights the performance instability of fixed+SIMD on PC1 and PC2.

Table 3. Performance comparison between different tests.

Fixed Stride Fixed+SIMD SoA SoA+SIMD AoP

PC1 +76.15% +107.95% ~ −56.75% −74.72% +37.87%
PC2 +74.87% +102.09% ~ −56.82% −74.27% +39.30%
PC3 +111.19% +117.58% +18.29% −53.72% −73.37% +51.22%
PC4 +46.64% +51.03% −26.91% −63.39% −73.19% +27.84%
PC5 +71.30% +84.86% −9.02% −59.26% −73.94% +40.39%
M +74.85% +91.17% +9.72% −58.12% −73.91% +39.12%
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Table 4. Comparison of performance difference between executions.

Native Fixed Stride Fixed+SIMD SoA SoA+SIMD AoP

PC1 ±1% ±2% ±14% ±38% ±1% ±1% ±1%
PC2 ±1% ±1% ±11% ±36% ±1% ±2% ±0%
PC3 ±0% ±3% ±4% ±9% ±6% ±1% ±1%
PC4 ±1% ±1% ±1% ±0% ±1% ±1% ±0%
PC5 ±1% ±1% ±0% ±1% ±1% ±1% ±1%

5.2. Generated Code

To evaluate the performance of Karmem, a prototype was developed with the purpose
of generating the codes and a simplified runtime. As a prototype, it contains the main
functionalities, but not all of them as yet.

Testing the performance is a complex task, as it may be biased and favorable to
Karmem. For this very reason, Cap’N’Proto mentions that it does not perform or pub-
lish benchmarks [70]. Moreover, the current state of the project may not represent the
performance of the finished project, considering that changes for security and stability
reasons may impact performance. Therefore, comparisons will be made against FlatBuffers
and JSON.

5.2.1. Experiment

Considering the structures defined in Figures 31 and 32, the code generated by
Karmem differs from the code generated by FlatBuffers, and, thus, results in distinct
usage. One of the major differences is the way data are initialized. Karmem uses top-down
initialization, while FlatBuffers has a bottom-up approach. Figures 33 and 34 show an
example of how to interact with the generated code to serialize data. A similar method is
used for reading data. Other notable differences can be observed in terms of error handling,
the use of SoA, and Karmem’s conversion to vectors without copying.

FlatBuffers lacks any native support for WASM or ways to create exported or imported
functions. For this reason, to keep the comparison focused on read/write performance, no
such features were used in Karmem. All tests were conducted by exporting and copying
information to the WASM module’s memory.
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5.2.2. Performance

In initial tests, even without any use of shared memories, Karmem demonstrates
superior performance to JSON and FlatBuffers. The size of the generated WASM is also
slightly smaller compared to FlatBuffers, even with excessive use of inlining. Table 5 shows
the performance comparison for writing data (Figures 33 and 34), assuming different sizes
for the internal vector.
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Table 5. Comparison of serialization time, where the size represents the number of items in the
“Readings” vector.

Size Karmem FlatBuffers JSON

10 194.9 ns 1215.5 ns 5383.0 ns
10,000 77.19 µs 928.70 µs 4308.86 µs

The WASM module should also read and process data efficiently, and Karmem enables
this in two ways: a copy-free reading format and memory sharing. Additionally, a perfor-
mance advantage arises from the reduced indirection required due to the SoA layout. The
code generated by Karmem can be manipulated as native homogenous arrays, allowing
the compiler to easily optimize it. Table 6 shows the comparison of data-processing time
described in Figures 31 and 32. The comparison with JSON was excluded because TinyGo
has additional host resources to use JSON.

Table 6. Comparison of reading serialized data as a WASM module.

Size Karmem FlatBuffers JSON

10 316.4 ns 5787.0 ns -
10,000 68.15 µs 1325.57 µs -
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The code generated by Karmem is extensive, consisting of 1286 lines, while FlatBuffers
has 254 lines but requires an external library to function and is thus not self-contained.
The size of the compiled WASM file is also different, with Karmem being the smallest.
This is unexpected considering that the code contains various inlining and duplications.
The module using Karmem is 8.7 KB, while FlatBuffers is 9.1 KB, and JSON requires
262 KB. JSON uses runtime reflection techniques, which make it not only inefficient but
also significantly larger.

Karmem achieves better performance, even with the use of bound checking, which is
not present in FlatBuffers. Additionally, all structures used in the example are dynamic,
which corresponds exactly with the FlatBuffers table. Preliminary tests indicate that adding
new fields to an existing struct does not significantly impact performance, as these addi-
tional fields can be entirely ignored by the reader.

5.2.3. Integrity

Since Karmem generates code for multiple programming languages and facilitates
cross-language communication through WASM via the Karmem runtime, tests are con-
ducted using Karmem itself. The primary objective of these tests is to ensure compatibility
and data integrity across languages. While this testing approach introduces potential
challenges related to bootstrapping and bug propagation, it provides the flexibility to
dynamically modify and compile new versions of the same schema.

Figure 35 illustrates the interface used for communication between modules, whose
host is responsible to call the producer and then call all consumers. In this setup, a
producer generates an arbitrary message, serializes it using Karmem, and the corresponding
consumers parse and process the message. The processing involves reading all fields,
converting each value to a string, and then adding the converted value to a hash digest,
which is SHA-2. The final hash result is then compared with the expected checksum
provided by the producer. The rationale behind converting to strings is to ensure accurate
value interpretation, instead of relying on just the binary representation.

The integrated testing framework currently supports the creation and modification
of simple schemas, iterating and testing all fields. It also accommodates manually writ-
ten tests and allows for the reuse of pre-compiled WASM modules, which is crucial for
ensuring backward compatibility between different versions of Karmem. Additionally, the
framework can incorporate malicious producers to generate specially crafted messages,
helping identify potential vulnerabilities.

Due to the deterministic behavior of WASM and the lack of access to OSes features,
such as date–time and random number generators, tests are always deterministic, and
random data can only be derived from the entropy of “producer_input”. In case of a bug,
it is possible to regenerate the exact output. Tests must be conducted on each Karmem
update, but not exclusively. It also should be executed when new compilers and language
versions are available, ensuring forward compatibility with upstream changes.

5.2.4. Usage

Karmem is being used in a multiplayer game currently under development. In this
game, players take on the role of a programmer, where each player can write their own
code to control a character. This use case requires multiple modules to read the same game
state, which highlights one of the best uses of shared memory provided by Karmem and
the isolation and safety of WASM, allowing for untrusted code to be run without locking
into a single programming language.

Comparing against existent alternatives is difficult. Technologies like waPC do not
handle communications between WASM modules, do not provide zero-copy serialization,
and do not handle shared memory. The component model is not currently supported by
Wazero or WAMR, and few languages support the component model. It also does not offer
shared memory.
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Karmem supports multiple languages but has usability challenges like Object–Relational
Impedance Mismatch (ORIM) [71]. Although ORIM is typically associated with databases,
Karmem encounters comparable issues due to the incompatibility between different pro-
gramming paradigms. Specifically, it lacks object identity, meaning identical datasets are
not distinguished as separate entities, unlike in languages such as Java, Swift, and C#. The
absence of encapsulation allows unrestricted access and the modification of shared data
across modules, which contrasts with object-oriented.

Additionally, while Karmem’s approach to avoiding data copies enhances perfor-
mance, it can come at the cost of usability. Developers may need to manually manage
data copying and fully understand the implications of this behavior, adding complexity
to the development process and potential issues like Use-After-Free (UAF). In some lan-
guages, strings, fixed-size arrays, and similar data types are assumed to be immutable.
However, the generated code may use type punning from shared memory, which lacks
the immutability property, further complicating the handling of data and increasing the
potential for errors. Another issue is the potential misuse of set/write operations over
read-only shared memory.

Unlike FlatBuffers and Cap’n Proto, Karmem does not support default custom values,
resulting in a default value of zero or its equivalent. Consequently, relying on such default



Future Internet 2024, 16, 341 28 of 31

values in a meaningful way is not recommended. Checking the existence of a field of
dynamic structs is possible but not publicly exposed by the generated code.

6. Conclusions and Future Work

Karmem represents an innovation in data communication within WASM and demon-
strates the ability to overcome challenges of efficiency and interoperability. This project
developed its own IDL and an optimized communication protocol to facilitate interaction
between WASM modules. Karmem contributes to WASM development by offering so-
lutions for data communication between modules in different programming languages.
The innovations have practical implications for distributed applications based on WASM,
making them more efficient and interoperable. With the implementation of a code gener-
ator that supports multiple programming languages, Karmem mitigates one of WASM’s
inefficiencies. This paves the way for a wide range of applications, from games to complex
systems. The main limitation faced by the project is the inherent complexity of supporting
different programming languages and the need for continuous optimization to maintain
security and efficiency. Therefore, future research should focus on enhancing security
and performance and investigating the possibility of expanding to more programming
languages. The impact of Karmem on WASM application development is significant and
marks an important step toward more efficient and secure data interaction in constrained
execution environments.

However, there are additional aspects that require more in-depth study related to
usability and testing. First, Karmem uses a custom IDL. Therefore, to improve the user
experience, the Language Server Protocol (LSP) should be developed. It could greatly assist
developers by providing features such as autocomplete, syntax highlighting, and error
detection within Integrated Development Environments (IDEs). This would streamline the
coding process and reduce errors, especially for those unfamiliar with KarmemIDL.

Second, Karmem already uses continuous integration/continuous deployment (CI/CD)
processes with tests written for both the code generator and individual language imple-
mentations. However, improving test coverage is crucial, especially because Karmem uses
unsafe features, bypasses type protection, and uses type punning, which depends on the
specific memory layout of each language. These techniques are often employed to enhance
performance and usability, but we acknowledge that they introduce potential security risks.

Continuous testing is not solely in response to updates in the Karmem source code,
but it is also crucial for maintaining compatibility with evolving languages and compilers.
Regular tests are conducted using known good, malicious, and malformed data to ensure
that the system behaves as expected under various conditions. These tests are designed to
verify that the guest does not read data out of bounds, modify read-only memory, or cause
resource exhaustion. Additionally, they ensure that all modules are correctly initialized
and mitigation techniques (timeouts, memory size limits) function as intended.

Continuous fuzzing must be implemented to identify potential security vulnerabilities,
and the usage of limited memory and WASM runtime can help identify issues previously
described. Additionally, Karmem runtime relies on an existing WASM runtime, Karmem
runtime is responsible for memory management mapping and invoking WASM functions.
This separation of responsibilities reduces the attack surface by delegating complex exe-
cution tasks to a well-tested runtime, thereby minimizing the potential for vulnerabilities
within Karmem itself.

To facilitate quick experimentation with Karmem, a dedicated website will be devel-
oped. The existing code generator is already compatible with WASM, enabling users to gen-
erate code from IDL directly in the browser without the need for any additional software.

At present, Karmem is a prototype that does not have all of its features imple-
mented due to time constraints and the need for viability validation. Therefore, it is
still necessary to implement all the features described in this document and review the
existing implementations.
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The development of these future work lines, along with the implementation of a
use-case scenario for the Karmen application, will play an important role in confirming
performance improvements and assessing the generalization of the results.
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