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Abstract: With the impending integration of sensing capabilities into new wireless stan-
dards such as 6G and 802.11 bf, there is a growing threat to public privacy. Recent studies
have revealed that even small-scale activities, like keyboard typing, can be sensed by attack-
ers using Wi-Fi Channel State Information (CSI) as these devices become more common in
commercial spaces. This paper aims to model the minimum CSI data rate required to sense
activities in the channel and quantifies the detection accuracy of WiFi-based keystroke
recognition in relation to the CSI sensing data rate. Our experimental findings using
commercial-off-the-shelf hardware suggest that interference can be used as a defence strat-
egy to degrade the CSI data rate and prevent undesirable Wi-Fi sensing attacks. To achieve
a reduced data rate, we propose an extension to Bianchi’s model of CSMA/CA systems and
establish a new mathematical relationship between channel contention and the available
CSI. This proposed relationship was empirically verified, and our contention-based defence
strategy was experimentally validated. Experiments show that our contention-based de-
fence strategy increases the chances of evading undesired WiFi-based keystroke recognition
by around 70%. By leveraging prior work that shows a degradation in CSI quality with
lower transmission rates, we show that conservative interference injection can sufficiently
reduce sensing accuracy whilst maintaining channel bandwidth.

Keywords: Wi-Fi sensing; privacy; machine learning; IoT

1. Introduction
1.1. Background

As low-cost Internet of Things (IoT) devices become increasingly pervasive, their coor-
dination into sensor networks has enabled new applications in industrial and home settings.
To this end, Wi-Fi is an essential IoT enabler, facilitating communication between these
coordinated devices to allow for data sharing and user interfacing. However, more recently,
a new paradigm in wireless sensing has demonstrated that the Wi-Fi signals themselves can
be used to sense the physical environment [1,2]. It has been shown that artificial intelligence
(AI) and machine learning (ML) can be applied to analyse Wi-Fi Channel State Information
(CSI) in order to monitor environmental occupancy, movement and the presence of in-
truders [1]. These applications of Wi-Fi sensing have been extended towards more private
human features such as hand movements [2] or keyboard inputs [3,4]. This is creating
new security, privacy and trust issues in IoT networks as our cyber information is at risk.
To restore the privacy of IoT users, there is growing attention towards the development of
defence strategies to prevent unwanted Wi-Fi sensing [5–8]. In this endeavour, the use of
adversarial interference has been beneficial for reducing sensing accuracy and restoring
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user privacy as shown in Figure 1. Here, interference signals are injected (green) in order to
impede the sensing signals (red). Unfortunately, the existing literature in this domain uses
very high interference rates, which is a significant burden to the user in terms of bandwidth
loss. Thus, there is a need for further work on interference-based defence techniques in
order to improve their spectral efficiency.

Figure 1. Interference topology.

1.2. Motivation and Contributions

Prior work on Wi-Fi sensing has demonstrated a growing threat to everyday civilians,
as their gestures and personal information can be monitored by malicious attackers armed
only with commercial Wi-Fi hardware. Hence, we are motivated to develop protection
methods to thwart attempts to monitor unwilling patrons. We have identified some prior
works that show that a brute forced jamming mechanism can diminish the attacker’s
threat; however, this approach entails severe degradation of the wireless communications
link. This paper first experimentally validates the threat of human gesture recognition
attacks with Wi-Fi sensing. We then present novel insights into a contention-based defence
mechanism for thwarting said attacks. We make the following contributions:

1. In this study, we replicated keystroke recognition attacks from previous research and
discovered new information on the minimum CSI data rates needed to identify and
categorize keystrokes through Wi-Fi sensing.

2. After verifying that the accuracy of Wi-Fi sensing drops as a function of the CSI
data rate, we extend Bianchi’s [9] model of saturated CSMA/CA systems to create
a mathematical relationship between the channel contention and the accessible CSI
data rate.

3. We conducted an experimental validation of our mathematical model that describes
the available CSI data rate in relation to the level of contention. Our findings show
that as more devices access the Wi-Fi channel, the CSI data rate decreases, which
implies that we may not have sufficient information to detect keystrokes.

4. Using this contention-based drop in the CSI rate, we motivate a defence strategy
against Wi-Fi-based keystroke inference attacks. We achieve this by injecting con-
trolled interference through another device that transmits ping packets to reduce the
CSI sensing rate below the required threshold for accurate sensing.

5. We present a trade-off study that details the consequences of such contention-based
defence strategies on the available Wi-Fi bandwidth for normal users.
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The paper is structured as follows. In Section 2, we summarise state-of-the-art Wi-Fi
sensing and its defence strategies. In Section 3, we provide a more detailed description of
the Wi-Fi sensing system model and the importance of data rates for the system accuracy.
We subsequently demonstrate a working test-bed of Wi-Fi-based keystroke detection in
Section 4 and experimentally highlight the importance of CSI data rates. In Section 5, we
propose a model to exploit Wi-Fi contention protocols to reduce CSI data rates in defensive
endeavours. This contention model is then applied in Section 6 to thwart the accuracy of
our keystroke detection test-bed. Finally, in Section 7, we provide insights on the trade-off
between security improvement and channel bandwidth.

2. State of the Art
2.1. Channel State Information

Wi-Fi sensing is based on the propagation of radio waves through physical environ-
ments. As these signals travel from a Transmitter (Tx) to a Receiver (Rx), they encounter
physical obstacles such as the air, walls, people and objects [10]. As the signal encounters
these obstacles that cause reflection, refraction, diffraction and scattering, it splits into mul-
tiple paths that each arrive at the Rx at varying times (i.e., phase shift) with varying power
(i.e., amplitude). This phenomenon is otherwise known as the multipath effect, and the
overall multipath profile of a channel can be concisely characterised by a complex-valued
metric known as Channel State Information (CSI) [1]. Due to the Orthogonal Frequency
Division Multiplexing (OFDM) transmission scheme in 802.11n and subsequent Wi-Fi stan-
dards, the signal is modulated over a large domain of frequencies known as subcarriers [1].
CSI can be collected independently for each OFDM subcarrier, allowing us to analyse
the propagation characteristics of the wireless environment as a function of frequency.
In the same manner that varying wavelengths of visible light illuminate different objects, it
has been shown that the CSI of different subcarriers can have utility for sensing different
physical phenomena [11]. Tools such as Nexmon [12] sample CSI for all OFDM subcarriers
on every incoming Wi-Fi packet. Hence, the data rate of CSI systems is bounded by the
maximum number of packets they can propagate in the channel. CSI is then used to infer
information about the channel.

2.2. Large-Scale Applications

Macroscopic changes in the channel, such as the introduction of new objects, cause
large-scale changes to the multipath propagation characteristics of an environment. This is
reflected in CSI, which can have large changes in the amplitude level or fluctuations over
a captured time series [1,13]. To correlate changes in CSI with the environment, the CSI
is first filtered to remove noise. Common filtering approaches include Hampel filters to
remove outliers [1] and lowpass filters to smooth the CSI [14]. Following this, features
can be calculated to correlate with changes in the physical environment. In applications
such as object detection [11,15], the CSI is analysed on a frame-by-frame basis since the
sensing subject is not time-varying. Hence, statistical features calculated on the set of
CSI amplitudes have been used in conjunction with Support Vector Machines (SVMs) to
predict the presence of different people or objects. Beyond this, large-scale changes in a
physical environment such as occupancy levels have also been detected using absolute CSI
amplitude levels. In addition to this, some large-scale sensing applications have used more
complex temporal features calculated over the sampled time series of CSI. This includes fea-
ture calculation techniques such as Principle Component Analysis (PCA) [10] and Wavelet
Transforms [1,10], which allow temporal variations to be analysed and subsequently fed
into supervised machine learning (ML) algorithms to predict behaviours such as falling,
walking and waving [16].
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2.3. Fine-Grained Gesture Recognition

More recent work has applied advanced signal processing techniques to sense micro-
scopic phenomena in the channel. To detect smaller changes in the channel, such as the
movement of an arm [17], prominent works compute advanced features such as power
distributions [18] or velocity distributions [17]. These higher-order features are typically
applied with more complex learning algorithms such as Convolutional Neural Networks
(CNNs) [19] or Long Short-Term Memory (LSTM) classifiers [1]. Of particular interest to us
is the application of human keystroke recognition [3]. WiKey and other gesture recognition
algorithms use moving window approaches to identify the start and end of some gesture
event [3]. The identified windows contain waveforms of CSI amplitudes, which vary based
on the gesture (i.e., a key press), and their algorithm subsequently uses Discrete Wavelet
Transforms (DWTs) and Dynamic Time Warping (DTW) to distinguish between different
waveforms. This approach is similar to generalised human activity recognition, which also
seeks to classify based on the frequency composition of CSI [20].

2.4. Protection Methods

As evidenced by the success of prior work in fine-grained gesture recognition, there
is a growing need for methods that secure privacy in the presence of Wi-Fi networks.
Prior work on thwarting Wi-Fi sensing has introduced jamming signals into the wireless
channel [5–7,21], causing a degradation in the sensing accuracy. In [5], interference was
introduced on adjacent Wi-Fi channels in order to create competition for channel resources
and reduce the CSI available to the sensing system. This subsequently caused a degradation
in the sensing accuracy. Then, in [7], it was shown that the interference can be introduced
in a time-varying manner in order to bias the measured CSI towards certain activity
classes, thereby intentionally misleading the sensing system. This approach requires
prior knowledge of the sensing systems ML parameters, which is unlikely. Thus, we
focus on untargeted interference in order to degrade sensing accuracy. One aspect of
interference injection that is overlooked is its impact on channel bandwidth. To the best
of our knowledge, no prior work investigates the trade-off between improved security
and loss in bandwidth due to interference injection. Thus, there is scope for more work
to understand how the amount of interference can be chosen intelligently to preserve the
communications channel for normal users.

3. System Description
In this section, we describe the working principles of Wi-Fi sensing and its dependence

on the underlying data rate.

3.1. Wi-Fi Sensing System

As shown in Figure 2, Wi-Fi sensing is predicated on the propagation of signals (red)
through a physical environment. As the signal encounters physical entities, its power and
phase are altered, causing a disparity in the initial signal and that which is received by
Rx. Where the physical entities are moving, such as the finger movements in Figure 2,
the artefacts introduced in the wireless signal are also time varying as shown by the spikes
in the signal (red) received by Rx. The relationship between the transmitted and received
signals can be formally expressed as follows:

Y( f , t) = H( f , t)X( f , t) + N( f , t) (1)

where the signal Y is received in continuous time t for all OFDM subcarrier frequencies
f . This received signal is equal to the transmitted signal X after it incurs the multipath
transformation, represented by H (CSI). The Gaussian white noise in CSI is represented by
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N. Using this relationship, tools such as Nexmon [12] are able to take ‘snapshots’ of the CSI
data (H) by inspecting the pilot bits of all received packets. The CSI data can be represented
as H[ f , k] where t = kTs. Here, we measure the CSI at k locations with a separation of
Ts along the originally continuous domain t. The frequency domain representation of H
is thus the following:

H[ f , n] =
N−1

∑
k=0

H[ f , k]e−j 2π
N nk (2)

where for all subcarriers f , H[ f , n] is the Discrete Fourier Transform (DFT) of the sequence
H[ f , k]. Equation (2) shows that the DFT representation of the underlying CSI is inherently
dependent on the number of CSI snapshots used to compute the DFT, N, and the discrete
domain variable k, which is itself dependent on the sampling period Ts. As described in
Section 2, existing techniques in Wi-Fi sensing rely heavily on frequency analysis of CSI
to discern gestures and movements of different speeds. Hence, we conclude that Wi-Fi
sensing ML algorithms are highly dependent on the CSI sampling rate.

Figure 2. Wi-Fi sensing system overview.

3.2. CSI Sensing Rate and Coherence Time

Beyond the algorithmic dependence on CSI data rates, it is important to note that
Wi-Fi sensing systems require a minimum data rate to effectively understand the changing
wireless channel. To better understand this, we use the concept of channel coherence time.
In order to sense activity in the channel, the CSI data must be captured faster than the rate of
change of the channel. The time for which the channel is considered unchanging is known
as coherence time, and it can be expressed in 2.4 GHz wireless channels as follows [22]:

Tcoherence =
9

16π v
λ

(3)

where v is the speed of movement in the channel (the activity being sensed), and λ is
the signal wavelength (0.12 m for 2.4 GHz Wi-Fi). The required CSI data rate is then
the reciprocal of the coherence time, and we compute this for several common sensing
applications in Table 1.

Table 1. Approximated data rates for various sensing applications.

Activity Speed (m/s) Tcoherence (s) Req. CSI Rate (Hz)

Walking 1.5 0.016 63
Running 2.7 0.008 129
Typing 4 0.005 189
Occupancy 0.7 0.031 33
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In summary, the accuracy of Wi-Fi sensing is influenced by the CSI data rate, which
is limited by the coherence time of the activity being sensed. Additionally, the hyperpa-
rameters of the ML algorithm are governed by the data rate for training. Therefore, any
fluctuations in the rate of CSI capture will negatively impact the system’s performance.
To prove this assertion and determine the necessary CSI data rate, we will be conducting
experiments on Wi-Fi-based keystroke recognition for varying transmission rates in the
following section.

4. Keystroke Recognition Using Wi-Fi Sensing
In this section, we implement keystroke recognition using a state-of-the-art algo-

rithm [3], before performing a subsequent experiment to show its reliance on the underlying
data rate.

4.1. Keystroke Recognition Model

It has been shown in prior work [3] that a Wi-Fi sensing apparatus can be used to
detect which key is pressed on a keyboard by computing features on CSI time series data.
This flavour of the attack is particularly concerning since it extends the domain of privacy
risks beyond physical attributes towards cyber information that may be entered through
a computer keyboard. We implemented the algorithm initially proposed by WiKey as
demonstrated by Figure 3 below.

Figure 3. WiFi-based keystroke detection model.

In Figure 3, we illustrate the algorithm for CSI-based keystroke recognition. As before,
Tx propagates a Wi-Fi signal (red) which incurs time-varying oscillations due to the typing
hand. This time varying Wi-Fi signal is then received by Rx. The CSI time series is first
processed with a lowpass filter to remove noise above the cutoff frequency of 5 Hz. Then,
the 56 time series (one for each of the 56 OFDM subcarriers) are collectively processed via
PCA. The 2nd, 3rd and 4th PCA vectors are used in parallel for all subsequent computations.

Encapsulated within Figure 3, we present a plot of a CSI time series after lowpass
filtering and PCA. The CSI data was captured whilst a human repeatedly pressed the ‘Q’
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key on a keyboard. The x-axis represents time, and the y-axis represents the amplitude
of the processed CSI. We observe clearly that the CSI amplitude varies in sync with the
repeated keystrokes. To extract this keystroke information, we find the local minima in
the time series to isolate each of the ‘crevices’ at the end of a keystroke. The samples
between these minima are then considered to be keystrokes, and we perform segmentation
of the time series to extract the detected keystrokes. Each segmented keystroke is then
subject to the DWT, which characterises the shape of the keystroke segment by a frequency
decomposition using Daubechies Wavelet 4. These shape features are then used as inputs
to 3 KNN’s, which utilise DTW distances to calculate the distance between points and their
neighbours. The decisions from the 3 KNN algorithms are then multiplexed in order to
make an overall classification of the keystroke.

4.2. Experimental Setup

In a standard office building within the range of commercially operating Wi-Fi net-
works, we setup our experimental apparatus as depicted below.

In Figure 4, we depict the experimental setup for human keystroke recognition using
Wi-Fi CSI. We positioned a Wi-Fi Transmitter (Tx) on one side of a standard keyboard, which
broadcasts ping packets at a rate of 1300 Hz. On the other side, we placed a Raspberry Pi
4B Receiver (Rx) equipped with the Nexmon CSI extraction firmware [12]. This is denoted
by the red circle in Figure 4. This device is manufactured by Raspberry Pi Ltd. (Cambridge,
UK), and was sourced online within Australia via. Element 14. The Nexmon firmware
activates monitor mode on the Raspberry Pi 4B Network Interface Card (NIC) and then
captures CSI for every received packet. Given that Tx is propagating packets at 1300 Hz, Rx
will capture 1300 CSI snapshots per second. All communications occur on channel 2 of the
2.4 GHz Wi-Fi spectrum, with a bandwidth of 20 MHz and CSI sampled for 56 subcarriers.
The experimental subject (pictured) pressed the set of keys Q, Z, H, M and P a total of
100 times in the training phase and 50 times in the testing phase. Without loss of generality,
we chose this subset of keys since they are evenly spread across the keyboard and allow for
simpler analysis compared to a full keyboard.

Figure 4. Keystroke recognition experimental setup.

4.3. Results

The experimental data was passed into the processing framework described above,
and we obtained the following result.

In Figure 5, we present a confusion matrix of the ML algorithm when evaluated
with our experimental data. The rows represent true classes, and the columns represent
predicted classes. Hence, the leading diagonal represents the true positive rates for each
key, with darker colors corresponding to higher rates. We observe that the classifier has an
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overall true positive rate of 84.96%. The largest error occurs when classifying the H key
being pressed, which is incorrectly predicted as M 19.20% of the time. The misclassification
between these two classes can be explained by observing the relative proximity of the
M and H keys on a keyboard. Furthermore, the worst performing class overall is the H
key, with a true positive rate of 71%. This once more reflects the position of the H key,
in between all the other keys. Overall, this result supports those achieved in prior work [3],
demonstrating the threat posed to user keystroke information by Wi-Fi sensing.

Figure 5. Classification accuracy.

4.4. Minimum CSI Sensing Rate for Reliable Sensing

The result in the previous section was achieved with a CSI data rate of 1300 Hz.
To illustrate the importance of this rate, we perform a subsequent experiment in which we
change the transmission frequency of the Wi-Fi sensing device (Tx). We setup the devices
as in Figure 4 and asked the participant to press a key 50 times. This process is repeated for
transmission frequencies varying between 1300 Hz and 20 Hz. We observe what percentage
of the 50 keystrokes the system was able to detect from the captured CSI. This is presented
in Figure 6.

Figure 6. Impact of CSI Rate.

In Figure 6, we present a result that demonstrates the effect of the CSI data rate on
the keystroke detection algorithm. The x-axis represents the data rate (Hz) of the sensing
system, and the y-axis represents the percentage of 50 keystrokes that were detected from
the CSI. Then, each plotted point represents an empirical result. Here, we note that detection
refers to the ability of the system to extract a keystroke event from the CSI waveform, not
the classification accuracy.

We observe that CSI data rates above 400 Hz are able to detect 100% of the keystrokes.
Below this, we see a clear negative trend in the keystroke detection rate as a function of the



Future Internet 2025, 17, 20 9 of 20

CSI data rate. A key point of interest is 200 Hz, below which only 47% of the keystrokes
can be detected by the system. This corroborates our analytical finding in Table 1, where
the critical data rate for keystroke recognition was 189 Hz. Given that we are discussing
the ability to detect keystrokes, these results do not reflect ML performance or the reliance
of feature calculation schemes on the sampling rate. Instead, this result demonstrates
the importance of dense sampling to reconstruct human movement in sampled CSI time
series. This issue is akin to the Nyquist–Shannon sampling problem for sampling any time
varying information. Overall, the results in this section demonstrate the importance of the
underlying CSI data rate for Wi-Fi sensing systems.

5. Proposed Contention Model for Defence Against Wi-Fi Sensing
The previous section showed empirically that the efficacy of WiFi-based keystroke

recognition attacks is predicated on the underlying CSI data rate. In this section, we theorise
how the CSI data rate can be reduced by intentionally injecting contention into the Wi-Fi
channel. In this way, we formulate a contention-based model for preventing undesirable
Wi-Fi sensing applications and safeguarding our privacy.

5.1. CSMA/CA in 802.11 Networks

802.11 networks are designed with Medium Access Control (MAC) protocols such as
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) to handle a large
amount of devices attempting to access the wireless channel resources simultaneously [23].
CSMA/CA requires stations to sense the channel to ensure that it is idle prior to attempting
any transmission [24]. When a station is ready to send a packet, it listens to the channel for
a period known as the Distributed Inter-Frame Space (DIFS) interval [24]. If the channel
remains idle throughout the entire DIFS interval, the station backs off for a randomly chosen
number of discrete time slots. This random back-off duration is uniformly distributed
between (0, W − 1], where W is a variable known as the contention window [23–25]. In each
slot where the station senses an empty channel, it decreases the back-off counter. Once the
back-off counter reaches zero, the station can attempt to transmit again using the wireless
medium. If a collision is detected, the station again randomly chooses a back-off interval,
this time choosing an integer uniformly distributed between (0, 2W − 1], and the process
repeats. The upper limit iteratively increases as a function of the number of collisions
(m) [25] by 2mW − 1. This is limited to a maximum ceiling of 2mmaxW − 1, where mmax is
the maximum number of collisions allowed, which varies between Wi-Fi hardware.

5.2. Throughput of CSMA/CA WLANs

The CSMA/CA process described above has been represented using a Markovian
model in a prominent work by Bianchi around the time of its advent [9]. Subsequent
work [26] has built upon Bianchi’s model to express the collision probabilities of 802.11 sta-
tions. This can be boiled down to two important expressions:

p = 1 − (1 − π)N−1 (4)

π =
2(1 − 2p)

(1 − 2p)(W + 1) + pW(1 − (2p)m)
(5)

where π is the probability that a station will transmit during a slot, and then p is the
probability that there is a collision in that slot. The probability π is considered to be equal
for all stations, operating under the assumption that they are all attempting to perpetually
transmit packets. This is formally referred to as the saturation condition by Bianchi [9].
These two expressions can be solved simultaneously for π and p as a function of the number
of stations (N). We use the following set of parameters for 802.11n networks:
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Subsequently, the parameters in Table 2 can be used to solve Equations (4) and (5)
simultaneously. We solve for N = [2, 25] devices and illustrate the collision probabilities below.

Table 2. 802.11n CSMA/CA parameters.

Parameter Value

Slot Time 20 µs
DIFS 50 µs
Short Inter-Frame Space (SIFS) 10 µs
Acknowledgement (ACK) Time 304 µs
THeader 400 µs
TPayload 3.4 ms
Minimum Contention Window (W) 16 slots

In Figure 7, we illustrate the collision probability (p) and the transmission probability
(π) as functions of the number of competing stations in 802.11n networks. The x-axis repre-
sents the number of 802.11n devices in the network, and the y-axis represents probabilities
ranging from 0 to 1. Then, the blue curve represents the probability of a collision occurring
in the channel and the red curve represents the probability that any station will choose to
transmit at a given time.

Figure 7. Collision probability of 802.11n networks with increasing users.

We observe that the probability of collisions within the channel grows logarithmically
as more users enter the channel. This growth is particularly aggressive when the patronage
increases from 2 to 5, with the probability of collision increasing from 0.11 to 0.28 (254%
increase). We are subsequently interested in the effect this increased collision probability has
on the overall throughput for all devices in the channel. Building on Equations (4) and (5),
it has been further shown in prior work [26] that the throughput of a CSMA/CA network
can be expressed as follows:

τ =
E[Payload Transmitted in a slot]

E[Duration of Slot Time]

τ =
PsPtrL

PsPtrTs + Ptr(1 − Ps)Tc + (1 − Ptr)Tid
(6)
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for a packet of length L and a slot time Tid. Here, the probability of transmission (Ptr) and
probability of that transmission being successful (Ps) are further defined as follows:

Ptr = (1 − (1 − π)N), Ps =
Nπ(1 − π)N−1

1 − (1 − π)N (7)

and the average transmission time (Ts) and average time spent in collision (Tc) are ex-
pressed as follows:

Ts = THeader + TPayload + SIFS + σ + ACK + DIFS + σ (8)

Tc = THeader + TPayload + DIFS + σ (9)

where σ is the propagation delay. We solve Equation (6) for N = [1, 10] devices, and vary
the length of the payload between 700 bits (roughly the size of an ICMP ping packet) to
1900 bits.

In Figure 8, we illustrate the analytical throughput for 802.11n networks. The x-
axis represents the number of Wi-Fi stations in proximity, and the y-axis represents the
throughput (bits/sec) of a station. We illustrate 5 curves corresponding to the devices
propagating packets of varying lengths.

Figure 8. Throughput of 802.11n networks with increasing users and different packet lengths.

From the vertical spread of the various curves, we note that the throughput varies as
a function of the packet size. This is symptomatic of the greater channel utilisation due
to larger packet sizes since the stations spend less time in the inter-frame periods such as
DIFS and SIFS. We further note that the decay in throughput appears to be independent of
the size of the packets being transmitted. Overall, the total channel throughput decreases
slightly as the number of stations increases, presumably due to the increased overhead of
the distributed access protocol. This result represents the throughput in bits per second.
We recall from Section 3 that CSI for Wi-Fi sensing is captured on a per-packet basis. Hence,
we propose a new expression for the available CSI data rate as the quotient of throughput
with the length of the transmitted packets, divided by the total number of stations as
in Equation (10).

RCSI =
1
N

τ

L
(10)

We compute RCSI for the throughputs derived earlier and plot the results below.
In Figure 9, we illustrate the CSI data rates for an 802.11n network with an increasing

number of stations in the channel. The x-axis represents the number of stations transmitting
in the channel, and the y-axis represents the effective CSI data rate of the channel. Each
curve represents a simulation with packets of varying lengths. We note that a packet
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length of 700 bits corresponds to ICMP ping packets, which are commonly used for Wi-Fi
sensing applications.

Figure 9. CSI snapshot rate under varying packet lengths.

We observe firstly that the CSI data rate reduces as the number of 802.11n users
increases. This is initially a sharp decrease by a factor of 0.5 when the usage increases from
one to two users, and the rate of decrease slows down subsequently. We further note that
the CSI data rate is maximised for the smallest packet lengths, with the solid blue curve
representing the highest CSI data rate for ping packets. This result reflects the smaller
time spent occupying the channel per packet, and hence, more packets can use the channel
resulting in a higher CSI data rate. Overall, the analytical results in this section support the
notion that interference from other devices can reduce the effective CSI data rate by virtue
of the 802.11n medium access control.

5.3. Empirical Validation

To validate our proposed theoretical model, we conduct an experiment to demonstrate
how an increase in channel users causes a reduction in the available CSI data rate.

5.3.1. Experimental Setup

The experimental setup consists of a CSI sensing apparatus surrounded by interference
devices as illustrated in Figure 10.

Figure 10. Experimental setup for validating analytical model.

As shown by the red arrows, the CSI sensing apparatus is surrounded by 10 interfer-
ence devices at 1 m distance from Rx. In each trial, we collect CSI by transmitting Wi-Fi
signals from Tx to Rx, as shown by the black wavy line, for a duration of 60 s, and we
compute the average gradient ( dCSI

dt
) of the time series to estimate the average CSI data
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rate. We first conduct a trial with none of the interference devices (Dn) operating, and we
conduct 9 subsequent trials with each interference device iteratively switched on. When
switched on, the interference devices propagate ping packets at the saturation rate using
the sudo ping -f command.

5.3.2. Results

The results of the experiment are illustrated below.
In Figure 11, we present a plot of the CSI data rate that Rx was able to achieve with

varying levels of contention in the channel. The x-axis represents the number of 802.11n
stations sending ping packets, and the y-axis represents the average CSI data rate that Rx
was able to achieve over the duration of 60 s. The blue line represents the analytical result
from earlier, and the red line is the experimentally derived result.

Figure 11. CSI snapshot rate with varying number of stations.

We observe a striking similarity in the shape of the empirical result with the analytical
result. The CSI snapshot rate is initially 1200 Hz, and it decreases to less than 400 Hz with
the addition of only a single interference device. Introducing subsequent devices causes
further degradation in the achievable CSI snapshot rate to less than 200 Hz. Both curves
have similar shapes, with the key difference being a vertical translation. This difference
can be understood when considering the real-world limitations of 802.11 communications.
Although the analytical result implies that a CSI data rate of 4400 Hz is achievable with a
channel bit-rate of 72 Mbps, the actual bandwidth is limited by the computation power of
the wireless devices and their Network Interface Cards (NICs). Overall, this result supports
the theoretical model for contention-based defence against undesired Wi-Fi sensing attacks.

6. Application of Defence Model Against Keystroke Attacks
The previous section demonstrated analytically and empirically that channel con-

tention can reduce the available CSI data rate. We utilise these ideas to develop a defence
mechanism to thwart the efficacy of Wi-Fi-based keystroke recognition.

6.1. Experimental Setup

We utilise the same experimental apparatus as before, with the addition of an interfer-
ence device as depicted in Figure 12.

The interference device is a Macbook Pro laptop on the same communications channel
(Channel 2 of the 2.4 GHz Wi-Fi spectrum). It is configured to propagate ping packets at
varying rates between 1300 Hz and 0 Hz, whilst the keyboard sensing apparatus operates
with Tx propagating ping packets at 1300 Hz. As demonstrated by the ellipses in Figure 12,
the proximity of these devices causes the range of their communications to overlap, result-
ing in competition for control over the channel resources. As illustrated by the wavy red
signal in Figure 12, movement of fingers on the keyboard causes time varying changes
in the Wi-Fi signal which are classified by the keystroke sensing system. To investigate
how the varying interference packet rate influences the accuracy of the keystroke sensing
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system, we once more collected CSI data during 100 keystroke events for each of the letters
Q, Z, H, P and M and used the model in Section 4 to train a sensing system. The system
was then evaluated with a dataset of CSI collected during 50 keystrokes for each of the
same keys. We collected 6 such sets of testing data, under varying rates of contention from
the laptop.

Figure 12. Setup for interference experiment.

6.2. Results

As the laptop begins to transmit ping packets, the captured CSI waveforms degrade,
as demonstrated by Figures 13–17.

Figure 13. CSI time series with no interference.

Figure 14. CSI time series with 50 Hz interference.

We observe firstly from Figure 13 that the keypress events are clearly visible in the
sampled CSI as time-varying ripples, in line with our expectations as discussed in Section 3
and in line with our earlier results in Section 4. In each Figure, a single keystroke is outlined
by the dotted box, and the arrows point towards the other observed keystrokes. Then,
in Figures 14–17, there is an incremental degradation in the quality of the CSI and the
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clarity of the keystroke events. In Figures 14 and 15, we are still able to discern three clear
keypress events; however, in Figures 16 and 17, this is no longer possible. This gradual
degradation of the CSI time series further supports our idea that maximum interference
rates are not necessary, and lower interference can be applied to sufficiently degrade sensing.
To understand the impact of the degraded CSI on the sensing accuracy, we proceed with
evaluating the sensing output of the keystroke recognition threat model using this dataset.

Figure 15. CSI time series with 250 Hz interference.

Figure 16. CSI time series with 500 Hz interference.

Figure 17. CSI time series with 1 kHz interference.

In Figure 18, we present the sensing accuracy against the interference packet rate.
The x-axis represents the packet rate from the interfering laptop. The green left y-axis then
represents the accuracy of the keystroke recognition system as it operates in the presence of
said interference, and the blue right y-axis represents the CSI data rate under each level
of interference. For each interference rate, the blue point thus denotes the achieved CSI
data rate (Hz) and the green diamond denotes the achieved sensing accuracy. There is a
clear negative correlation between the interference frequency and the sensing accuracy.
With an initial interference rate of 50 Hz, the sensing accuracy drops from 85% to 70%.
Beyond this, the sensing accuracy crosses below 50% at an interference rate of 500 Hz,
corresponding to a CSI data rate of 700 Hz. This corroborates our observations from
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Figures 13–17, where the keystrokes could no longer be clearly identified with interference
rates of 500 Hz. Beyond this, the accuracy appears to decay in a decreasing manner
asymptotically. The poor performance of the sensing system with a CSI Data Rate of 700 Hz
due to the interference injected at 500 Hz is an interesting result. We recall the earlier result
in Figure 6, where a CSI sensing rate of 700 Hz was able to yield a keystroke detection
rate of 100%. Once more we reiterate that detection refers to the ability to pick up the
keystroke event in the CSI time series, not the classification accuracy. Despite being able
to pick up all the keystrokes, the sensing classification accuracy is below 50%. This result
corroborates the ideas proposed in Section 3, where we postulated that the dependence
of Wi-Fi sensing systems on frequency-based feature engineering techniques creates a
susceptibility to changes in the CSI data rate. Even though all the keystrokes are picked up
within CSI, the change in CSI sampling rate distorts the DWT features and hence reduces
the accuracy of the sensing system. Overall, this experiment clearly shows that minimal
interference can still be effectively used to defend against Wi-Fi sensing. To further visualise
the improvement in privacy, we define the Privacy Preserving Probability (PPP) metric as the
percentage probability of safeguarding a key from being detected by Wi-Fi sensing. This
is calculated as the complement of the true positive detection rate for each key. We plot
the PPP under several rates of defensive interference in Figure 19. The x-axis represents
the five keys that the Wi-Fi sensing system is attempting to detect. Then, the height
of each column represents the PPP with different levels of defensive interference. We
observe that the PPP generally increases as a function of defensive interference. Generally,
the PPP is higher for all keys when comparing 500 Hz interference with 0 Hz interference,
and higher again when comparing 1500 Hz interference. This is congruent with our results
in Figures 13–17, where increasing amounts of interference resulted in more degraded CSI
waveforms. With 1500 Hz of interference, we can safeguard all keys with an overall PPP of
85%, an improvement of 70% over the baseline. Compared with prior work, the result with
500 Hz of interference demonstrates that lesser amounts of interference can considerably
improve user privacy. One aspect of this result which is unclear is how to choose an
appropriate level of interference. At the outset of this paper, we discussed prior work that
belligerently injects dense packet streams to maximally thwart CSI. In lieu of this, our goal
is to be more conservative in our application of interference to sufficiently impede sensing
accuracy without overconsuming channel resources.

Figure 18. Effect of interference on Wi-Fi sensing accuracy.
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Figure 19. Security rate for each key as interference increases.

7. Tradeoff Between Privacy and Utility
The previous section showed that increasing amounts of interference increasingly

degrade Wi-Fi sensing accuracy. This poses a question for IoT users who intend to use
interference to fend off attackers, as they need to determine the optimal amount of interfer-
ence that degrades attack accuracy while still allowing normal IoT communications. This
section accordingly presents experiments to determine how the level of interference affects
the usable Wi-Fi bandwidth (BW).

7.1. Experimental Setup

To evaluate the effect of interference defence on Wi-Fi bandwidth, we introduce a
server–client pair to the experimental environment. Utilising the same setup illustrated in
Figure 12, we position a Transmitter (Tx) in the channel, which propagates ping packets
at a rate of 1000 Hz to a CSI measurement device. Meanwhile, an interference device
is positioned adjacent to Tx. The independent variable is the rate of interference packet
propagation, which we vary between 0 Hz and 1000 Hz. Concurrently, the server-client pair
on the same Wi-Fi channel (2.4 GHz, Channel 2) transfers a 200 MB file over the wireless
link. The dependent variable is the time taken for this file to transfer from the client to the
server, which we subsequently convert to a bandwidth in Mbps.

7.2. Empirical Results

In this section, we compare the communications throughput under each interfer-
ence level.

Figures 20 and 21 demonstrate the effect of interference on channel throughput. In
Figure 20, the Wi-Fi throughput is plotted against the interference rates due to injected ping
packets. A clear negative correlation between interference rate and Wi-Fi throughput is
observed, as the linear fit has an RMSE of 0.4318 and R2 of 0.952. Overall, an interference
rate of 1000 Hz causes a large 25% reduction in throughput for the client–server pair.
This once more motivates the use of more conservative interference injection to minimise
throughput loss. The linearity of this trend is an interesting result, and can be compared
against Figure 11. In Figure 11, the achieved CSI rate, which is proportional to throughput
as per Equation (10), approaches an asymptote with the introduction of more devices. Due
to hardware constraints on the Raspberry Pi 4B, we were unable to investigate whether the
linear trend in Figure 20 approaches an asymptote with further increases in the transmission
rate. We motivate future work to investigate this, when commodity devices are able to
propagate more dense packet streams. To visualise the trade-off between the security
and channel utility, Figure 21 plots the PPP gain against the measured throughput loss.
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Here, the PPP gain is the percentage increase in the PPP over the baseline scenario with
no interference. We observe a clear trade-off between the PPP gain and the available
throughput. To achieve a PPP gain of 60%, we sacrificed nearly 25% of the available Wi-Fi
throughput. Initially, we observe that a 20% gain in the PPP can be achieved with only
4% loss of throughput. This corresponds to the case of interference at a rate of 200 Hz.
Referring back to Figure 18, this conservative interference rate is sufficient to reduce the
keystroke sensing accuracy below 60%. The trade-off becomes more severe beyond this,
as shown by the increasing slope of the curve in Figure 21. A further 20% gain in the PPP
(from 20% to 40%) entails a much larger throughput loss of 11%. These results demonstrate
the effectiveness of conservative interference injection in significantly mitigating sensing
threats, while having minimal impact on Wi-Fi throughput.

Figure 20. BW vs. interference.

Figure 21. Privacy gains vs. BW.

8. Concluding Remarks
This paper introduces a conservative interference injection strategy to counteract pri-

vacy and security threats from Wi-Fi sensing. Through a survey of prior work in Wi-Fi
sensing as well as the construction of our own testbed, we demonstrate that fine-grained
human activities are under threat of being monitored with high accuracy. By experimen-
tal analysis using commodity devices, we demonstrate that this high accuracy of Wi-Fi
sensing is highly dependent on the CSI data rate. We subsequently showed analytically
and experimentally that this CSI data rate can be intentionally disrupted by other devices
in the wireless channel. This principle is the basis of prior work in the state-of-the-art
that utilises wireless interference to reduce the CSI rate and diminish sensing accuracy,
thereby protecting user privacy. This paper further investigates this, revealing a positive
correlation between the degree of interference introduced and the degradation in sensing
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accuracy. This establishes a trade-off between achieving increased privacy and maintain-
ing acceptable channel throughput for other Wi-Fi users. Compared to state-of-the-art
approaches, we can thwart sensing applications with comparable efficacy at a fraction
of the cost to channel bandwidth by injecting interference conservatively. Although our
approach is applied specifically to keystroke recognition, the results are generalizable to
other Wi-Fi-based gesture recognition systems, where interference can degrade the reso-
lution of environmental movement. We suggest that future work should investigate the
suitability of this conservative interference injection scheme in commercial settings under
interference from additional devices. In such environments, the consumption of channel
resources by other devices will create uncertainty around our ability to finely control the
CSI rate of a sensing system. Furthermore, the increased environmental noise and poor
Signal-to-Noise Ratio (SNR) of our interference devices may impede our ability to generate
strong contention in the channel. Finally, whilst the methods and results in this paper are
generalisable across Wi-Fi sensing applications, we motivate future work to apply it against
coarse-grained sensing applications such as movement recognition. Future work should
investigate whether these coarse-grained sensing applications, with relatively simple ML
decision algorithms, are as sensitive to the CSI data rate and adversarial interference.
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