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Abstract: The rapid evolution of technologies such as the Internet of Things (IoT), 5G,
and cloud computing has exponentially increased the complexity of cyber attacks. Mod-
ern Intrusion Detection Systems (IDSs) must be capable of identifying not only frequent,
well-known attacks but also low-frequency, subtle intrusions that are often missed by
traditional systems. The challenge is further compounded by the fact that most IDS rely on
black-box machine learning (ML) and deep learning (DL) models, making it difficult for
security teams to interpret their decisions. This lack of transparency is particularly prob-
lematic in environments where quick and informed responses are crucial. To address these
challenges, we introduce the XI2S-IDS framework—an Explainable, Intelligent 2-Stage
Intrusion Detection System. The XI2S-IDS framework uniquely combines a two-stage
approach with SHAP-based explanations, offering improved detection and interpretability
for low-frequency attacks. Binary classification is conducted in the first stage followed
by multi-class classification in the second stage. By leveraging SHAP values, XI2S-IDS
enhances transparency in decision-making, allowing security analysts to gain clear in-
sights into feature importance and the model’s rationale. Experiments conducted on the
UNSW-NB15 and CICIDS2017 datasets demonstrate significant improvements in detection
performance, with a notable reduction in false negative rates for low-frequency attacks,
while maintaining high precision, recall, and F1-scores.

Keywords: IDS; XAI; SHAP; LSTM; UNSW-NB15; CICIDS2017; deep learning

1. Introduction
In recent years, connected technologies such as the Internet of Things (IoT), 5G commu-

nication, and smart grids have rapidly developed. These advancements have fundamentally
transformed how industries and individuals interact with the digital world. This expansion
has resulted in an exponential increase in the number of connected devices and the com-
plexity of communication networks, providing significant benefits but also amplifying the
scope of security risks [1–3]. As cyber attacks continue to rise globally, impacting sectors
from finance to healthcare, addressing these threats has become a critical concern for re-
searchers and security professionals. Ensuring robust cybersecurity is essential not only for
protecting sensitive data but also for maintaining trust in these advancing technologies [4].

As of 2024, a total of 1,187,441,064 malware samples have been identified, with more
than 9 million new samples emerging each month, according to the AV-TEST daily report [5].
The institute registers over 300,000 new malware samples daily. Over the past five years,
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malware activity has risen significantly, increasing from 647,920,244 samples in 2019 to over
one billion by September 2024. Figure 1 illustrates the annual growth in malware from 2008
to 2024.

Figure 1. Amount of malware from 2008 to August 2024 [5].

Intrusion Detection Systems (IDSs) play a central role in safeguarding networks and
computer systems from such threats [6]. Traditionally, IDS have been effective in monitoring
network traffic and host activities to identify potential attacks [7]. However, the increasing
sophistication of cyber attacks, particularly zero-day exploits and low-frequency attacks,
presents new challenges that conventional IDS struggle to address. Recent research has
focused on leveraging machine learning (ML) and deep learning (DL) techniques to enhance
IDS capabilities [8–11]. These approaches offer the potential to detect threats with greater
accuracy and scalability than traditional methods, revolutionizing the field of cybersecurity.

DL models have shown promising results in IDS for network traffic classification
and their accuracy in detecting cyber attacks and potential threats has been thoroughly
demonstrated in previous research [1,12–14]. Some of the most effective DL models are
Long Short-Term Memory (LSTM): a special Recurrent Neural Network (RNN) efficient in
the processing of time-series sequential data with long-term dependencies [15,16], Convolu-
tional Neural Network (CNN): effective in capturing spatial relationships and particularly
useful for extracting features from raw data [16,17], and AutoEncoder (AE): learns the
underlying structure of input data and is used for feature extraction and anomaly detection
in IDS applications [18].

Aminanto and Kim [19] used Artificial Neural Networks (ANNs) and stacked au-
toencoders (SAEs) to detect impersonation attacks, achieving an 85% detection rate with
a 2.36% false alarm rate on the AWID dataset. Later, they improved performance to a
92% detection rate with a 4.4% false alarm rate by incorporating two cascading encoders
with k-means clustering [8]. Shone et al. [10] proposed an unsupervised Non-symmetric
Deep AutoEncoder (NDAE) combined with Random Forest (RF) for feature extraction and
classification, achieving 97.9% accuracy on KDD Cup99 and 85.4% on NSL-KDD datasets,
though with poor results for U2R and R2L attacks that did not surpass 9.5%. Yan and
Han’s Stacked Sparse AutoEncoder (SSAE) paired with SVM achieved a 99.3% accuracy
and improved detection rates for low-frequency attacks on NSL-KDD [20]. Vinayakumar
et al. [21] proposed a scalable deep neural network (DNN) framework that outperformed
traditional machine learning models for intrusion detection across multiple datasets, with
up to 91% accuracy on ADFA-Linux.

Liu et al. [22] developed a model combining neural networks and autoencoders
for network and host-based intrusion detection, achieving 99% accuracy in multi-class
classification on NSL-KDD and 92% for host-based intrusion detection (HIDS) on ADFA-
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LD. Yang et al. [23] used variational autoencoders (VAEs) and a generative adversarial
network (WGAN-GP) to augment unbalanced datasets, increasing detection rates for low-
frequency attacks. Yu and Bian [24] applied few-shot learning using DNN and CNN,
achieving strong results for unbalanced datasets with 92% accuracy on UNSW-NB15.
SwiftIDS [25] emphasized real-time intrusion detection using LightGBM [26] for parallel
data processing, while Kanna and Santhi [27] combined optimized CNN and hierarchical
multi-scale LSTM [28] achieving up to 96% accuracy on various datasets.

Psychogyios et al. [29] shifted the perspective of IDS from reactive to proactive by
redefining the UNSW-NB15 dataset into a time-series problem. The authors utilized CNN,
LSTM, and attention models to forecast possible attacks and were able to achieve 85%
F1-score, 90% precision, and 81% recall. Korium et al. [30] proposed an ML-based IDS
tailored for cyber attacks in the Internet of Vehicles (IoV). Their approach used the datasets
CIC-IDS-2017, CSE-CIC-IDS-2018, and CIC-DDoS-2019 to create a unified framework ca-
pable of detecting multiple attack types. The system integrates feature selection using
Random Forest Regression, data balancing techniques like SMOTE and SMOTE-ENN, and
ML models, including Random Forest, XGBoost, and CatBoost, achieving 99.8% accuracy
with minimized overfitting and a detection time of 0.24 s.

Despite these advancements, several challenges remain. Key areas of concern include
high false positive and false negative rates, scalability for large and complex networks, and
the ability to adapt to zero-day attacks. The ability to detect abnormal patterns in real-world
scenarios is essential for enabling prompt responses, regardless of the nature of the attack.
Moreover, a key challenge in improving IDS performance is the issue of black box models.
While DL models are highly effective, their lack of transparency raises concerns, especially
when used in critical infrastructure. The need for explainability is increasingly important
to ensure that security measures are not only accurate but also understandable, allowing
for better trust and control in deployment. Balancing the need for accurate detection with
explainability remains a significant challenge.

The complexity and lack of transparency in ML and DL models have given rise to a
research field called eXplainable Artificial Intelligence (XAI). Its goal is to enhance trust in
black-box model decisions by providing clear explanations of their logic and reasoning [31].
Explainability is particularly critical in IDS deployed in high-stakes, real-time environments
such as healthcare and finance, where rapid, transparent decision-making is essential.
Unlike traditional black-box models, explainable IDS frameworks allow security analysts
to trust and understand the logic behind each classification, which is indispensable for
taking informed, timely actions. This demand for interpretability aligns with a broader
push in cybersecurity for XAI methodologies, positioning explainable IDS as pivotal for
organizations that rely on prompt responses to potential threats.

XAI explanations can be global, offering a broad overview of how the model func-
tions, or local, focusing on specific predictions. Additionally, explanation techniques are
categorized as model-specific, designed for a particular learning model, or model-agnostic,
which can be applied to any model regardless of its implementation. In [32], Dias et al.
implemented a hybrid IDS approach by combining expert-written rules with machine
learning algorithms to detect and classify network attacks. The model, based on a mi-
croservices architecture, includes an anomaly detector and a dynamic rule generator, which
updates its knowledge base through Decision Trees. The model was validated in a DoS
attack case study. In [33], Dong et al. introduced an interpretable, privacy-preserving NIDS
called FEDFOREST, utilizing Federated Learning for data privacy and Gradient Boosting
Decision Trees for classification. Tested on four datasets, FEDFOREST achieved accuracy
scores between 67% and 89% and demonstrated the ability to detect unknown attacks by
classifying them into similar categories.



Future Internet 2025, 17, 25 4 of 28

Kumar and Ansari [34] introduced a lightweight, explainable IDS for Software-Defined
Internet of Things (SD-IoT) environments, using the Sheep Flock Optimization Algorithm-
Least Absolute Shrinkage and Selection Operator (SFOA-LASSO) for feature selection to
enhance model efficiency. Their system, evaluated on SD-IoT and CIC-IoT-2023 datasets,
employs machine learning algorithms like Decision Tree, Random Forest, XGBoost, and
MLP, with SHAP used for interpretability. Similarly, Hooshmand et al. [35] developed
a robust anomaly detection system addressing class imbalance using a hybrid sampling
technique combining SMOTE and K-means undersampling with XGBoost (SKM-XGB).
Evaluated on NSL-KDD and UNSW-NB15 datasets, the system uses SHAP for explana-
tions and achieves high detection accuracy, particularly excelling in imbalanced network
traffic data with over 99% accuracy in binary classification. Shtayat et al. [36] proposed
a framework that utilizes an ensemble model of 3 CNN classifiers with both LIME and
SHAP explanations. Using the ToN-IoT dataset for evaluation, the study demonstrates that
ensemble learning effectively enhances both the accuracy and interpretability of DL-based
IDSs in binary and multi-class classification tasks.

In this paper, we present an eXplainable Intelligent 2-Stage Intrusion Detection System
(XI2S-IDS) that combines the power of ML and DL with an emphasis on explainability.
XI2S-IDS addresses the aforementioned challenges by employing a two-stage detection
process: an initial binary classification model to distinguish between normal and abnormal
behavior, followed by a multi-class model to categorize different types of attacks. Integrat-
ing XAI into the initial stage enables security analysts to understand why certain traffic
is classified as anomalous, while the second stage is tailored to detecting low-frequency
attack types. The framework seeks to not only improve detection accuracy but also provide
insights into the decision-making process of the system.

Detecting abnormal patterns in real-world scenarios is crucial not only for immediate
response but also for ensuring that the system is robust across various attack types. This
necessity reinforces the significance of the proposed two-stage approach: the binary classi-
fier ensures immediate anomaly detection, while the second stage focuses on identifying
the specific attack type, facilitating deeper analysis. Such a design supports the integration
of XAI to provide meaningful, actionable insights during the first stage, aiding in the
decision-making process of system experts.

The contributions of this paper can be summarized as follows: First, XI2S-IDS, a
two-stage framework for intrusion detection, is introduced. It leverages both binary
and multi-class classification to improve detection accuracy, particularly for low-frequency
attacks. Second, by incorporating SHAP-based explanations, the proposed system enhances
interpretability, enabling security professionals to better understand and trust the model’s
decisions. The framework is evaluated on two benchmark datasets—UNSW-NB15 and
CICIDS2017—and demonstrates significant improvements in both detection rates and
interpretability over traditional single-stage and black-box models.

The rest of this paper is organized as follows: Section 2 describes the materials and
methods used, including details on the architecture, preprocessing steps, and model design
of the XI2S-IDS framework. Section 3 presents the results of the experiments, providing
a comparative analysis of the proposed system’s performance across key evaluation met-
rics. Section 4 discusses the implications of our findings and situates them within the
context of existing research. Finally, Section 5 concludes the paper with a summary of
our contributions and potential directions for future research in enhancing IDS accuracy
and explainability.
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2. Materials and Methods
XI2S-IDS’s architecture leverages the normal and attack class imbalance that is present

in the dataset. It comprises two stages powered by XAI: the first stage classifies each record
as either normal or attack, providing a global explanation of the trained model, while the
second stage focuses solely on classifying the attack type. The first stage utilizes a binary
ML classifier to distinguish between normal packets (labeled 0) and abnormal (attack)
packets (labeled 1). The second part is a DL multi-class classifier that only trains on attack
records and identifies their specific types, disregarding all normal records during training.
Figure 2 illustrates the architecture of XI2S-IDS.

Figure 2. General architecture of XI2S-IDS.

Nearly all available IDS datasets are imbalanced [37], with the majority consisting of
normal behavior records, while the remaining portion includes various attack types. Some
attack types appear at a lower frequency, referred to as low-frequency attacks, as they are
rarely captured in the datasets. These low-frequency attacks present a significant challenge
for existing IDSs, as they are more difficult to detect.

In some of the related research, authors focus solely on the binary classification of
dataset records, identifying normal and attack records [38–40]. Such studies achieve high
accuracies; however, they conceal the challenge of identifying low-frequency attacks as it
is out of scope for binary classification. In other research, authors attempted to tackle the
issue of low-frequency records using multi-class classifiers; however, their results leave
room for improvement.

The two stages of the XI2S-IDS framework combine the advantages of binary classi-
fication, which distinguishes between normal and abnormal behavior, with a multi-class
classifier that specifies the type of attack. By separating these tasks into distinct stages, the
architecture allows the binary classifier to handle the normal vs. abnormal classification,
while the multi-class classifier focuses exclusively on distinguishing between different
attack types.

Notably, in Stage II, the multi-class classifier is trained only on attack records, excluding
normal records from the training dataset. This step is designed to help the multi-class
model concentrate entirely on learning the distinct characteristics of various attack classes,
which is particularly useful for detecting low-frequency or rare attacks that are often
underrepresented in the dataset. By removing normal records, the model’s ability to
differentiate between attack classes is improved, as it no longer needs to balance the
detection of normal traffic, which dominates the datasets due to their imbalanced nature.
This targeted focus on attack instances refines the learning process, leading to a more
specialized model for attack detection.

To enhance the interpretability of the model, global SHAP explanations are provided
for the trained binary model in Stage I. SHAP offers a detailed, transparent view of the
model’s decision-making process, revealing how each feature contributes to predictions.
This approach not only improves the model’s transparency but also provides a deeper
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understanding of the factors influencing the binary classification between normal and
abnormal traffic.

This research hypothesizes that the exclusion of normal records from the multi-class
classifier’s training data enhances the overall performance of the IDS. By refining the focus
on attack detection, the model becomes more adept at recognizing the nuances of various
attack types, improving detection accuracy, especially for low-frequency attacks. The two-
stage approach, therefore, optimizes the trade-off between specialized attack detection and
overall system performance.

2.1. Evaluation Metrics

Evaluation of machine learning models often considers various metrics, with accuracy
being one of the most commonly used. While accuracy provides a general measure of model
performance, it can be misleading in the context of intrusion detection, especially when
low-frequency attacks are present. For IDS evaluation, accuracy alone is insufficient, as it
does not account for the critical balance between false positives (incorrectly flagged benign
traffic) and false negatives (missed attacks). A model with high accuracy may still yield an
unacceptable number of false negatives, which pose severe security risks. Conversely, a
model with lower accuracy but fewer false negatives could be more desirable if it reliably
detects critical threats. Moreover, in imbalanced datasets typical of IDS applications,
accuracy can obscure true performance, as it often overlooks minority classes crucial for
threat detection [41].

Therefore, in this study, we prioritize false negative rate (FNR) as it captures the
percentage of missed attacks, along with precision, recall, F1-score, and accuracy, to offer
a comprehensive performance assessment. These metrics are essential for understanding
both detection capability and error balance in IDS, particularly under imbalanced data
conditions. The formulas for these metrics are provided in Equations (1)–(5).

FNR =
FN

FN + TP
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score = 2
Precision ∗ Recall
Precision + Recall

=
2TP

2TP + FP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

2.2. Environment

The environment in which all experiments were conducted includes an Intel i7 proces-
sor as the Central Processing Unit (CPU). It has a Random Access Memory (RAM) capacity
of 16 GB and features an “Nvidia RTX 2080 TI” Graphics Processing Unit (GPU). The
system runs on Python 3.7.13 and uses SHAP for explanations, TensorFlow 1.13.2 for DL
models as well as scikit-learn 1.0.2 for ML models.

2.3. Dataset

Two datasets were chosen as benchmarks for the evaluation of the framework: UNSW-
NB15 and CICIDS2017. The CICIDS2017 dataset [42] comprises 2,273,097 normal records
and 557,646 attack records distributed over 14 attack classes. It was collected over 5 days.
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The UNSW-NB15 dataset [43–47] dataset consists of both real normal behavior and imitated
attack behaviors. It has 49 feature and 9 attack classes. It contains 2,540,047 records, of
which approximately 87% are normal records and approximately 13% are attack records.
Creators of the dataset also provided 10% of the original dataset as a subset of the dataset,
containing a total of 257,673 records, split between train and test sets. In this research, we
have opted to use the original complete dataset that contains 2,540,047 records.

The percentage of records of each class in both datasets as well as a description of the
attack classes are presented in Tables 1 and 2 for UNSW-NB15 and CICIDS2017 datasets,
respectively, highlighting the high imbalance within the datasets.

Table 1. Types of attacks in the UNSW-NB15 dataset with descriptions and frequencies.

Attack Type Description Frequency (%)

Normal Normal traffic records 87.3%

Fuzzers
Attacks that send a large volume of random and

invalid traffic to the target system causing
unexpected behavior

8.4%

Analysis Attacks that use port scanning or malicious HTML
penetration scripts to breach web applications 1.7%

Backdoor Attacker gains access to a system and leaves a
secret entry point for future access 0.9%

Denial of
Service (DoS)

Attacker overwhelms the targeted network or
server by flooding it with excessive data or requests

to disrupt its normal functioning rendering
legitimate users unable to access its services

0.6%

Exploits
Intrusions that take advantage of vulnerabilities or

bugs within an operating system or software
known by the attackers

0.5%

Generics Attempts made to break the key or cryptographic
system of a security system 0.1%

Reconnaissance
(Reconn)

An attack that involves collecting information
about the targeted computer network with the
intention of circumventing its security controls

0.09%

Shellcode (SC)
Attack that launches a command shell under the
attacker’s control to evade security controls of a

computer network
0.05%

Worms Malicious programs that self-replicate and spread
to other computer systems 0.006%

Table 2. Types of attacks in the CICIDS2017 dataset with descriptions and frequencies.

Attack Type Description Frequency (%)

Benign Normal traffic 80.3

DDoS
Distributed Denial of Service attack,

overwhelming a network by flooding it
with traffic

4.52

PortScan Scanning multiple ports on a host to find
vulnerabilities 5.61

Bot A compromised device controlled by an
attacker, often part of a botnet 0.07

FTP-Patator
Repeated attempts to crack FTP credentials
using different combinations of username

and password
0.28

SSH-Patator Repeated attempts to crack SSH credentials 0.21
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Table 2. Cont.

Attack Type Description Frequency (%)

DoS—Slowloris Denial of Service attack where partial HTTP
requests are sent to exhaust server resources 0.20

DoS—slowhttptest Denial of Service attack where partial HTTP
requests are sent to exhaust server resources 0.19

Infiltration Exploiting a vulnerable software to create a
backdoor for later access 0.0013

DoS—Hulk Denial of Service attack using the Hulk tool to
generate large volumes of web traffic 8.16

DoS—GoldenEye Denial of Service attack using the GoldenEye
tool to overwhelm web servers 0.36

Heartbleed Exploits a vulnerability in the Heartbeat feature
of OpenSSL to extract sensitive information 0.0004

Web Attack—SQLi SQL injection attacks, targeting databases by
injecting malicious SQL queries 0.0007

Web Attack—XSS Cross-Site Scripting, where malicious scripts are
injected into web pages viewed by other users 0.02

Web
Attack—Brute

Repeated attempts to guess web
login credentials 0.05

2.4. Detailed Framework Workflow

The XI2S-IDS framework operates in three key phases, which are illustrated in Figure 3.
First, the system preprocesses the data to ensure consistency and feature readiness. Second,
a binary classifier is applied to differentiate between normal traffic and potential attacks.
Finally, a deep learning-based multi-class classifier is used to further categorize detected
attack traffic into specific types. Each phase is carefully constructed to maximize detection
accuracy while balancing interpretability and computational efficiency.

Figure 3. Detailed architecture of the 2 stages.

In the data preprocessing phase, raw network traffic data is cleaned to remove address
features and null records. This step is crucial in IDS, as irrelevant attributes can dilute the
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model’s ability to detect attacks and unnecessarily increase computational overhead. A
new feature column is introduced to represent the total number of bytes transferred in each
record, as this information can be a strong indicator of anomalous behavior associated with
certain attack types such as DoS attacks.

Next, data standardization is performed using a Standard Scaler to normalize numeri-
cal features, ensuring that features with large value ranges do not dominate the learning
process. This is particularly important in IDS scenarios, where network traffic data often
contains a mix of high-variance and low-variance attributes. Categorical features, such as
protocol types and network services, are encoded using OneHotEncoding.

The dataset is split into training and testing sets with an 80/20 split for the binary
classification stage. Additionally, a 75/25 split within the training data is used to create
a validation set for the multi-class classifier, enabling hyperparameter tuning and early
stopping to prevent overfitting. A third version of the dataset is also generated by removing
all normal records, allowing the multi-class classifier to train exclusively on attack instances.
This targeted approach ensures the model focuses on learning the distinct characteristics
of various attack types, which is especially beneficial for improving detection rates of
low-frequency attacks.

2.4.1. Stage I: Explainable Binary Classifier

The first stage of the framework is the binary classifier phase. A diverse selection
of eight ML models, each with unique capabilities, was trained on the datasets to ensure
a comprehensive exploration of potential solutions for intrusion detection. The models
included variations of Stochastic Gradient Descent (SGD), Linear SVM [48], Decision Trees
(DTs) [48], RF [49], XGBoost, and LightGBM. Hyperparameter tuning was performed using
Optuna, a framework for automated optimization, to maximize detection effectiveness
while minimizing false alarms. Table 3 details the range of parameters optimized for
each model.

Table 3. Hyperparameters for ML binary classification.

Model Parameters

LinearSVC Loss: hinge; Regularization C: 5

SGD (log, hinge, mod. huber) Penalty: l1, l2; Alpha: powers of 10 [(−5)–2]

Decision Tree Max depth: [8–12], Min samples split: [4–6] Min
samples leaf: [9–13]

Random Forest Estimators: [200–400]; Max depth: [20–24]; Min
samples split: [2–6]; Criterion: gini, entropy

XGBoost
Learning rate: [0.001–0.1]; Max depth: [4–12];

Colsample bylevel: [0.1–1]; Subsample: [0.1–0.7];
Estimators: [200–400]

LightGBM

Boosting type: gbdt, dart, rf; Num leaves: [2–256];
Feature fraction: [0.4–1]; Bagging fraction: [0.4–1];

Bagging freq: [1–7]; Min child samples: [5–100];
L1: [(1 × 10−8)–10];

SHAP [50] is an explanation technique built upon the concept of Shapley values in
game theory that calculates the contribution of each feature to the final output of the model.
A significant advantage of SHAP lies in its versatility, as it can be applied across various
models and classifiers. The framework combines Shapley values with local interpretations
of the model to set an importance score for the dataset’s features. SHAP’s explanation for a
particular instance is derived through Equation (6) as follows:
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g(s) = v0 +
N

∑
i=1

visi (6)

where g represents the explanation model, s represents the simplified features, and νi

signifies the Shapley value corresponding to feature i. N denotes the maximum size of the
feature vector. Here, s belongs to the set {0, 1}N , where the presence of ‘1’ in s indicates
that the features in the new dataset align with those in the original data, while ‘0’ suggests
a disparity between the features in the new and original datasets.

The most important features can then be selected based on Equation (7) as follows:

IFj =
n

∑
i=1

|vj(xi)| (7)

where IFj is the average absolute Shapley value for feature j and n represents the total
count of records in the dataset.

2.4.2. Stage II: Attack Classifier

The second stage of the framework focuses on multi-class classification. To enhance
the models’ ability to distinguish between various attack behaviors, an attacks-only dataset
was created by removing all normal records from the dataset. This step allowed the models
to concentrate solely on attack patterns. Figure 4 illustrates the general workflow of the
multi-class classification phase.

Figure 4. General workflow of the multi-class classifier phase.

The CICIDS2017 and UNSW-NB15 datasets exhibit significant class imbalances, with
rare attack types like Heartbleed and Worms severely underrepresented. To address this,
the Synthetic Minority Oversampling Technique (SMOTE) was applied to oversample these
low-frequency classes. This augmentation ensures that the multi-class classifier effectively
learns the patterns of rare attacks without being dominated by more frequent classes.

Two deep learning (DL) models were developed and tested exclusively on the attack
data. The first model incorporated Bidirectional Long Short-Term Memory (BI-LSTM)
layers. The second model combined BI-LSTM and Convolutional Neural Network (CNN)
layers, drawing inspiration from a previous study [15].

The BI-LSTM model was chosen due to its demonstrated superior performance in
intrusion detection systems (IDSs), as evidenced in recent studies [51,52]. It consists of two
BI-LSTM layers, separated by a max-pooling layer. Critical feature extraction occurs in the
multi-class classifier, where the max-pooling layer after BI-LSTM layers encodes the most
important temporal features, enabling the model to focus on the characteristics that best
distinguish between different attack types.

Additionally, both models were tested with and without the use of SMOTE upsam-
pling on the attacks-only dataset. The final results were compared to identify the most
effective model for multi-class classification of IDS, across both the UNSW-NB15 and
CICIDS2017 datasets.
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3. Results
3.1. Stage I: Binary Classifier Results

The models were evaluated on several performance metrics, including accuracy, pre-
cision, recall, F1-score, FNR, and False Positive Rate (FPR). These metrics served as indi-
cators of each model’s ability to correctly classify instances of both normal and intrusive
network traffic.

The objective of the binary model is to detect the highest number of attack records
while achieving a low FNR and maintaining a high F1-score and overall performance.
Multiple classifiers were trained with a range of parameters, and the best parameters were
selected for each classifier. The classifier with the best performance was chosen as the
model for the binary classification stage of XI2S-IDS. Tables 4 and 5 show the results of the
eight ML models on both CICIDS2017 and UNSW-NB15 datasets.

Table 4. Performance evaluation on the CICIDS2017 dataset.

Model Accuracy Precision Recall F1-Score FNR FPR

LinearSVC 0.9717 0.9754 0.8339 0.8991 0.0288 0.0246
SGD (log) 0.9766 0.9513 0.8908 0.9201 0.0192 0.0486

SGD (hinge) 0.9762 0.9480 0.8914 0.9188 0.0191 0.0520
SGD (mod. huber) 0.9685 0.9785 0.8089 0.8857 0.0329 0.0214

Decision Tree 0.9975 0.9957 0.9877 0.9917 0.0021 0.0042
Random Forest 0.9988 0.9983 0.9939 0.9961 0.00107 0.0016

XGBoost 0.9992 0.9995 0.9995 0.9995 0.0005 0.0023
LightGBM 0.9993 0.9979 0.9974 0.9977 0.0004 0.0025

Bold values indicate the best result across all models for each evaluation criterion.

Table 5. Performance evaluation on the UNSW-NB15 dataset.

Model Accuracy Precision Recall F1-Score FNR FPR

LinearSVC 0.9875 0.9129 0.9967 0.9530 0.003 0.013
SGD (log) 0.9857 0.9298 0.9601 0.9447 0.039 0.010

SGD (hinge) 0.9868 0.9183 0.9836 0.9499 0.016 0.012
SGD (mod. huber) 0.9848 0.9268 0.9554 0.9409 0.044 0.010

Decision Tree 0.9894 0.9910 0.9248 0.9568 0.075 0.001
Random Forest 0.9876 0.9918 0.9099 0.9491 0.090 0.001

XGBoost 0.9880 0.9888 0.9160 0.9510 0.083 0.001
LightGBM 0.9952 0.9821 0.9803 0.9812 0.019 0.002

Bold values indicate the best result across all models for each evaluation criterion.

According to the reported results, XGBoost slightly outperforms LightGBM on the
CICIDS2017 dataset in terms of FPR (0.0023 vs. 0.0025), but LightGBM has a marginally
better FNR (0.0004 vs. 0.0005). On the UNSW-NB15 dataset, LightGBM performs signif-
icantly better in terms of recall (0.9803 vs. 0.9160) and FNR (0.019 vs. 0.083), meaning it
is better at detecting more attacks. XGBoost, however, has a slightly lower FPR (0.001 vs.
0.002). The remaining metrics are similar between the two ensemble models.

LightGBM is known for its speed and memory efficiency due to its use of histogram-
based learning and leaf-wise growth strategy compared to XGBoost which can be slower,
especially as datasets grow larger. Consequently, LightGBM is chosen for the remainder
of the experiments. The confusion matrix of LightGBM on both datasets is shown in
Figures 5 and 6.
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Figure 5. LightGBM confusion matrix on the CICIDS2017 dataset.

Figure 6. LightGBM confusion matrix on the UNSW-NB15 dataset.

For this experiment, SHAP explanations are generated for the chosen binary classifier
of experiment I, LightGBM, to help in understanding the reasoning behind classifying the
records as normal or attack. Figures 7 and 8 present the top 20 important features according
to the model, while Figures 9 and 10 show a detailed description of the effect of each feature
on the model for CICIDS2017 and UNSW-NB15 datasets, respectively.
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Figure 7. Top 20 features selected by LightGBM on the CICIDS2017 dataset.

Figure 8. Top 20 features selected by LightGBM on the UNSW-NB15 dataset.

In Figures 9 and 10, the SHAP values along the x-axis show the contribution of each
feature to the model’s output. Positive SHAP values indicate that the feature increases
the prediction, possibly predicting an intrusion, while negative SHAP values decrease the
prediction, possibly predicting normal traffic. The color represents the value of the feature.
Red corresponds to higher feature values, while blue represents lower feature values.
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Figure 9. SHAP plot analysis on the CICIDS2017 dataset.

Figure 10. SHAP plot analysis on the UNSW-NB15 dataset.

The SHAP plot of CICIDS2017 (Figure 9) effectively shows how different network
features contribute to the model’s decision-making in intrusion detection. High variance
in packet lengths and unusual flow characteristics are prominent indicators of potentially
malicious activity in the CICIDS2017 dataset. These insights align with typical network in-
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trusion patterns where attackers exploit packet size anomalies and irregular flow properties
to bypass traditional defenses.

Packet lengths and variations, features Packet Length Std, Min Packet Length, Bwd
Packet Length Std, and Bwd Packet Length Mean, suggest that anomalies in packet sizes
are strong indicators of malicious traffic. Attackers often use packets of unusual sizes or
highly variable packet lengths to evade detection or overwhelm the network.

Flow features, such as Init_Win_bytes_backward and Init_Win_bytes_forward, repre-
sent TCP connection properties that may hint at unusual or poorly structured traffic, often
linked with scanning or DOS-type attacks.

Packet rates features, such as Bwd Packets/s and act_data_pkt_fwd, suggest that the
rate of packet transmission and the data in forward packets are significant. High packet
transmission rates may indicate attempts to flood a target, whereas low data volumes in
forwarded packets might indicate reconnaissance activities.

The SHAP plot of UNSW-NB15 (Figure 10) highlights key indicators such as Time-to-
Live (TTL) manipulation, high data transfers, anomalous packet sizes, and unusual service
requests that appear to be strong signals of potential attacks. These patterns align well with
known network attack behaviors such as scanning, DoS, data exfiltration, and spoofing.

TTL and state features are highly indicative of suspicious traffic in this model. Attack-
ers often manipulate TTL values to avoid detection or maintain stealth in reconnaissance
activities. Service and protocol features, such as service_dns and proto_unas, have notable
impacts. DNS tunneling is a well-known technique for covert data exfiltration, and protocol
anomalies often hint at unconventional or unauthorized access attempts.

Traffic volume and size features, such as dload, sbytes, smeansz, and network_bytes,
capture unusual volumes or packet sizes, which are key indicators of both data exfiltration
and DoS-type attacks. Large packet volumes or highly irregular packet sizes are red flags
in network monitoring.

The SHAP results on both datasets illustrate the complexity of the model’s decision-
making process, encouraging greater trust from system experts by showing how the model’s
interpretation of features aligns with their understanding of network traffic patterns and
malicious behavior. This transparency allows analysts to focus their efforts on the most
critical indicators of attacks, streamlining the investigation process. Global explanations
can also reveal systemic vulnerabilities or patterns in attack methods, such as frequent
misuse of certain protocols or anomalies in data flow characteristics. This enables security
teams to preemptively address recurring attacks or adjust monitoring tools to better detect
emerging threats.

3.2. Stage II: Attack Classifier Results

In the second stage of XI2S-IDS, the focus is on classifying attack types using deep
learning models trained exclusively on attack data. This stage builds upon the output of the
binary classifier by categorizing detected attacks into their specific types, leveraging both
BI-LSTM and a hybrid CNN-BI-LSTM architecture. To evaluate the performance of these
models, we conducted experiments on the CICIDS2017 and UNSW-NB15 datasets, with
and without SMOTE oversampling. Figures 11–14 show four confusion matrices for the
four tested models on the CICIDS2917 dataset, while Figures 15–18 show four confusion
matrices for the four tested models on the UNSW-NB15 dataset.
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Figure 11. CICIDS2017 CM of the CNN-BI-LSTM model without SMOTE.

Figure 12. CICIDS2017 CM of the CNN-BI-LSTM model with SMOTE.

Figure 13. CICIDS2017 CM of the BI-LSTM model without SMOTE.
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Figure 14. CICIDS2017 CM of the BI-LSTM model with SMOTE.

Figure 15. UNSW-NB15 CM of the CNN-BI-LSTM model without SMOTE.

Figure 16. UNSW-NB15 CM of the CNN-BI-LSTM model with SMOTE.
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Figure 17. UNSW-NB15 CM of the BI-LSTM model without SMOTE.

Figure 18. UNSW-NB15 CM of the BI-LSTM model with SMOTE.

The results clearly demonstrate that SMOTE oversampling improved the performance
of both the BI-LSTM and CNN-BI-LSTM models. However, the models with SMOTE exhib-
ited fairly similar performance, with BI-LSTM showing better detection of low-frequency
attacks, while CNN-BI-LSTM was more effective at identifying common attacks. The
models’ performance without SMOTE was nearly identical, indicating that the addition of
CNN layers did not contribute to any significant improvement in attack detection.

Given the primary objective of this research—enhancing the detection of low-frequency
attacks—and the added complexity introduced by the CNN layers, the BI-LSTM model
with SMOTE was selected as the multi-class classifier for XI2S-IDS.

3.3. XI2S-IDS Results

With the trained models, XI2S-IDS was ready for testing and classification. All testing
records are passed to the binary classifier first. Whenever the classifier marks a record
as an attack, it is sent to the multi-class classifier for further classification into the attack
type. Meanwhile, global SHAP explanations of the binary classifier are available for
system experts.

A prediction set is created in the testing phase. All records classified as normal are
saved in the predictions set as a −1 value, while all abnormal classifications are passed to
the multi-class classifier. The latter’s predictions are saved in the prediction set with values
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ranging from 0 to 8 for the 9 attack classes of the UNSW-NB15 dataset and from 0 to 13 for
the 14 classes of attacks of the CICIDS2017 dataset.

When evaluating all test records, each prediction value is adjusted to correctly assign
the class label for normal records, which were initially marked as −1. This adjustment aligns
the predicted values with the true attack classes in the test set, ensuring the framework is
properly assessed and accurate metric percentages can be generated. The pseudocode of
the classification part for the UNSW-NB15 dataset is shown in Algorithm 1.

To evaluate the 2-stage IDS, a benchmark was created by training the same layers of
the chosen BI-LSTM network on the full dataset similar to traditional 1-stage classification
techniques. The results are compared together for both CICIDS2017 and UNSW-NB15
datasets as shown in Figures 19–22.

Algorithm 1 Classify Test Records.

Require: records R ∈ Test Data
Require: Binary classi f ier BC, Multiclass classi f ier MC
Require: empty list PRED

1: for all r ∈ R do
2: class ⇐ BC(r)
3: if class is 1 then
4: attack ⇐ MC(r)
5: PRED ⇐ attack
6: else
7: PRED ⇐ −1
8: end if
9: end for

10: for all p ∈ PRED do
11: if p ≥ 6 then
12: p = p + 1
13: end if
14: end for
15: for all p ∈ PRED do
16: if p is −1 then
17: p = 6
18: end if
19: end for

Figure 19. CM of 2-stage IDS on the CICIDS2017 dataset.
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Figure 20. CM of 1-stage IDS on the CICIDS2017 dataset.

Figure 21. CM of 2-stage IDS on the UNSW-NB15 dataset.

Figure 22. CM of 1-stage IDS on the UNSW-NB15 dataset.
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Comparing the two confusion matrices of the CICIDS2017 dataset, it is clear that
2-stage IDS outperforms traditional 1-stage classification. The framework’s 2-stage model
is better at correctly identifying benign traffic. It also can handle low-frequency attack
classes, such as Web Attack-XSS and Web Attack–Brute Force, better. The accuracy of the
2-stage framework is slightly higher than the traditional 1-stage IDS (0.9981 vs. 0.9945).

The same conclusion is reached for the UNSW-NB15 dataset. The framework’s 2-stage
model is better at correctly identifying benign traffic as well as handling low-frequency
attack classes, such as Worms, Shellcode, Analysis, and Backdoor. The framework’s
accuracy is slightly higher (0.9774 vs. 0.9754).

Detailed results of the framework vs. the benchmark on both datasets are shown in
Tables 6 and 7. The primary observation of the detailed results is that the 2-stage model gen-
erally outperforms the 1-stage model across multiple metrics, especially for low-frequency
attack types where detection is more challenging.

Table 6. Performance metrics for the CICIDS2017 dataset.

Precision Recall F1-Score

2-Stage 1-Stage 2-Stage 1-Stage 2-Stage 1-Stage

Benign 0.99 0.99 0.99 0.99 0.99 0.99
Bot 0.92 0.94 0.65 0.48 0.76 0.63

DDoS 0.99 0.99 0.99 0.99 0.99 0.99
DoS GoldenEye 0.99 0.99 0.99 0.98 0.99 0.99

DoS Hulk 0.99 0.97 0.99 0.00 0.99 0.98
DoS Slowhttptest 0.94 0.91 0.99 0.98 0.97 0.94

DoS slowloris 0.99 0.99 0.99 0.96 0.99 0.97
FTP-Patator 0.99 0.99 0.99 0.99 0.99 0.99
Heartbleed 0.99 0.00 0.80 0.00 0.89 0.00
Infiltration 0.75 0.00 0.67 0.00 0.71 0.00
PortScan 0.58 0.96 0.94 0.86 0.72 0.91

SSH-Patator 0.99 0.99 0.97 0.93 0.98 0.96
Web Attack–Brute 0.81 0.97 0.50 0.13 0.62 0.22
Web Attack-SQLi 0.00 0.00 0.00 0.00 0.00 0.00
Web Attack-XSS 0.36 0.99 0.70 0.03 0.48 0.06

Weighted avg 0.99 0.99 0.99 0.99 0.99 0.99
Bold values indicate the best F1-score across the 1-Stage and 2-Stage frameworks for each attack category and for
the weighted average.

Table 7. Performance metrics for the UNSW-NB15 dataset.

Precision Recall F1-Score

2-Stage 1-Stage 2-Stage 1-Stage 2-Stage 1-Stage

Analysis 0.11 0.00 0.13 0.00 0.12 0.00
Backdoor 0.10 0.00 0.32 0.00 0.15 0.00

DoS 0.34 0.54 0.69 0.00 0.46 0.01
Exploits 0.82 0.56 0.48 0.88 0.60 0.69
Fuzzers 0.68 0.44 0.59 0.37 0.63 0.40
Generic 0.99 0.99 0.97 0.98 0.99 0.99
Normal 0.99 0.99 0.99 0.99 0.99 0.99

Reconnaissance 0.83 0.80 0.79 0.62 0.81 0.70
Shellcode 0.18 0.47 0.70 0.02 0.29 0.04

Worms 0.11 0.00 0.73 0.00 0.18 0.00
Weighted avg 0.98 0.97 0.98 0.98 0.98 0.97

Bold values indicate the best F1-score across the 1-Stage and 2-Stage frameworks for each attack category and for
the weighted average.
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For the CICIDS2017 dataset, the 2-stage model performs significantly better in classes
such as Bot and DoS Slowhttptest, where it achieves higher F1-scores compared to the
1-stage model. For instance, the 2-stage model achieves an F1-score of 0.76 for bot detection,
compared to 0.63 for the 1-stage model, showing a marked improvement in handling
precision–recall trade-offs. Similarly, for DoS Slowhttptest, the F1-score of 0.97 for the
2-stage model highlights superior classification accuracy. The 2-stage model also performs
better on rare or difficult-to-detect classes like Web Attack–Brute Force and Infiltration,
which are missed entirely by the 1-stage model.

Similarly, in the UNSW-NB15 dataset, the 2-stage model outperforms the 1-stage
model on difficult-to-detect classes such as Analysis and Backdoor, where the 1-stage
model fails to identify these attacks at all (with precision and recall both at 0). The 2-stage
model shows some ability to detect these threats, achieving F1-scores of 0.12 and 0.15,
respectively. For more common attack types like Exploits and Reconnaissance, the 2-stage
model also demonstrates a better balance between precision and recall, leading to higher
F1-scores, such as 0.60 for Exploits compared to 0.69 for the 1-stage model.

4. Discussion
In this paper, XI2S-IDS, an intelligent 2-stage approach to building a NIDS, has been

presented. The approach makes use of the imbalance in the dataset by building a binary
classifier that learns the normal behavior of users in the first stage, powered by SHAP
explanations to increase trust in its decision, followed by a multi-class classifier for the
second stage that only focuses on distinguishing the types of attacks as well as using
SMOTE to oversample low-frequency attack records.

The results of the first stage show that LinearSVC and SGD variants (log, hinge, mod.
huber) show decent performance but are clearly outperformed by tree-based ensemble
models, especially in terms of recall and FNR. Ensemble models, XGBoost and LightGBM,
dominate in both datasets, offering the best balance between high precision, recall, and low
error rates, making them the most reliable models for both datasets.

Ensemble models perform better because they combine multiple Decision Trees, re-
ducing both variance and bias. Their ability to handle complex, non-linear relationships
leads to superior accuracy, recall, and F1-scores compared to simpler models. The boosting
techniques used in these models allow them to iteratively learn from mistakes, making
them more robust in detecting network traffic anomalies.

Linear models are precise but struggle with capturing complex patterns, while basic
tree-based models can overfit and affect generalization. Ensemble models mitigate these
issues by improving weak learners in each iteration, resulting in better performance across
metrics. LightGBM was chosen as the binary classifier of the first stage. A comparison
of LightGBM binary classification results with related work is shown in Table 8 for the
CICIDS2017 dataset and in Table 9 for the UNSW-NB15 dataset. The comparison clearly
demonstrates LightGBM’s superior performance over recent related research.

Table 8. Comparison of proposed versus related work on the CICIDS2017 dataset for binary classification.

Classifier Accuracy Precision Recall F1-Score

J48 [53] 99.88 NaN 99 -
DNN 1 layer [21] 96.3 90.8 97.3 93.9

DBN [54] 97.7 96.08 97.53 97
DNN LSTM [55] 99.55 99.36 99.44 99.42

Proposed Model LightGBM 99.9 99.7 99.7 99.7
Bold values indicate the best results for each evaluation criterion.



Future Internet 2025, 17, 25 23 of 28

Table 9. Comparison of proposed versus related work on the UNSW-NB15 dataset for binary
classification.

Classifier Accuracy Precision Recall F1-Score

LSTM [56] 85.8 79.7 99.4 88.5
SKM-XGB [35] 99.08 98.46 97.46 97.84

DNN [57] 99 - - 98.40
DNN LSTM [58] 81 83.55 81.38 80.51

Proposed Model LightGBM 99.52 98.21 98.03 98.12
Bold values indicate the best results for each evaluation criterion.

The second stage consisting of the attack-classifier highlights the correlated attacks
that seem to be indistinguishable from classifiers. For example, in the CICIDS2017 dataset,
the web attacks brute force and XSS seem to be tightly coupled. However, using SMOTE
upsampling enhanced their classification rate. In UNSW-NB15, the Exploits attack was
favored by the model when classifying different types of attacks, causing an issue in
classification that was fixed using SMOTE upsampling. The detection of low-frequency
attacks, a key challenge in the field, was significantly enhanced through the application
of a two-stage classification process and the use of SMOTE for handling class imbalances.
Comparing XI2S-IDS with the traditional benchmark of the 1-stage classifier highlighted
the importance of learning normal behavior by leveraging the imbalance in the datasets.
Results of the 1-stage benchmark classifier illustrate the classification of low-frequency
attacks as normal records while dividing the classification into two stages effectively and
correctly classifying low frequency attacks.

XI2S-IDS was able to decrease the FNR of the low-frequency attack classes in both
datasets as shown in Tables 10 and 11. The performance on rare attack types such as
Heartbleed and Infiltration was particularly notable. As seen in Table 10, the false negative
rate (FNR) for Heartbleed dropped from 100% in the 1-stage model to 20% in XI2S-IDS,
while Infiltration detection improved from 100% FNR to 33%. This dramatic improvement
underscores the efficacy of the 2-stage approach in focusing on low-frequency attack
detection, an area where most IDS traditionally struggle.

Table 10. FNR values of low-frequency attacks in the CICIDS2017 dataset.

CICIDS2017
Attacks FNR Heartbleed Infiltration PortScan SSH-Patator

Web
Attack–Brute

Force

Web Attack-Sql
Injection

Web
Attack-XSS

XI2S-IDS 20.00% 33.33% 3.99% 3.29% 50.16% 100.00% 32.79%
1-Stage IDS 100.00% 100.00% 13.97% 7.1987% 87.30% 100.00% 96.72%

Table 11. FNR values of low-frequency attacks in the UNSW-NB15 dataset.

UNSW-NB15 Attacks FNR Analysis Backdoor DoS Shellcode Worms

XI2S-IDS 86.80% 68.28% 30.64% 29.94% 26.67%
1-Stage IDS 100.00% 100.00% 99.60% 97.77% 100.00%

Upon further examination of the confusion matrices for both XI2S-IDS and the bench-
mark model, it was observed that while the benchmark model exhibited a lower FNR for
certain attack classes, such as Exploit, this came at the cost of increased misclassification in
other attack categories. The benchmark model tended to classify multiple unknown attacks
as Exploit, which is broadly defined as any attack exploiting system vulnerabilities. While
this resulted in a lower FNR for Exploit attacks, it led to higher misclassification rates for
other types of attacks, including Worms, Shellcode, DoS, Backdoor, and Analysis.
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The performance of XI2S-IDS is compared against several related research on CI-
CIDS2017 and UNSW-NB15 datasets as shown in Table 12 and Table 13, respectively. The
superior performance of XI2S-IDS is attributed to its architecture and preprocessing steps.
The two-stage design ensures that the binary classifier filters normal traffic effectively,
enabling the second stage to focus solely on attack classification. This division of tasks opti-
mizes the model’s learning capacity for complex and subtle patterns. The use of SMOTE
for oversampling addresses the inherent class imbalance in IDS datasets, allowing the
multi-class classifier to better learn patterns associated with rare attacks.

Table 12. Multi-class results comparison of the XI2S-IDS and related research on the CI-
CIDS2017 dataset.

Framework Accuracy Precision Recall F1

XI2S-IDS 99.8% 99.9% 99.8% 99.8%
GAN RF [59] 99.8% 98.6% 92.7% 95%

CNN LSTM ATT [29] 90% 81% 85%
XGB [30] 99.8% 99.8% 99.8% 99.8%

Bold values indicate the best results for each evaluation criterion.

Table 13. Multi-class results comparison of the XI2S-IDS and related research on the UNSW-
NB15 dataset.

Framework Accuracy Precision Recall F1

XI2S-IDS 97% 98.2% 97.3% 97.2%
VAE [23] 93% 95.2% 91.9% 93%
DNN [21] 66% 62% 66% 59%

PSO-ACO-GA + Rotation
forest and bagging [39] 91.2% 91.6% 91.3% NA

SAE [60] 89.1% 89.1% 63.2%% 90.8%
Bold values indicate the best results for each evaluation criterion.

While XI2S-IDS demonstrates improvements in evaluation criteria over related work, it
has certain limitations. The reliance on SMOTE for oversampling addresses class imbalance
but introduces the risk of overfitting, as the synthetic samples may not fully capture
the intricacies of real-world attack patterns, potentially impacting the model’s ability
to generalize to unseen data. Furthermore, while SHAP explanations provide valuable
insights into the decision-making process, their computational complexity poses a challenge
for real-time deployment, particularly in high-throughput environments where processing
speed is critical.

5. Conclusions
In this paper, we proposed XI2S-IDS, an explainable two-stage intelligent intrusion

detection system designed to enhance both the accuracy and interpretability of intrusion de-
tection in network security. XI2S-IDS effectively addresses the challenges of low-frequency
attack detection. This is achieved by combining a binary classification stage with a multi-
class classifier trained exclusively on attack records, resulting in improved false negative
rates (FNRs) for rare attack types.

XI2S-IDS integrates SHAP-based explanations, which provide valuable insights into
feature importance and model behavior, enabling greater trust in automated IDS outputs.
Experimental results on the UNSW-NB15 and CICIDS2017 datasets demonstrate the supe-
rior performance of XI2S-IDS compared to traditional single-stage classifiers, particularly
in its handling of imbalanced attack types and low-frequency threats.
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A significant challenge in developing IDS lies in the substantial class imbalance present
in most available datasets [60,61], which leads to a high FNR for low-frequency attacks.
Various researchers have proposed solutions to mitigate this issue, such as generating
synthetic records to balance the dataset or using only a subset of the data [24,62,63]. XI2S-
IDS addresses this challenge by training its multi-class classifier solely on attack records
and employing SMOTE oversampling to enhance the detection of rare attacks, allowing the
classifier to better learn the patterns of rare attacks and achieving low FNR as shown in
Tables 10 and 11.

The binary classification stage plays a key role in determining the overall performance
of XI2S-IDS, as it triggers the multi-class classification stage when an attack is detected.
Therefore, it is essential for the binary classifier to learn normal patterns and subsequently
detect any abnormal behavior regardless of the attack type. XI2S-IDS’s binary classifier
achieved an FNR of 0.0004 for the CICIDS2017 dataset and 0.019 for the UNSW-NB15
dataset, proving the effectiveness of the two stages in distinguishing and identifying
attacks compared to related research.

Another ongoing challenge in IDS is the lack of real-time evaluation environments [60].
Many studies face limitations due to resource constraints or concerns around data privacy,
making it difficult to assess the practical effectiveness of IDS in live systems. Real-time
testing is crucial for guiding future IDS development and ensuring systems can adapt to
dynamic network conditions. Detecting zero-day attacks also remains a critical unsolved
problem in the field [64,65]. Previous studies have shown that new attacks can go unde-
tected for an average of 312 days [66], presenting a major vulnerability for organizations.

This work highlights the significance of explainability in IDS, as well as the potential of
a two-stage architecture in addressing complex detection challenges inherent in real-world
network environments. Future work will focus on further reducing false negatives in the
binary classification stage and refining the multi-class classification for highly correlated
attack categories. Additionally, we plan to test XI2S-IDS in real-time scenarios to assess its
performance under live network conditions. By advancing the interpretability and effec-
tiveness of IDS frameworks, XI2S-IDS offers a promising direction for developing secure,
transparent, and adaptable cybersecurity solutions in increasingly connected environments.
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