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Abstract: This paper intends to provide the reader with an overview of the main processes that are
introducing artificial intelligence (AI) into healthcare services. The first part is organized according to
an evolutionary perspective. We first describe the role that digital technologies have had in shaping
the current healthcare methodologies and the relevant foundations for new evolutionary scenarios.
Subsequently, the various evolutionary paths are illustrated with reference to AI techniques and
their research activities, specifying their degree of readiness for actual clinical use. The organization
of this paper is based on the interplay three pillars, namely, algorithms, enabling technologies and
regulations, and healthcare methodologies. Through this organization we introduce the reader to the
main evolutionary aspects of the healthcare ecosystem, to associate clinical needs with appropriate
methodologies. We also explore the different aspects related to the Internet of the future that are not
typically presented in papers that focus on AI, but that are equally crucial to determine the success of
current research and development activities in healthcare.

Keywords: artificial intelligence; ML algorithms; healthcare methodologies; information technologies

1. Introduction

Artificial intelligence (AI) refers to many computationally intensive technologies
that are profoundly changing many aspects of daily life. Market research on AI-driven
healthcare growth is in agreement that the forecast is double-digit and increasing over the
next decade [1–3].

The goal of this paper is to provide readers with a comprehensive overview of how
AI is pervading healthcare services through the use of the available techniques and tech-
nologies. The paper is intended for technical personnel who intend to deepen their skills
in AI techniques in the various application directions in the healthcare sector. However,
some insights into the possible use of these techniques in an operational setting may also
be appreciated by healthcare professionals.

The potential of this rapidly evolving scenario is changing the expectations of both
patients and healthcare professionals. The former are inclined to use increasingly advanced
devices, such as smartphones, wearables, cameras, home appliances, and even drones.
The latter are increasingly eager to use advanced tools both to speed up the time for
providing services and to improve medical performance in terms of reliability and efficiency.

While some features may suggest that this process is a natural evolution of a progres-
sive penetration of digital technologies into medical practices, some disruptive features,
both in medical services and in the related underlying technologies, are absolute novelties
capable of revolutionizing healthcare.

In fact, since the introduction of the first technologies in clinical instrumentation, such
as ultrasound and electrocardiographs, healthcare professionals have progressively used
new diagnostic and interventional techniques to improve their services. The digitization
of information has produced a significant leap forward, so much so that today advanced
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services such as telemedicine [4,5], remote surgery [6], and genomics [7,8] characterize
the current state of the art. Nowadays, the use of electronic health records (EHRs), which
allow managing patients’ health data, is part of everyday practice. So-called health in-
formation exchange (HIE) systems [9] are used to exchange health information between
different organizations.

The importance of using these technologies is demonstrated by the creation of new
working groups and standards dedicated to health data management, such as HL7 (Health
Level Seven [10]) for the exchange, integration, sharing, and retrieval of electronic health
information and FHIR (Fast Healthcare Interoperability Resources), which consists of a set
of standards developed by HL7 to facilitate the exchange of electronic health data.

Again, during the COVID-19 pandemic, the need for immunization information
systems (IISs), which allow for updating and consulting vaccine data in a timely and
accurate manner, and vaccine surveillance systems, used to monitor post-vaccination
effects, has clearly emerged.

Clearly, as the level of expectations increases, so does the level of technological chal-
lenge. Luckily, new medical technologies can also benefit from research findings produced
in other contexts. For example, the volume of data generated by some medical applica-
tions can be managed due to efficient and scalable technologies for storage, management,
and processing [7]. As a further example, other applications that require remote patient
monitoring can benefit from the increasing development of the so-called Internet of Things
(IoT), with the related standardization activities. Again, Release 13 of the 3rd Generation
Partnership Project (3GPP) specifications includes enhanced machine-type communication
(eMTC), which extends IoT coverage by the use of low-complexity devices and Long-Term
Evolution (LTE) base stations. This process has in turn generated significant results in
the development of real-time monitoring techniques of vital signs collected by biosensors,
the development of new sensors through the introduction of stimuli-sensitive materials,
and techniques for assisted drug delivery [11].

The introduction of AI techniques has produced an acceleration in the innovation
process. This can be illustrated in two directions. One is the short-term improvement in
current practices, obtained by updating existing applications. The other direction leads to
the introduction of new research clinical practices that also require the cultural updating
of medical personnel [12,13]. Moreover, some disrupting technological novelties, such as
digital twins [14], virtual reality or ultrahigh-quality imaging, which will be enabled by
forthcoming 6G communications systems [15], have the potential to deeply reshape the
services of the future.

The AI techniques that have played a more or less significant role in healthcare research
are classified in Figure 1, according to a structure reflecting the presentation of this paper.
The figure is divided into four large families of algorithms, even if it frequently happens
that they are combined. Specifically, the classification includes the class of algorithms
that use artificial neural networks (ANNs) [16–19], those of the evolutionary type [20,21],
those alternatives to ANN that are able to provide data classification and prediction so-
lutions [22,23], and those related to Bayesian networks [24,25]. This paper provides a
comprehensive overview of AI techniques that, according to the ongoing research and
application developments, represent the bulk of efforts in designing future networked
systems for healthcare.

In particular, we focus on the techniques based on the use of ANNs. The following
areas are considered, with reference to medical applications in which they are able to
generate the most appreciated results:

• Classical deep learning, including convolutional neural networks and U-Net architec-
tures;

• Graph neural networks;
• Recurrent neural networks;
• Generative AI;
• Diffusion models;
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• Reinforcement learning.

AI Techniques

Techniques using
Neural Networks

Evolutionary Algorithms Other Classification  and 
Prediction Techniques Bayesian Networks

• Classical Deep Learning
• Graph Neural Networks
• Recursive Neural 

Networks
• Generative Adeversarial 

Networks
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• Genetic Algorithms and 
Programming
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Systems
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• Naive Bayes
• K-Nearest Neighbors
• Linear and Logistic 
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• Directed Acyclic Graph
• Dynamic Bayesian 

Networks
• Influence Diagrams
• Discrete / Continuous / 
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Figure 1. General classification of AI techniques involved in healthcare.

These AI techniques are first presented with a sufficient level of depth to understand
their potential. Subsequently, their applicability in the various healthcare sectors is demon-
strated by indicating specific applications that refer to basic healthcare activities, such as
diagnosis, clinical management, and also administration.

Subsequently, technological areas are also identified that are enabling for the effective
introduction of AI in healthcare. The evolutionary lines in these areas are also illustrated.
In particular, the following areas are considered: Human–computer interaction, explainability,
wearable sensors, privacy and security, network and computing infrastructure, bias and equity, and
regulation and governance.

The overall architecture of the paper is shown in Figure 2.

Deep Learning
        
  Graph Neural Networks 

Recurrent Neural Networks 

                                Generative AI

                    Diffusion models

                                               Reiforcement Learning

    Diagnosis

  Patient Treatment and Management 

                  Clinical Care and Decision Support 

             Research and Development

                  Administration and Management 
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                                          Privacy and security

               Network and Computing 
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                Bias and Equity

             Regulation and 
                   Governance               

Human-computer interaction

    Explainability

  Wearable sensors

 

related
challenges

Healthcare
Evolving
Scenario

Figure 2. Graphical representation of the organization of the paper.

To the best of our knowledge, this is the first survey paper to follow this approach, sys-
tematically embracing all aspects, namely, algorithmic, medical, organizational, and techno-
logical, that are necessary for the success of the ongoing evolutionary processes in healthcare.

The paper is organized as follows. In Section 2, we provide some background on
AI technologies for healthcare. In Section 3, we describe the baseline areas where the
effectiveness of the presented AI technologies are demonstrated through a literature review.
Section 4 presents the AI-related research challenges in future medical networked systems.
Finally, Section 5 reports our conclusions.

2. AI Techniques for Healthcare

The current state of the use of machine learning (ML) algorithms in healthcare is
already quite complex [22]. In general, both supervised and unsupervised learning algo-
rithms are used. The algorithms in the first class use tagged training data to configure
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the parameters of the algorithms, while unsupervised algorithms discover detailed infor-
mation from untagged input data. Supervised algorithms, such as decision trees [22], are
typically used for classification and regression tasks, while unsupervised ML is suitable for
discovering patterns in data, such as for clustering tasks.

In the following, we focus on the machine learning techniques that underpin much
of the current state and progress of AI in healthcare. Some tools already incorporate AI
techniques, such as QIIME2 [26] and Nextflow [27], that are widely used [28–32]. In the fol-
lowing, we focus on the AI techniques that are driving the major innovations in healthcare.

A complete mathematical treatment of each of these and all the variants of each
algorithm is beyond the scope of this paper. However, in addition to presenting the
rationale for each technique, we also present basic mathematical modeling and provide the
interested reader with directions for further study in the references.

The techniques we discuss in this paper are those that refer to artificial neural networks
(ANNs). These networks implement a computational mathematical model composed of a
group of interconnections between nodes, which are vaguely inspired by the functioning of
biological neurons. In order for a neural network to implement the desired mathematical
function, it is necessary to train it to configure its parameters. These parameters make a
neural network an adaptive system, that is, one that changes its non-linear structure (nodes
and interconnections) of statistical data based on information that passes through it during
the learning phase. A generic neural network includes three types of processing units, as
shown in Figure 3.

Figure 3. Basic structure of a multi-layer neural network.

• I—Input nodes: These receive and process external data by adapting them to the
internal nodes, to which each node I is connected;

• H—Hidden (internal) nodes: Organized in multiple levels, each of these nodes pro-
cesses the received signals and transmits the result to the subsequent nodes. They
actually perform, independently of each other, the data processing process through
the use of algorithms;

• O—Output nodes: Final layer of nodes that collect the processing results of the H-layer
and adapt them to the next neural network block.

Each connection in a neural network is associated with a numerical trainable weight which
controls the amount of information carried by the connection downstream. In addition,
each node has a numerical bias associated with it. An activation function is used for taking
in the input received by a node and processing it to obtain the desired output. Common
non-linear activation functions used in ANNs include [33]:
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• ReLU (rectified linear unit):

ReLU(x) = max(0, x) (1)

It is widely used due to both its simplicity and its effectiveness in mitigating the
vanishing gradient problem.

• Leaky ReLU:
Leaky ReLU(x) = max(αx, x) (2)

where α is a small constant that allows a small, non-zero gradient when the unit is
inactive. It aims at mitigating the so-called dying ReLU problem.

• Sigmoid:

σ(x) =
1

1 + e−x (3)

It is an S-shaped curve, that maps input to a range between 0 and 1. It is prone to
vanishing gradients.

• Tanh (hyperbolic tangent):

tanh(x) =
ex − e−x

ex + e−x (4)

It is an S-shaped curve that maps input to a range between −1 and 1. It is also prone
to vanishing gradients.

• Swish:
Swish(x) = x · σ(βx) (5)

An activation function that was shown to outperform ReLU in particular situations,
with β as a learnable parameter.

The interested reader may find a technical comparison of activation functions in [33].
Through the weights and activation functions used, a neural network implements

a global non-linear mathematical function. The output of the network is therefore the
value of the implemented function, regardless of the semantic nature of data. Although
the general structure of neural networks, such as the one shown in Figure 3, is extremely
flexible, the computational cost of training them when the number of nodes is very large
and training data are extremely complex and voluminous is impractical. Therefore, when
the data have a known structure, this can be used to adapt the neural network architecture
to obtain network training times compatible with the needs of the application.

2.1. Deep Learning: Convolutional Neural Networks and U-Net Architectures

Convolutional neural networks (CNNs) are specialized neural networks that overcome
the intrinsic limitations of a classical ANN for image processing. They analyze images
through artificial neurons (i.e., nodes) organized in three dimensions, called channels:
width, height, and depth [16]. In particular, they can detect and classify input images by
extracting their features, such as edges and corners. For example, they have been proposed
to detect objects such as circulating tumor cells or for the early diagnosis of different
pathology and syndromes, such as tumors and strokes [17–19,34]. The CNN structure
consists of multiple layers for feature detection, sketched in Figure 4:

• Convolutional layers: These use filters (or kernels) that slide over the input data and
multiply by their values to capture local patterns. Each trained filter is expected to
focus on a particular region of the input image file. In other words, its role is to offer
subsequent layers a local feature, such an edge or a particular shape pattern, to either
compose a global feature or an immediate detection.

• Non-linear activation functions in nodes: These functions are applied after each
convolutional layer. Non-linearity allows the network to learn and implement com-
plex functions, and is essential for processing images and implement tasks such as
recognition and classification.
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• Pooling layers: They play a crucial role by performing down-sampling operations
along the spatial dimensions of the input images. The benefits of this operation
include spatial dimensionality reduction, which reduces the number of parameters in
the network and memory requirements to store them, invariance to small translations,
rotations, and distortions in the input images, and reduction in the sensitivity of the
implemented function to both noise and random variations in input data. Descriptions
of some types of pooling functions follow:

– Max pooling: Takes the maximum value within a defined window (e.g., 3× 3):

yi,j = max
m,n

(xi+m,j+n) (6)

where x is the input feature map, y is the output pooled map, and m, n define the
window size.

– Average pooling: Computes the average value within a defined window.

yi,j =
1

k× k

k−1

∑
m=0

k−1

∑
n=0

xi+m,j+n (7)

where k is the window size.
– Global pooling: Applies pooling over the entire spatial dimensions of the feature

map. This way, each feature map is reduced to a single value, often used before
the following fully connected layers to flatten the feature maps.

• Fully connected layers (also known as dense layers): They take the aspect of the
layers of the general ANN shown in Figure 3. They are used to learn complex, non-
linear combinations of the features. For example, in a classification network, the fully
connected layers map the features to class scores.

• Dropout layer: During training, dropout is often applied to fully connected layers to
prevent overfitting. Dropout randomly sets a fraction of the neurons to zero at each
training step, forcing the network to learn redundant representations and improving
generalization.

Input image

3x3 kernels

outputs

Feature Extraction Classification

Convolution + Activation+Pooling
Layers 

Dense Layers

Figure 4. Example of a convolutional neural network for image classification.

For some medical applications, it is not enough to classify images and identify objects
in them, it is also necessary to identify the boundaries of the detected objects. This is a
process known as segmentation. For example, manually segmenting internal organs from
X-ray images typically takes a very long time, and the use of dedicated neural networks is
essential to improve the efficiency of medical practices that require it. In the pioneering
paper [35], the authors present U-Net, a novel CNN architecture suitable for automatic
segmentation of medical images. Since a CNN can learn the set of features of an input
image and represent them as a numerical vector, this information is used for segmenting
objects within the image through a reconstruction process. This task is quite difficult.
Although it is relatively simple to represent an image as a vector, the reverse process is
significantly more complex. The idea of a U-Net architecture is to make the functionality
mapping learned during the representation of the input image into a vector, and use it to
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reconstruct the portion of interest of the output image. In this way, the structure of the input
image is preserved and distortion introduced by reconstruction is reduced. The U-Net
structure includes the typical elements of deep learning architectures, such as convolutional
and pooling layers. Figure 5 shows the structure of a sample U-Net, with some parameter
values that should be regarded as an example. The basic structure of the U-Net includes a
contracting path, a bottom section, and an expanding path. The contracting path consists
of some convolutional layers followed by max pooling layers. Each convolutional layer
typically makes use of a 3 × 3 kernel, followed by a ReLU activation function. Max pooling
layers are used to reduce the spatial dimensions of the feature maps. The bottom of
the U-shape typically consists of two 3 × 3 convolutions followed by a ReLU activation
function. The expanding path consists of up-sampling (or transposed convolution) layers
that increase the spatial dimensions of the feature maps. Each up-sampling step is followed
by a concatenation with the corresponding feature map from the contracting path, referred
to as skip connections, providing the decoder with high-resolution features from the
encoder. Following the concatenation, two 3 × 3 convolutions and a ReLU activation
function refine the up-sampled feature maps. The number of feature channels halves with
each up-sampling step.

Figure 5. Example of U-Net architecture. The blue rectangles indicate multi-channel feature maps.
The number of channels is shown above boxes. The white boxes indicate the copied feature maps for
the reconstruction process.

The described basic architecture is the basis of many research proposals. In [36], a deep
learning-based segmentation model is proposed. It performs binary segmentation through
a P-Net [37] architecture, which draws inspiration from the well-known VGG-16 [38] CNN
model. The proposal displays good performance, although it requires a long training
phase.

Finally, it is worth mentioning the research activities that make use of 2D segmentation
to obtain a three-dimensional representation of organs. In particular, 3D U-Net [39] is an
architecture which extends the original U-Net structure [35], with appreciable results.

The reader interested in developing DL applications could make use of different
libraries. Among these, we mention TensorFlow [40], PyTorch [41], and CUDA Toolkit [42].

2.2. Graph Neural Networks

In spite of the excellent results generated by CNNs in many fields, when it is necessary
to use irregular data, without a predefined or easily identifiable structure, and with intricate
logical relationships between different components, graph neural networks (GNNs) are
extremely useful [43]. GNNs are a class of neural networks designed to handle graph-
structured data. For this reason, their applicability to many healthcare problems is im-
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mediate. For example, typical limitations of traditional medical decision systems when
heterogeneous medical data are used can be successfully tackled through the use of GNNs.
They have paved the way to personalized medical decision algorithms based on high-
precision representation models of patient health status, related to living habits, clinical
information, and genetic analyses [44–46]. Similarly, brain activity analysis, complex neu-
rodevelopmental disorders, drug interactions, and drug discovery can significantly benefit
from GNN modeling [47,48].

Before delving into GNNs’ applications, we introduce some basic concepts that illus-
trate how they work. GNNs extend the concepts of CNNs to graphs, which abstract the
context information present in the graph elements for classification and prediction oper-
ations. A graph G is represented as G = (V, E), where V is the set of nodes (also known
as vertices) and E is the set of edges connecting the nodes. For example, nodes can be
logically associated with proteins and vertices could relate to their affinity for establishing a
bond. A graph can be illustrated by its adjacency matrix A, which embeds the connections
between nodes:

Aij =

{
1 if there is an edge between node i and node j,
0 otherwise.

(8)

Each node vi ∈ V can have an associated feature vector xi. The feature matrix for all
nodes is denoted as X:

X = [x1; x2; . . . ; xN ] ∈ RN×F, (9)

where N is the number of nodes and F is the number of features per node. The logical
relationship between nodes is of interest not only per se, e.g., for being associated with
pathology or chemical interactions, but also because it represents the dynamism with which
information is transferred between nodes. This process is captured by graph convolutional
networks (GCNs) [49]. The GCN performs graph convolutions using the graph adjacency
matrix and a node feature matrix. Each layer of the GCN updates node representations by
aggregating features received from node neighbors, and then, applying a linear transforma-
tion followed by a non-linear activation function. The graph convolution generalizes the
convolution operation from CNNs to graph structures. The basic idea of this operation is to
aggregate information from node neighbors. A graph convolution operation is defined as

H(l+1) = σ
(

ÃH(l)W(l)
)

, (10)

where H(l) is the node feature matrix at layer l with H(0) = X; Ã is the normalized adjacency
matrix with added self-loops, typically defined as Ã = D−1/2(A + I)D−1/2, where D is the
degree matrix and I is the identity matrix; W(l) is a layer-specific trainable weight matrix;
and σ is an activation function, such as ReLU.

GNNs often use message passing mechanisms, where information is propagated
between nodes. The general framework can be described as follows for a node vi:

m(l+1)
i = AGGREGATE(l)

(
{h(l)

j : j ∈ N (i)}
)

, (11)

h(l+1)
i = UPDATE(l)

(
h(l)

i , m(l+1)
i

)
, (12)

where h(l)
i is the feature vector of node i at layer l, N (i) denotes the set of neighbors of

node i, AGGREGATE(l) is a function that aggregates the messages from the neighbors,
and UPDATE(l) is a function that updates the node feature based on its previous feature
and the aggregated message.

Instead of aggregating information from all neighbors, GraphSAGE [50] samples a fixed-
size set of neighbors to maintain computational efficiency. It defines several aggregation
functions to combine information from neighbors. Common aggregation functions include
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mean aggregator, LSTM aggregator (see Section 2.3.1 for a general LSTM description), and
pooling aggregator:

h(k)
N (vi)

= mean
(
{h(k−1)

u , ∀u ∈ N (vi)}
)

(13)

h(k)
N (vi)

= LSTM
(
{h(k−1)

u , ∀u ∈ N (vi)}
)

(14)

h(k)
N (vi)

= max
(

σ
(

Wpoolh
(k−1)
u + b

)
, ∀u ∈ N (vi)

)
(15)

where the matrix Wpool and b are trainable. Concerning the update function, the updated
node representation is computed as

h(k)
i = σ

(
W(k)

[
h(k−1)

i ∥h(k)
N (vi)

]
+ b(k)

)
(16)

where ∥ denotes concatenation, σ is a non-linear activation function (e.g., ReLU), and W(k)

and b(k) are trainable parameters for layer k.
Graph pooling layers are used to reduce the number of nodes in the graph, similar to

down-sampling in CNNs. A common method is graph coarsening [51], which clusters nodes
and merges them. We indicate it generically with the following expression:

H(l+1) = POOL
(

H(l), A(l)
)

. (17)

For node classification, the output layer produces a label for each node:

Z = softmax
(

H(L)W(L)
)

, (18)

where L is the final layer, and Z is the matrix of class probabilities for each node.
For graph classification, the node features from the final layer can be pooled into a

graph-level feature vector, followed by a fully connected layer and a softmax activation,
as follows:

y = softmax
(

POOL
(

H(L)
)

W(L)
)

. (19)

Graph attention networks (GATs) [52] introduce an attention mechanism to graph neural
networks, enabling the model to learn the importance (through attention weights) of
neighboring nodes when aggregating their features. The attention mechanism is further
detailed in Section 2.4.4. This approach allows GATs to weigh the contributions of different
neighbors differently, providing a more flexible and powerful solution to capture complex
relationships. The attention mechanism assigns different weights to different neighbors
based on their features and importance. Self-attention computes attention scores for each
node–neighbor pair using learnable parameters. Multi-head attention improves the stability
and expressiveness of the model by using multiple attention heads.

The interested reader can find a useful introduction to other similar variants in [45].
Several libraries have gained popularity for implementing and working with GNNs.

They provide efficient implementations of different GNN data models and integration
with deep learning frameworks, such as TensorFlow and PyTorch. PyTorch Geometric [53]
is a library built on PyTorch, providing various methods for implementing GNNs. Its
key features include support for various GNN models (e.g., GCN, GAT, GraphSAGE),
and utilities for handling large-scale graphs. Deep Graph Library [54] supports multiple
backend frameworks, including PyTorch and TensorFlow. It supports various GNN ar-
chitectures and can handle large-scale graphs. Graph Nets [55] is a library developed by
DeepMind, specifically for building graph networks in TensorFlow and Sonnet. It provides
a high-level API for constructing GNNs. It integrates with TensorFlow. Spektral [56] is
a library built on TensorFlow and Keras. It provides a wide range of GNN models for
managing data graphs and is designed to be user-friendly and flexible. StellarGraph [57]
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is a library focused on graph-structured data. It is built on TensorFlow and Keras, and
focuses on node classification, link prediction, and graph classification.

2.3. Recurrent Neural Networks

It often happens that the data to be processed must be considered as a temporal
sequence. After all, natural processes evolve according to temporal processes or time series
that characterize their lifetime. The models presented above have characteristics that are
well suited to modeling snapshots of these processes, and not their evolution. For this
reason, recurrent neural networks (RNNs) have been introduced [58].

Given their nature of allowing handling sequential data, they have beem successfully
applied in a variety of fields, such as natural language processing (NLP), sentiment analysis
of a piece of text, named-entity recognition (NER), speech recognition, text-to-speech and
speech-to-text, time-series prediction of stock prices, market trends, and economic indica-
tors, generation of descriptive text for video content, and control of dynamic systems in real
time. Clearly, all these features and applications can easily find space in healthcare [59,60].
Some typical examples include aid in medical diagnosis by the analysis of sequential medi-
cal data [61–63], monitoring of patient vitals over time to detect anomalies [64], analysis of
epidemiological data for tracking infections, and much more [65,66].

The development of recurrent networks has occurred over time, with several proposals
that have followed one another. In this paper, we refer to the two most popular architectures,
which are long short-term memory (LSTM) [67] and gated recurrent unit (GRU) [68].
The interested reader can find a description of RNN development in [58].

These networks are called ”recurrent” since they perform the same task for every
element of an input sequence in a chain of operations, providing an output depending
on previous computations. An RNN processes an input sequence x = (x1, x2, . . . , xT) by
maintaining a hidden state ht at each time step t. The hidden state is updated using the
previous hidden state and the current input.

The basic RNN operation can be illustrated as follows:

ht = σh(Whxxt + Whhht−1 + bh) (20)

yt = σy(Whyht + by) (21)

where ht is the hidden state at time step t, xt is the input at time step t, yt is the output at
time step t, Whx, Whh, and Why are weight matrices, bh and by are bias vectors, and σh and
σy are activation functions, such as tanh or ReLU.

RNNs can have different architectures. A “one-to-many” architecture refers to a
situation where the RNN receives a single input and produces a sequence of outputs.
A “many-to-one” architecture refers to the situation where the network processes a sequence
of inputs and generates a single output. Finally, a “many-to-many” architecture refers to
processing a sequence of inputs and the generation of a corresponding sequence of outputs.

The most popular RNN libraries are offered by TensorFlow, PyTorch, and Keras.
However, Apache MxNet [69], Microsoft Cognitive Toolkit [70], and Chainer [71] are widely
used in the research and development of RNN models, each offering unique features that
cater to different requirements and preferences.

2.3.1. Long Short-Term Memory

LSTM [72] is an RNN variant designed to overcome some limitations of traditional
RNNs in learning long-term dependencies. For this purpose, LSTM networks include
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memory cells with gates to control the flow of information. The LSTM cell is governed by
the following equations:

ft = σ(W f xt + U f ht−1 + b f ) (22)

it = σ(Wixt + Uiht−1 + bi) (23)

ot = σ(Woxt + Uoht−1 + bo) (24)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc) (25)

ht = ot ⊙ tanh(ct) (26)

where ft, it, and ot are the forget, input, and output gates, respectively, ct is the cell state
at time step t, W∗ and U∗ are weight matrices, b∗ is the bias vectors, σ is the sigmoid
activation function, and ⊙ denotes element-wise multiplication.

2.3.2. Gated Recurrent Unit

The gated recurrent unit is an RNN type that has the same objectives as LSTM but with
a simpler architecture, combining forget and input gates into a single update gate. The
GRU operation [73] is given by

zt = σ(Wzxt + Uzht−1 + bz) (27)

rt = σ(Wrxt + Urht−1 + br) (28)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (29)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (30)

where zt is the update gate, rt is the reset gate, h̃t is the candidate hidden state, ht is the
hidden state at time step t, W∗ and U∗ are weight matrices, and b∗ is the bias vectors.
Figure 6 shows the LSTM and GRU architectures.

ĥt

ot
itft

ht-1

ct-1 ct

ht

tanh 

tanh

xt

ht

rt zt

ht-1

tanh

xt

ht

1-



(a) (b)

Figure 6. Example of a recurrent neural network: (a) LSTM; (b) GRU.

2.4. Generative AI

In some situations, it may happen that the available data are not sufficient, or it
takes a long time to collect a sufficient volume to train the algorithms, or the data are
corrupted by gaps or excessive noise. These issues can frequently occur in the biomedical
field. For example, it may happen that the number of images to train a deep learning
system for the recognition of a syndrome is not large enough, or the time necessary to
acquire such images during clinical activities would requires some years. It may also
happen that the data present in the EHR system are incomplete, with some fields not
filled in. In these situations, generative AI techniques can provide decisive support [74].
Another situation where generative AI has been successfully applied is in the automatic
production of clinical documentation, relieving medical personnel of this burden. Clinical
documentation is a very relevant aspect in medical activity, requiring a considerable effort of
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time and energy. Therefore, the ability to facilitate medical workflow is essential to improve
timely treatments for patients. In particular, it is essential to facilitate the transcription of
conversations with patients, the process of formulating the diagnosis from symptoms, and
to provide a better patient experience. These aspects and possible solutions can be found in
the recent papers [75,76] .

In this section, we illustrate the basic concepts of modeling of the following AI algo-
rithms used in this area.

2.4.1. Generative Adversarial Networks

GANs consist of the combined usage of two neural networks, namely, a generator
G and a discriminator D. They are trained simultaneously by executing an adversarial
competition between them [77].

The generator input is a random noise process z, with distribution pz(z). Typically, a
Gaussian distribution is used. Noise samples are transformed for obtaining synthetic data
G(z) that mimic the distribution of the emulated process pdata. In turn, the discriminator
receives both real data x, sampled from the real data distribution pdata(x), and the synthetic
data G(z). It evaluates the probability D(G(z)) that represents the likelihood of the input
being real data. The objective of the discriminator is to correctly classify the input data as
real or fake. The objective of the generator is to fool the discriminator into classifying the
synthetic data as real. The training process can be modeled as a minimax game, where
D and G are optimized simultaneously. The objective function V(G, D) can be written by
using the entropy expression as follows:

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (31)

Since D must be trained to maximize the probability of correctly classifying data, we
can write

max
D

Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (32)

Therefore, training can take advantage of the gradient ascent on the discriminator
parameters θD:

θD ← θD +∇θD

(
Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))]

)
(33)

Since G must be trained in order to compromise the classification performance of D,
that is, to maximize the probability of the discriminator being fooled, we can write

min
G

Ez∼pz(z)[log(1− D(G(z)))] (34)

or
max

G
Ez∼pz(z)[log D(G(z))] (35)

Also, in this case, the gradient descent algorithm can be applied to the generator
parameters θG:

θG ← θG +∇θGEz∼pz(z)[log D(G(z))] (36)

By iteratively updating the discriminator and the generator, the generated data tend
to be indistinguishable from real data to the discriminator.

As mentioned above, this approach proves advantageous in different situations. For ex-
ample, GANs can generate synthetic patient data for privacy protection or to augment
training datasets in order to improve the robustness and accuracy of predictive mod-
els [78–80]. A notable example of GAN technologies is StyleGAN, developed by NVIDIA
researchers [81].
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2.4.2. Autoencoders and Variational Autoencoders

Autoencoders and variational autoencoders (VAEs) [82–84] are types of artificial
neural networks used to learn efficient coding of input data. Efficient coding is essential for
compressing data representation for autoencoders and generating new content, detecting
anomalies, and removing noise for VAEs. Both autoencoders and VAEs include two
essential components, an encoder and a decoder. The encoder transform the data from
a higher- to a lower-dimensional space. The decoder converts the latent space back to
higher-dimensional space. In both cases, although there are some important differences,
which are illustrated below, the decoder is trained so that most of the information in the
dataset space is preserved in the lower-dimensional, also called latent, space.

Autoencoders

Let x ∈ Rd be the input data. They are processed by the encoder function z = fθ(x),
where fθ is typically a neural network parameterized by θ. z ∈ Rm is therefore the input
data representation in the latent space. The decoder takes z as input and converts the data
by the function x̂ = gϕ(z), where gϕ is typically again a neural network parameterized
by ϕ. In this way, the input data are reported back into Rd. The autoencoder is trained to
minimize the reconstruction error between x and x̂. A commonly used loss function is the
root mean squared error (MSE):

L(x, x̂) = ∥x− x̂∥2 = ∥x− gϕ( fθ(x))∥2 (37)

The parameters θ and ϕ are optimized during the training phase in order to minimize
the loss:

θ∗, ϕ∗ = arg min
θ,ϕ

Ex∼pdata(x)

[
∥x− gϕ( fθ(x))∥2

]
(38)

Variational Autoencoders

VAEs include a probabilistic component in their operation. Essentially, the encoder
outputs parameters of a probability distribution rather than a simple ‘estimate, which is
the basis for generating new content. This distribution is referred to as qϕ(z|x), and approx-
imates the posterior distribution pθ(z|x). The decoder, in turn, evaluates the likelihood of
the data given the latent variables. The VAE’s goal is to maximize the so-called evidence
lower bound (ELBO):

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)∥pθ(z)) (39)

whereEqϕ(z|x)[log pθ(x|z)] is the expected log-likelihood of the data, and KL(qϕ(z|x)∥pθ(z))
is the Kullback–Leibler divergence between the approximate posterior and the prior. In
more detail, assuming a Gaussian input data distribution, the encoder outputs the mean
µϕ(x) and the standard deviation σϕ(x) of the latent variable distribution:

qϕ(z|x) = N (z; µϕ(x), σ2
ϕ(x)) (40)

In this way, it is not possible to compare two samples: one input and one output. Therefore,
the distance must consider the parameters being estimated to allow back-propagation
during training. For this purpose, the latent variable z is sampled as

z = µϕ(x) + σϕ(x)⊙ ϵ (41)

where ϵ ∼ N (0, I). The decoder can sample the reconstructed data x̂ from the likelihood:

pθ(x|z) = N (x̂; gθ(z), σ2I) (42)
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Finally, the VAE loss function combines the reconstruction loss and the Kullback–Leibler
(KL) divergence [85]:

L(θ, ϕ; x) = −Eqϕ(z|x)[log pθ(x|z)] + KL(qϕ(z|x)∥pθ(z)) (43)

The parameters θ and ϕ are optimized by minimizing this loss:

θ∗, ϕ∗ = arg min
θ,ϕ

Ex∼pdata(x)[L(θ, ϕ; x)] (44)

The schematic architectures of autoencoders and variational autoencoders are shown
in Figure 7.

Encoder Decoder

Encoder Decoder

(a)

(b)

Figure 7. Schemes of autoencoder (a) and variational autoencoder (b) GRUs.

Autoencoders and VAEs can be used in different healthcare contexts [82,84]. For ex-
ample, they can generate realistic emulations of disease evolution, aiding in understanding
complex conditions and finding suitable treatment. Autoencoders can be used to learn
compact representations of medical data, aiding in essential operations such as anomaly
detection, identification of outliers, and data compression. For this reason, autoencoders are
often regarded as valid alternatives to other dimensionality reduction and feature extraction
methods in data analysis, such as principal component analysis (PCA), linear discriminant
analysis (LDA), and t-distributed stochastic neighbor embedding (t-SNE) [22]. VAEs can also
help both in generating and reconstructing medical images, facilitating the training of
systems used to implement tasks such as difficult segmentation of organs.

2.4.3. Recurrent Neural Networks (RNNs)

RNNs are illustrated in Section 2.3. In this section, we only add the role that these
networks can have as a generative source for useful information in the healthcare field.
In particular, their usage has been proposed for predictive modeling [86]. These models
are used for generating sequences of medical data, such as patient health records, used to
train systems able to predict future health events and outcomes [87,88]. In addition, they
are also used for text generation to generate medical reports from raw clinical data [86,89].

2.4.4. Transformers

Natural language processing (NLP) has proven to be one of the most promising
areas in influencing the future of healthcare [90]. For this purpose, Transformer-based
models, such as the Generative Pre-trained Transformer (GPT), can be used to generate
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and understand medical texts, assist in medical coding, summarization, and question-
answering tasks [1,91,92].

The Transformer model was proposed in [93]. It is the core of many popular models
for NLP, including BERT [94], the already mentioned GPT [95], and T5 [96]. The main
innovation of the Transformer model is the introduction of the so-called attention mech-
anisms. Essentially, they analyze the relationships between words in a sentence without
using other models such as RNNs. The added value of the introduction of Transformers
includes, essentially, parallelization, capture of long-range dependencies, and scalability.
This means that unlike previous approaches, such as RNNs, that process input data sequen-
tially, Transformers allow for parallel processing for speeding up training times. Moreover,
self-attention mechanisms allow for consideration of the entire input data sequence simulta-
neously, improving the capability to capture contextual relationships between data. Finally,
the Transformer architecture scales well with increasing data volume and model size.
Figure 8 shows the basic elements of Transformers, which are illustrated in what follows.

Input 
Embedding

Input

Positional
Encoding

Multi-Head
Attention

Add & -Norm

Feed Forward

Add & -Norm

Positional
Encoding

Output 
Embedding

Output

Multi-Head
Attention

Add & -Norm
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Add & -Norm
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Linear
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Probabilities

Figure 8. Transformer architecture.

The self-attention mechanism allows the model to weigh the importance of different
words in a sentence when encoding a particular word. It is defined by the following
elements.

The scaled dot-product attention is defined as

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (45)

where Q (queries), K (keys), and V (values) are the input matrices, and dk is the dimension
of the keys. In more detail, consider an input sequence of length n. This sequence includes
tokens, that could be words, subwords, characters, or even whole sentences, depending on
the level of granularity needed for text processing. Each token is encoded by an embedding
of dimension dmodel. Data are aggregated as a matrix X ∈ Rn×dmodel , referred to as the
input embedding matrix. The Q, K, and V matrices are obtained by linearly transforming
X as follows:

Q = XWQ, K = XWK, V = XWV (46)
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where WQ ∈ Rdmodel×dk is the weight matrix for queries, WK ∈ Rdmodel×dk is the weight
matrix for keys, and WV ∈ Rdmodel×dv is the weight matrix for values. Thus, the resulting
matrices Q, K, and V have dimensions Q ∈ Rn×dk , K ∈ Rn×dk , and V ∈ Rn×dv . Clearly,
dk = dv = dmodel/h, where h is the number of attention heads, which refers to the multi-head
attention operation of the model, which allows for focusing on different parts of the input
sequence in parallel, enhancing its ability to capture different aspects of the relationships
between tokens. Essentially, the multi-head attention mechanism extends the self-attention
mechanism by applying it multiple times in parallel. Hence, given the input embedding X,
the multi-head attention mechanism is modeled as follows:

1. First it is necessary to linearly project the input embedding X into multiple sets of
keys, queries, and values by using the learned weight matrices:

Qi = XWi
Q, Ki = XWi

K, Vi = XWi
V , ∀i ∈ {1, . . . , h} (47)

where h is the number of attention heads.
2. Then, the self-attention mechanism is applied to each set of keys, queries, and values,

as follows:
headi = Attention(Qi, Ki, Vi) (48)

3. After this, the outputs of all attention heads are concatenated:

MultiHead(Q, K, V) = Concat(head1, . . . , headh) (49)

4. Finally, the result of the concatenation is linearly projected through the learned weight
matrix WO:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (50)

Positional encoding is added to the input embedding to include in the model the
position of words in the sequence. This encoding is calculated by using sine and cosine
functions with different frequencies, as follows:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
(51)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
(52)

where pos is the position and i is the dimension.
These equations ensure that each position pos is mapped to a unique encoding vector,

with alternating sine and cosine functions applied to even and odd dimensions, respectively.
This approach to positional encoding has some important properties. In particular, each
pos value in the sequence has a unique encoding, the difference between encodings reflects
the relative positions of tokens, thus helping the model to capture their order. Further-
more, the use of trigonometric functions introduces periodic patterns, which can help to
identify repeating structures in the data. The positional encoding is simply added to the
input embedding before sending it to the Transformer model. Specifically, given an input
embedding X ∈ Rn×dmodel , the positional encoding PE ∈ Rn×dmodel is added as follows:

Z = X + PE (53)

where Z is the resulting input to the Transformer.
The further component worthy of attention is the layer normalization and residual

connections. Each layer in the Transformer architecture is followed by this operation to
ensure stable and efficient training:

LayerNorm(x + Sublayer(x)) (54)
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Finally, a fully connected feed-forward neural network processes each position in the
sequence independently. This network consists of two linear transformations with a ReLU
activation between them:

FFN(x) = max(0, xW1 + b1)W2 + b2 (55)

A very important aspect to consider from these pre-trained models is their flexibility to
be subsequently adapted, through subsequent training, to generate text in different applica-
tion contexts. In the healthcare area, notable examples, which demonstrate the usefulness of
these models, are BioGPT [91], GPT-4 Medprompt [97], and MediTron-70B [98], trained on
large-scale biomedical literature for generating fluent descriptions using biomedical terms.

2.5. Diffusion Models

Diffusion models are probabilistic generative models. They are effective in generating
high-quality output data, typically images [99–101]. The basic idea of these models is to
generate new content by reversing a diffusion process, that is, loss of information due
to noise. Gaussian noise distribution is typically used. Due to this intrinsic capability,
diffusion models can be useful in medical imaging applications, such as MRI and CT scans.

Diffusion models consist of two phases. First, in the forward diffusion process, a neural
network is trained to introduce noise into the dataset, then this process is reversed. The for-
ward diffusion process gradually adds noise to data over a number of time steps until the
original data are indistinguishable from the Gaussian cloud distribution. Let x0 be a sample
from the data distribution q(x0). The result of the forward process is a sequence of latent
variables x1, x2, . . . , xT , where T denotes the total number of steps.

Since at each step t noise is added to the sample, it follows that

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (56)

where βt is a variance schedule that controls the amount of noise added at each step.
The full forward process can be written as

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1) (57)

The reverse diffusion process aims to recover the original data from the noise by reversing
the forward process. This operation is represented as

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (58)

where µθ and Σθ are the parameters for the model to learn in order to tune the reverse
process, that can be expressed as

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt) (59)

where p(xT) is typically a standard Gaussian distribution.
The entire process, sketched in Figure 9, can be modeled as a Markov chain. The

model is trained to minimize the difference between the forward and reverse processes.
The resulting training objective can be derived as

Lvlb = Eq(x0:T)

[
log

q(x1:T |x0)

pθ(x0:T)

]
(60)

that can be expressed as the sum of KL divergences between the forward and reverse
distributions at each step.
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Figure 9. Schematic representation of the forward and reverse diffusion processes.

The complexity of this operation induced the definition of a simplified training objec-
tive, often used, which aims to reduce the noise in the corresponding score. This objective
can be expressed as

Lsimple = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
(61)

where ϵ is the noise added at step t and ϵθ is the model prediction of the noise.
To generate samples from the model, a noise sample xT ∼ N (0, I) is used and pro-

cessed by applying the learned reverse process iteratively:

xt−1 ∼ pθ(xt−1|xt) (62)

The process ends when a sample x0 from the learned data distribution is obtained.
As mentioned above, diffusion models can generate high-quality medical images,

which can be used for different purposes. For example, it is possible to increase the volume
and diversity of medical image datasets for training robust machine learning models. They
have proved useful for enhancing the clarity and detail of diagnostic images. As a further
example, diffusion models can also generate novel molecular structures with desirable
properties, aiding in drug discovery [102].

Concerning the implementation of applications in the context of healthcare based on
diffusion models, PyTorch and TensorFlow, are extremely popular. However, it is worth
mentioning Diffusers [103] and NVIDIA Clara [104].

A notable research example of the use of diffusion models is illustrated in [105].
The authors present a study on the motion in hydrogels of mucins, using a Bayesian
analysis for comparing different diffusion models for various tracer trajectories.

2.6. Reinforcement Learning

When dealing with particularly complex systems, characterized by non-deterministic
evolutionary dynamics, reinforcement learning (RL) techniques can be very useful. This
can happen in various healthcare sectors. For example, in the definition of personalized
medical and care techniques, evolutionary patterns may occur that cannot be framed in
general models that can be trained through a dataset collected from different patients.
Another difficult situation is clinical and care robotics, in which robots must behave in
accordance with the needs of the environment in which they operate [106]. In situations of
this type, RL techniques may be crucial.

The general objective of RL techniques is to allow an agent to learn through con-
tinuous interaction with the environment where it resides and has to interact [107,108].
Learning consists of discovering suitable strategies by making decisions and receiving
related rewards, either positive or negative, according to the results due to the selected
actions. Thus, the objective can be synthesized as learning the strategy that maximizes the
final reward. Learning iterations consist of consecutive elementary interactions between
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the agent and the environment, called steps. Interactions, along with their rewards, are
associated with a state of the system. In such systems, a state consists of a collection of
parameter values that are sufficient to model how the system evolves over time, that is,
the system state sequence. Thus, the association between states, actions, and rewards is
the basis of training. In summary, at each step, the agent makes decisions, interacts with
the environment, characterized by a state, receives the reward, and adapts its behavior
based on the collected reward. Steps are repeated over time until the agent’s performance is
acceptable. RL algorithms include policy functions. These functions determine the strategies
that map states with the actions taken by the agent. Therefore, the policy must determine
the agent’s behavior in all states of the environment. Policies can be of different natures.
Essentially they can be deterministic or statistical. In the context of healthcare AI systems,
statistical policies are typically used. They are indicated as πθ(a|s), and represent the
probability of selecting the action a in the state s. The parameters in the vector θ represent
the learned parameters determining the optimal policy.

In recent years, RL research has produced numerous algorithms characterized by
different properties in terms of state representation, stability, and convergence speed.
The interested reader can find details in [109–112].

Research on the application of RL techniques in different fields in healthcare is still in
its early phase, but some contributions are promising. For example, Ref. [113] shows an
application of RL techniques for discovering new treatments and personalizing existing
ones. Application to dynamic treatment regimes in chronic diseases for automated medical
diagnosis is investigated in [114].

Robotics is one of the main fields of application of RL. Therefore, robotic systems
used in healthcare are largely influenced by the applications of these techniques. Ref. [106]
presents an application of RL to precision robotics and the determination of an optimal
strategy driving the growth of cell cultures and the development of therapeutic solutions.

However, recent results also show how research is still in progress. For example,
in [115] the authors focus on oncology and identify current challenges and pitfalls to be
considered in order to successfully implement RL-based decision support systems for
precision oncology.

Concerning the available technologies for implementing the RL model, in addition to
TensorFlow and PyTorch it is worth mentioning Gymnasium [116], which allows developers
to emulate complex environments and easily interact with them, and Stable-Baselines3 [117],
a useful library of RL algorithms.

Table 1 reports a summary of the presented AI methods, specifying the best-suited
for healthcare tasks, critical limitations of their usage, essential requirements, input data
features, some available popular technologies, and their readiness level.

Table 1. Summary of AI methods in healthcare and relevant features.

AI Method Best-Suited
Healthcare Tasks

Critical
Limitations

Essential
Requirements

Input Data Available
Technologies

Readiness
Level

DL Segmentation
activity of internal
organs, early and
advanced diagnosis
for different
pathologies and
syndromes

High
computational
cost for training,
high training
data volumes

Annotated data,
high-
performance
computing
infrastructure,
domain
expertise for
training

Medical images
(X-rays, CTs),
EHRs, omics
data

TensorFlow,
PyTorch,
Keras, CUDA
Toolkit

Medium to
High
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Table 1. Cont.

AI Method Best-Suited
Healthcare Tasks

Critical
Limitations

Essential
Requirements

Input Data Available
Technologies

Readiness
Level

GNN Drug discovery,
protein affinity
prediction,
modeling complex
relationships in
EHRs

Scalability
issues, difficult
interpretability
of results,
complex data
preprocessing

Need for graph-
structured data,
high-
performance
computing
infrastructure,
graph
processing tools

Molecular
structures,
biomedical
pathways, EHR
graph data

TensorFlow,
PyTorch, Deep
Graph Library,
Spektral,
StellarGraph

Low to
medium with
rapid growth
rate

RNN Time-series analysis
of health data (e.g.,
EHR), continuous
patient monitoring,
telemedicine,
protein affinity
prediction

Vanishing
gradient, long
training times,
highly variable
health status

Data
preprocessing
and alignment,
high-quality
data, significant
computational
resources

Time-series
data, EHR
sequences,
wearable sensor
data

TensorFlow,
PyTorch,
Keras

Medium

Generative
AI

Clinical
documentation,
conversational
agents, synthetic
medical data
generation

Possible
misleading data,
high
computational
requirements,
ethical concerns

Reliable
validation of
results,
high-quality
training data,
ethical
oversights

Clinical images,
EHRs, omics
data

BERT, GPT,
StyleGAN,
BioGPT,
GPT-4
Medprompt,
MediTron-70B

Medium to
high,
with growing
usage for
synthetic data
for training
purposes

Diffusion
Models

Image
reconstruction,
denoising of
medical images,
generation of
high-resolution
medical images

High
computational
cost, training
complexity,
privacy leaks for
federated
learning

High
computational
resources,
suitable process
initialization,
high-quality
training data

Medical images
(MRI, CT
scans), noisy or
incomplete
training images

PyTorch,
TensorFlow,
Diffusers,
NVIDIA Clara

Low,
with rapid
growth rate

RL Personalized
treatments, robotic
surgery, support for
clinical decision
making

Slow training,
complex
experimental
setup, ethical
concerns, safety
concerns

Emulated
environments,
real-world
feedback data,
ethical
compliance and
safety
assessment

Patient data for
state model,
wearable sensor
data, treatment
outcomes

TensorFlow,
PyTorch,
Gymnasium,
Stable-
Baselines3

Medium to
High

3. AI Penetration in Baseline Healthcare Services

Section 2 includes many bibliographic references that show several advances in the
context of healthcare. The aim of this section is to show the versatility of the techniques
presented and the potential of their joint use. For this purpose, we consider some baseline
activities that characterize the healthcare and highlight the existing contributions to them
by all the techniques presented in Section 2.

The considered baseline activities are diagnosis, patient treatment and management, clin-
ical care and decision support, research and development, administration and management, and
prevention and wellness. For each baseline, Table 2 reports some selected examples of existing
contributions in order to show the flexibility and adaptability of the AI techniques pre-
sented.

The selected examples in the identified baselines are often overlapping, and some
contributions can be considered in common between them. Furthermore, a good part of
the contributions are characterized by a technology readiness level that is still insufficient
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for clinical practice. However, they are sufficient to demonstrate how AI is penetrating and
reshaping related activities.

Table 2. AI penetration in some baseline healthcare services.

Area Deep Learning GNN RNN Generative AI Diffusion
Models

Reinforcement
Learning

Diagnosis Analysis of
radiological images,
such as X-rays or CT
scans [35,118–122].
Interpretation of
laboratory test
results, such as
blood tests and
genetic tests.
In [123],
the performance of
U-Net for
segmenting
COVID-19 lesions
on lung CT-scans is
analyzed.

Symptom-based
diagnosis: Use of
algorithms to
diagnose diseases
based on
symptoms reported
by patients [45].

Aid in medical
diagnosis by the
analysis of
sequential
medical
data [61–63].

Symptom-based
diagnosis: Use of
algorithms to
diagnose diseases
based on
symptoms reported
by patients.
Ref. [124] adds the
attention
mechanism into the
original U-Net
architecture for
improving the
ability to segment
small items.

Non-invasive
prediction of
tumor growth
rate by using
diffusion
models is
shown in [125].

Ref. [113] shows
an application of
RL techniques for
discovering new
treatments and
personalizing
existing ones.

Patient
Treatment and
Management

Processing of
histopathology of
nasal polyps
prognostic
information by deep
learning for patient
treatment is shown
in [126].

Hierarchical GNN
for patient
treatment
preference
prediction,
integrating doctors’
information and
their viewing
activities as
external
knowledge with
EMRs to construct
the graph [127].

Virtual assistant
that monitors
patients’ vitals
over time to
detect
anomalies [64].

Management of
EHR system when
incomplete [74].

Diffusion model
application in
EHR. Solution
to perform class-
conditional
sampling for
preserving label
informa-
tion [128].

Application to
dynamic
treatment
regimes in
chronic
diseases [114].

Clinical Care
and Decision
Support

A study about the
utility of machine
learning in
pediatrics is
presented in [129].

GNN model that
learns patient
representation
using different
network
configurations and
feature
modes [130].

Solutions based
on the analysis
of sequential
medical
data [61–63].

Analysis of the
accuracy of
ChatGPT-derived
patient counseling
responses based on
clinical care
guidelines in
urology [131].

Diffusion
models
generating
high-quality
realistic
mixed-type
tabular EHRs,
preserving
privacy, used
for data aug-
mentation [132].

Survey including
recommendation
systems to
physicians based
on clinical
guidelines and
patient data
analysis [133].

Research and
Development

Blood vessel
segmentation is
investigated
in [134,135].
In [134,135] a U-Net
is used for coronary
artery stenosis
detection on X-ray
coronary
angiograms.

Drug discovery:
Using AI to
identify new drug
compounds and
predict their
efficacy and
safety [136].

Analysis of
epidemiological
data and for
tracking
infections, and
much
more [65,66].

Research for
improving images
in healthcare for
challenging
situations [137].

Generation of
high-quality
data for training
AI algo-
rithms [138].

Precision robotics
application to
healthcare [106].
Ref. [115] focuses
on precision
oncology and
identifies current
challenges and
pitfalls.

Administration
and
Management

The potentials of
deep learning in
hospital
administration and
management,
including ethical
and legal issues are
presented in [139].

Implementation of
a knowledge graph
for discovering
insights in medical
subject
headings [140].

Management of
resources,
scheduling
activities,
and improving
the operational
efficiency of
hospitals.
For example,
see [141].

Transformative
healthcare for
automating clinical
documentation and
processing of
patient
information [142].

Diffusion
models have
also been
proposed
within the life
cycle of innova-
tion [143].

Many examples
in the great
survey in [144].
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Table 2. Cont.

Area Deep Learning GNN RNN Generative AI Diffusion
Models

Reinforcement
Learning

Prevention
and Wellness

A deep learning
algorithm for sleep
stage scoring,
making use of a
single EEG channel,
is presented
in [145].

Use of a patient
graph structure
with basic
information like
age, gender, and
diagnosis, and the
trained GNN
models for
identifying
therapies [146].

Analysis of
sequential
medical
data [61–63].

Empowering
workers and
anticipating harms
in integrating large
language models
with workplace
technologies [147].

Use of 3D
avatars in
applications for
fitness and
wellness [148].

RL in patients
with mood and
anxiety
disorders [149].

The scenario that emerges from analysis of the table is characterized by the use of
sophisticated AI models suitably complementing human expertise. Beyond enabling
advanced services, such as precision and personalized care, the AI techniques and technolo-
gies will be able to improve the effectiveness of doctors’ work by relieving them of a large
part of administrative and repetitive tasks. It is worth considering the increasing presence
of generative AI systems. Their expected contribution is quite complex. On the one hand,
these systems can contribute to the interaction with patients during medical consultations.
On the other, during consultations generative AI may also help doctors define patient
treatment through the analysis of vast datasets to recommend personalized treatment plans.
AI-assisted diagnosis is the sector that seems most mature and already presents examples of
clinical application. Image analysis and early pathology detection already make extensive
use of deep learning techniques. However, even in this case, generative AI promises to
improve accuracy and speed through the processing of learning datasets.

A further extraordinary contribution from AI is accelerating drug development. Al-
gorithms can help researchers identify disease markers and find new combinations of
chemicals to create and rapidly screening new pharmaceutical compounds, predicting drug
interactions and even repurposing existing drugs.

Administration and management may appear less impressive than individualized
diagnoses and treatments. However, from the point of view of the sustainability of the
healthcare system, the contribution of AI is equally valuable and can be pursued by making
use of all the techniques analyzed.

4. Other Related Challenges

To bring AI into professional healthcare activities, it is not sufficient to create and
implement sophisticated algorithms and have an adequate volume of data. There are
aspects of a technical, ethical, and regulatory nature that are equally decisive and which
require further research and implementation efforts. Most of them are common to all
services based on the future Internet, although with peculiarities related to the specific
application area.

We have identified the following areas, which are analyzed below: Human–computer
interaction, explainability, wearable sensors, privacy and security, network and computing infras-
tructure, bias and equity, regulation and governance.

These areas are the pillars that allow full connectivity between the areas and the tools
for the healthcare practices resulting in Table 2, as shown in Figure 10. In other words,
this full connectivity can lead to real progress only if it is fueled by the development of
the identified areas. In this way, the developed AI-based tools, along with the relevant
regulatory support, can truly generate a new healthcare which significantly exploits the
potential and opportunities provided by AI.
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Patients use 

devices and apps 
to monitor their 
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long-term care
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Near-Site 
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treatments

On-Site 
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AI-assisted medical 
attention for

acute conditions, 
emergencies, 
surgeries, …

AI-based Healthcare 
in operation

Figure 10. Schematic representation of the forward and reverse diffusion processes.

4.1. Human–Computer Interaction

Development of advanced and intuitive user interfaces is essential to allow doctors and
patients to easily interact with AI systems [150]. Augmented reality (AR) and virtual reality
(VR) can contribute to improving medical training, surgical planning, and patient care [151].
Human–computer interaction (HCI) plays an enabling role in the healthcare sector, enabling
the effective use of digital technologies. However, it must be considered that the different
healthcare practices and the types of problems to be addressed require specific solutions.
For example, the need to ensure coordination and treatment in mental health and suicide
prevention services is addressed in [152,153]. HCI has evolved through several phases,
the latest of which focuses on emotional aspects and user experience for Transformer-based
generative AI [150]. This is to optimize patient-centered care and supported decision
making [154]. Furthermore, HCI is essential to train healthcare workers in the use of
digital tools that enable easier access to AI technologies, as well as to ensure adequate
cybersecurity to protect patients, healthcare workers, facilities, and companies [155].

4.2. Explainability

Explainable AI can be seen as an enrichment of AI techniques, achieved by introduc-
ing analytical processes and methods that allow users to consciously use the results of
algorithms by understanding the results themselves. Basically, in many sectors, including
healthcare, the uncritical use of algorithmic results is difficult to accept, especially when
the consequences of choices have a significant impact on people [156,157]. This subject has
already been present for a few years. For example, Ref. [158] provides an examination of
the role of explainability in medical artificial intelligence and proposes an ethical evaluation
of its adoption in tools that include AI components in clinical practice.

A similar objective is pursued in Ref. [159], where indications are provided to guide de-
velopers and researchers for future activities on clinical topics, in particular on applications
of medical imaging.

The interested reader can find recent developments on this topic in the two valu-
able survey papers [160,161], where a deep bibliographical analysis covers all the major
publishing houses and draws specific conclusions in relation to various pathologies.
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4.3. Wearable Sensors

The transformative potential of AI is also crossing the area of wearable sensing.
Through purpose-specific artificial intelligence algorithms and machine learning method-
ologies, next-generation wearable devices can achieve precise and personalized health
monitoring. An overview of recent advances in wearable sensors, including biosensors, is
provided in [162]. The authors focused on materials, structural configurations and transduc-
tion mechanisms. Ref. [163] details the availability of wearable sensors to monitor essential
parameters such as respiratory and heart rates, sweat, and tears. Implantable sensors for
cardiovascular treatments, for the collection of nervous signals and neurotransmitters, are
also covered.

These technological advances might seem like a normal evolutionary process for
enhancing already established medical practices such as telemedicine. Indeed, there is
something more, which has the characteristics of a revolution in interaction with the patient,
both in person and remotely: digital twins. The development of patient digital twins consists
in creating a digital model of the patient themselves, making extensive use of AI, in order
to be able to interact and receive feedback sufficiently close to what would be obtained
by interacting directly with the patient. It is clear that this is a medical practice that
allows treatments to be adapted in a way that was not possible before, enhance prevention,
and maintain health well-being; it revisits telemedicine at its roots and also has a role
in decongesting the healthcare system. To achieve this result, not only is it necessary to
be able to create sufficiently adherent models of the patient, but it is necessary to keep
them updated through continuous interaction, which requires the most advanced sensors.
An overview of the current applications of DTs in healthcare is given in [164,165].

4.4. Privacy and Security

The increasingly massive use of AI in the healthcare sector requires the use and ex-
change of sensitive data, including patients’ personal data, such as medical history, test
results, and treatment plans. Therefore, security and privacy protection are exposed to
threats that require the adoption of adequate solutions. Such solutions include advanced
encryption, through the development of more secure encryption methods to protect sensi-
tive medical data during transmission and storage, and anonymization techniques, which
are essential for secure data sharing between different entities [166,167]. In this context,
blockchain technologies are valid solutions to ensure the integrity, traceability, and security
of medical transactions and records [168,169].

4.5. Network and Computing Infrastructure

In the ever-evolving landscape of AI healthcare, all the components of the Internet of
the future are expected to have a significant contribution in terms of advanced data transfer,
flexibility, and efficiency. This contribution can be declined based on the needs of health
services. For example, the availability of digital twins requires the presence of a widespread,
pervasive, and continuously available network. For these applications, the 5G system
has already represented a technological turning point due to its performance, flexibility
and adaptability [170–172]. As regards image-based diagnostic services, access to the
applications available in the cloud must be constant, broadband, and secure. Furthermore,
to adequately support remote surgery, in addition to the aforementioned characteristics, it
is essential to have an adequate latency in data transfer, on the order of ms. Many other
examples could be given, but it seems clear that the presence of AI is also indispensable in
the creation and provision of network services. In this case, it is necessary to mention both
research in Beyond 5G (B5G) and 6G [15]. It is also necessary to consider the considerable
research effort in the intelligent management of edge computing services to reduce latency
and improve data privacy by enabling local processing of sensitive data before they are
sent to the cloud [173,174].
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Concerning computing power, quantum computing is considered a game-changer.
In fact, due to the increasing computation complexity of medical computing, for handling
complex situations computation can still be a significant bottleneck [175]. For this reason,
a quantum computing service could make a difference [176]. For example, since DNA
information enables personalized medicine through the development of new therapies
and drugs, being able to achieve this quickly, at speeds that are orders of magnitude faster,
would make the level of detail of models much higher. Even in medical imaging and digital
twins, quantum computers have the potential to create efficient rendering systems that can
provide doctors with greater fine-grained clarity in real time [176].

4.6. Bias and Equity

This point addresses fundamental ethical aspects related to the design and use of AI.
Bias and fairness can be pursued through targeted methods to identify and mitigate unfair
and discriminatory outcomes. An interesting survey on fairness and bias in AI, also in
healthcare, can be found in [177]. The presentation includes origins of issues, ramifications,
and possible mitigation strategies. An experimental study on the influence of a large
language model (LLM) generative AI system—ChatGPT—on the accuracy of physician
decision making and bias is presented in [178]. It emerges that physicians are prone to
change their initial evaluation following AI assistance. It also appears that it provides a
significant improvement in clinical decision making without causing any race or gender
biases. In [179], the potential impacts caused by socioeconomic inequalities in three key
areas, namely, work, education, and health, are analyzed. It emerges that the healthcare
sector could benefit greatly from the diagnostic and predictive capabilities of AI, in terms
of accessibility of healthcare. However, the risk of increasing existing inequalities for under-
resourced and marginalized communities is expected if appropriate countermeasures are
not taken. The need to ensure the reliability of artificial intelligence systems before their
implementation is underlined in [180]. The paper provides an example that demonstrates
how reliable artificial intelligence can be used to eliminate otherwise existing prejudices.

4.7. Regulation and Governance

This section concerns the need to regulate and govern AI processes in order to avoid
problems that could compromise their correct and acceptable use. It has been known for
some time that AI research often evolves at a faster pace than the rules that govern it and
that action is needed to fill a regulatory gap [181]. We believe that the first thing to consider
in order to illustrate the current situation and the forthcoming possible scenario is a recent
guide published by the World Health Organization (WHO) [182]. This guide has been
released to assist Member States in mapping the benefits and challenges associated with
the use of large multimodal transport models (LMMs), which can accept one or more types
of data inputs and also generate different types of outputs, for health.

A global picture on regulatory issues, that integrates the WHO vision with Standards
Development Organizations and National Regulation Authorities, is presented in [183].
A similar perspective is present in [184], where the authors hope for greater harmonization
of ethical rules at an international level, currently considered inadequate. This conclusion
derives from the analysis of different jurisdictions from different continents, even if a global
player such as the European Union was not considered. The same need is also underlined
in [185]. In addition to expressing the centrality of the WHO, it presents an analysis of
the existing literature using data science techniques, focused on articles relating to the use
of artificial intelligence in the healthcare sector, with particular attention to regulations,
policies, and guidelines implemented by the EU or by the WHO.
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5. Conclusions

This survey paper illustrates the evolutionary processes that are reshaping the health-
care sector. In presenting the evolutionary framework, we have mainly focused on recent
contributions to technical research and service innovation. The paper shows both the
already-consolidated AI techniques and the promising ones, subject to intense research,
for which applicability is expected in the future. Initially, the paper illustrates the AI
techniques that are having the greatest success in terms of research and implementation,
with basic technical details for the reader interested in improving their knowledge. In par-
ticular, the following techniques are illustrated: Deep learning, including convolutional
neural networks and U-Net architectures; graph neural networks; recurrent neural net-
works; generative AI; diffusion models; and reinforcement learning.

The techniques illustrated are then associated with the healthcare practices most suited
to them, specifying the limitations and available technologies. Finally, a bibliographical
analysis shows the possible contribution of all the techniques presented in different basic
healthcare activities.

The first part of the paper is therefore designed to be useful to an IT researcher
who intends to understand the potential of the various AI techniques and their mutual
contribution. The rest of the paper could also be useful to a physician or healthcare
professional who wants to improve their awareness of what can be achieved using the new
available AI tools without going into deep technical details.

In this way, we believe we offer the reader a complete picture of the processes that are
reconfiguring the healthcare sector, how to possibly contribute to this development, and
what to expect in the near future.
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