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Abstract: The proliferation of the Internet of Things (IoT) has transformed the digital
landscape, enabling a vast array of interconnected devices to communicate and share data
seamlessly. However, the rapid expansion of IoT networks has also introduced significant
cybersecurity challenges. This paper presents a comprehensive survey of cybersecurity
in the IoT ecosystem, examining the current state of research, identifying critical security
vulnerabilities, and exploring advanced strategies for mitigating threats. The survey covers
various facets of IoT security, including device authentication, data integrity, privacy, net-
work security, and the emerging role of artificial intelligence (AI) in bolstering cybersecurity
defenses. By synthesizing existing research and highlighting ongoing challenges, this
survey aims to provide a holistic understanding of IoT cybersecurity and to guide future
research endeavors.

Keywords: Internet of Things; cybersecurity; network security; data privacy; blockchain
security

1. Introduction
The IoT has emerged as a transformative force in modern technology, driving innova-

tion across various sectors by enabling seamless connectivity among a vast array of devices,
sensors, and systems. From industrial automation to smart healthcare, IoT is reshaping
industries by facilitating real-time data collection, analysis, and decision-making, leading
to enhanced operational efficiency, reduced costs, and the creation of new business mod-
els. However, the very characteristics that make IoT so powerful—its distributed nature,
the heterogeneity of devices, and pervasive connectivity—also introduce unprecedented
cybersecurity challenges [1–3].

Unlike traditional information technology (IT) systems, IoT networks consist of di-
verse devices, ranging from powerful servers to tiny, resource-constrained sensors, all of
which must operate harmoniously in often untrusted environments. This heterogeneity
presents unique security challenges, as each device type may require different protection
mechanisms. Moreover, many IoT devices are designed with minimal security features
due to cost constraints or limited computational resources, making them susceptible to
various cyber threats. The consequences of such vulnerabilities can be severe, ranging from
the compromise of individual devices to large-scale disruptions in critical infrastructure
systems, potentially leading to catastrophic outcomes in sectors such as healthcare, energy,
and transportation [4–6].

Furthermore, the IoT ecosystem is characterized by its extensive use of wireless
communication, which, while enabling flexibility and scalability, also exposes networks to a
wider range of attack vectors. Wireless communication channels are inherently less secure
than wired ones, making them more vulnerable to eavesdropping, man-in-the-middle
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attacks, and jamming. Additionally, the dynamic nature of IoT environments, where
devices frequently join and leave the network, further complicates the implementation of
traditional security protocols, which are often designed for static, well-defined network
architectures [7–9].

Another critical aspect of IoT security is the data it generates and processes. IoT
devices continuously collect vast amounts of data, much of which are sensitive or private.
The protection of these data throughout its lifecycle—from collection and transmission to
storage and processing—is paramount. However, ensuring data confidentiality, integrity,
and availability in IoT systems is challenging due to the decentralized nature of data storage
and the reliance on third-party cloud services for data processing. Moreover, IoT systems
often involve multiple stakeholders, each with different security requirements and risk
tolerances, complicating the development of unified security policies [10–12].

The rapid evolution of IoT technology has outpaced the development of comprehen-
sive security frameworks, resulting in a landscape where security considerations are often
an afterthought rather than a foundational design principle. This oversight has led to the
proliferation of insecure devices and networks, which are now being exploited by attackers
for various malicious purposes, including data theft, unauthorized surveillance, and the
orchestration of large-scale distributed denial-of-service (DDoS) attacks [13–15].

In response to these challenges, the field of IoT cybersecurity has seen a surge in
research efforts aimed at developing innovative solutions that address the unique security
needs of IoT environments. These efforts include the design of lightweight cryptographic
algorithms tailored for resource-constrained devices, the development of decentralized
security models such as blockchain, and the application of AI and machine learning (ML)
to enhance threat detection and response capabilities [16,17].

The present survey distinguishes itself by addressing the cybersecurity challenges
in IoT through a more comprehensive and integrative approach compared to the surveys
summarized in Table 1. Unlike prior works that focus narrowly on specific aspects such
as blockchain, ML applications, or industry-specific IoT environments, this survey pro-
vides a broader scope by synthesizing diverse cybersecurity dimensions, including device
authentication, data integrity, privacy, network security, and the role of AI in enhancing
security. Furthermore, it delves into emerging technologies and methodologies, such as
federated learning, post-quantum cryptography, and decentralized identity management
systems, which are only briefly touched upon or overlooked in existing studies. By offering
an extensive analysis of both technical and operational challenges, this work serves as an
essential resource for developing scalable, adaptive, and future-proof IoT security solu-
tions. In conclusion, this submission contributes to the field of IoT cybersecurity in several
significant ways:

• It provides a comprehensive overview of the unique cybersecurity challenges specific
to IoT environments.

• It examines advanced strategies for IoT device authentication, data integrity, and
privacy protection.

• It analyzes the security implications of various IoT communication protocols and
network architectures.

• It explores the application of AI and ML in enhancing IoT cybersecurity measures.
• It identifies key areas for future research to address ongoing and emerging IoT security

challenges.

The remaining paper is illustrated in Figure 1 and structured as follows. Section 2
notes the importance of device authentication and identity management. Next, Section 3
analyzes the challenges of data integrity and privacy in the IoT. Section 4 refers to network
security and communication protocols. Moreover, Section 5 outlines the integration of AI



Future Internet 2025, 17, 30 3 of 32

and ML into IoT security. Section 6 discusses challenges and future directions. Finally,
Section 7 summarizes the findings of this study.

Table 1. Descriptive summary of related surveys on cybersecurity in IoT.

Survey Description

[18]
Overview of techniques and elements to achieve cybersecurity in blockchain-based systems. Includes
lessons learned from analyzing academic papers and industrial applications. Highlights gaps and research
opportunities.

[19]
Examines IoT cybersecurity frameworks, emphasizing communication protocols, cybersecurity challenges,
and intrusion detection systems (IDSs). Presents a validated IoT cybersecurity framework and discusses its
role in protecting data and systems.

[20] Investigates the application of ML in static analysis for IoT cybersecurity. Focuses on automating and
intellectualizing the analysis of heterogeneous IoT systems and proposes an intelligent framework.

[21] Explores learning-based methods for detecting cyberattacks in IoT systems. Discusses ML and deep
learning (DL) approaches for various attacks, including DDoS, spoofing, and man-in-the-middle attacks.

[22]
Surveys classifications and mitigations of cyberattacks on IoT and industrial IoT devices, focusing on
Industry 4.0. Highlights the integration of IoT with supervisory control and data acquisition systems in
manufacturing industries and related vulnerabilities.

[23]
Discusses cybersecurity threats in IoT-enabled maritime industries, addressing risks in maritime operations,
confidentiality, and integrity. Analyzes risk mitigation strategies and frameworks for safeguarding critical
systems.

[24]
Notes cybersecurity certification schemes for IoT, analyzing challenges in developing frameworks that
integrate risk assessment, security requirements, and governance. Provides insights into certification for
emerging IoT scenarios.

[25]
Comprehensive survey of cybersecurity in IoT-based cloud computing, focusing on threats, cloud
architecture, and the integration of AI and DL to enhance security. Covers challenges related to data,
network, and application layers.
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Figure 1. Illustrative diagram of the survey’s structure.
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2. Device Authentication and Identity Management
Device authentication and identity management are critical components of the security

architecture in the IoT ecosystem, serving as the first line of defense against unauthorized
access and malicious activities [26]. Unlike traditional computing environments, IoT net-
works are characterized by a massive scale of heterogeneously connected devices, each
with varying levels of computational power and security capabilities [27]. Diverse IoT
scenarios impose varying requirements for authentication mechanisms. For instance, in
healthcare IoT systems, device authentication must align with stringent privacy regulations
like HIPAA to safeguard patient data. At the same time, industrial IoT environments
demand real-time authentication to secure machinery and prevent unauthorized access.
Similarly, smart city applications often require scalable identity management to handle dy-
namic additions and removals of devices such as connected traffic lights and environmental
sensors [28–30].

One of the primary challenges in IoT device authentication is establishing trust in en-
vironments where devices are often deployed in untrusted or hostile settings [31]. Identity
management in IoT extends beyond mere authentication to encompass the entire lifecycle
of device identities, from provisioning and registration to revocation and decommission-
ing. One of the key challenges in IoT identity management is the dynamic nature of IoT
environments, where devices frequently join and leave the network, often with little or no
human intervention. This dynamic nature requires identity management systems that can
operate autonomously, ensuring that devices are securely integrated into the network and
that their identities can be managed without compromising security [32–36].

Traditional authentication mechanisms, such as Public Key Infrastructure (PKI),
though widely used in conventional IT systems, are often impractical for IoT devices
due to their resource-intensive nature [37–39]. IoT devices, particularly those with limited
processing power and memory, cannot easily handle the computational overhead associ-
ated with PKI’s key generation, encryption, and decryption processes. This limitation has
spurred the development of alternative authentication methods specifically tailored to the
constraints of IoT devices [40].

Elliptic Curve Cryptography (ECC) has emerged as a prominent solution for
lightweight authentication in IoT [41,42]. ECC offers comparable security to traditional
Rivest–Shamir–Adleman (RSA) encryption but with significantly smaller key sizes, leading
to reduced computational and storage requirements [43]. The reduced key size translates
into faster processing times and lower energy consumption, making ECC particularly well
suited for IoT devices that operate on limited power sources [44]. However, the implemen-
tation of ECC in IoT environments requires the careful consideration of various factors
such as key management, resistance to side-channel attacks, and the ability to scale across
large networks [45].

In addition to ECC, symmetric key cryptography remains a popular choice for IoT
authentication due to its efficiency in terms of both speed and energy consumption [46].
Protocols like the Advanced Encryption Standard (AES) are frequently employed for
device authentication in IoT systems [47,48]. The AES, with key lengths of 128, 192, and
256 bits, is widely used for device authentication in IoT systems. A 128-bit key provides
sufficient security against brute-force attacks while minimizing computational overhead,
making it suitable for resource-constrained devices. Longer keys, such as 256-bit, offer
enhanced security but increase processing requirements. The secure exchange of AES keys,
often facilitated by the Diffie–Hellman or Elliptic Curve Diffie–Hellman protocols, can
introduce vulnerabilities like susceptibility to man-in-the-middle attacks if not implemented
correctly [49]. While AES ensures strong encryption and efficiency, its reliance on secure
key management remains a limitation in large-scale IoT networks. However, the challenge
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with symmetric key cryptography lies in the secure distribution and management of
keys, particularly in large-scale IoT deployments [50]. Secure key distribution protocols,
such as the Diffie–Hellman key exchange, have been adapted for IoT but these still face
challenges related to scalability and the potential for man-in-the-middle attacks during the
key exchange process [51–53].

Beyond cryptographic techniques, physical unclonable functions (PUFs) have gained
attention as a novel approach to device authentication in IoT [54,55]. PUFs exploit the
inherent manufacturing variations in electronic circuits to generate unique, device-specific
responses that can be used for authentication purposes. Since these responses are derived
from the physical characteristics of the device, they are difficult to replicate or forge,
providing a high level of security. PUF-based authentication is particularly appealing for
IoT devices due to its low computational requirements and resistance to cloning attacks.
PUFs generate unique responses based on inherent device variations, requiring minimal
hardware operations like delay-based measurements. For example, ring oscillator PUFs
consume a few hundred nanowatts of power and require only kilobytes of memory for
challenge-response storage, making them suitable for resource-constrained IoT devices.
These architectures are integrated into MCUs and FPGAs for lightweight authentication,
with error-correction techniques ensuring reliability under environmental variations [56,57].
While PUF-based authentication is highly effective, deploying it at scale presents challenges,
such as the need for standardized interfaces and protocols to integrate PUFs into diverse
IoT ecosystems [58–60].

Decentralized identity management systems, leveraging blockchain and distributed
ledger technologies (DLTs), have been proposed as a solution to the challenges of scalability
and trust in IoT networks. By using blockchain, IoT devices can register their identities
in a tamper-proof ledger that is distributed across the network. This approach provides
several advantages, including the elimination of single points of failure and the ability to
audit identity transactions transparently [61–63]. Smart contracts, which are self-executing
contracts with the terms of the agreement directly written into code, can be utilized within
blockchain-based identity systems to automate identity verification processes and enforce
access control policies [64]. However, the integration of blockchain with IoT also raises
issues related to the overhead of consensus mechanisms, the latency of blockchain transac-
tions, and the energy consumption associated with maintaining a distributed ledger [65].

Another emerging trend in IoT identity management is the use of federated identity
models, which allow IoT devices to share identity credentials across multiple domains or
organizations. Federated identity management can simplify the process of integrating IoT
devices into diverse and multi-stakeholder environments, such as smart cities or industrial
IoT systems, by enabling devices to authenticate across different networks without needing
to re-establish their identities. This model, however, requires robust trust frameworks and
interoperability standards to ensure that identity information can be securely shared and
managed across different domains [66–69].

Identity management also plays a crucial role in ensuring the secure decommissioning
of IoT devices. When a device is retired or no longer trusted, its identity must be revoked to
prevent it from being used as a vector for attacks. This process, known as identity revocation,
must be carried out securely and efficiently to ensure that compromised or outdated devices
do not remain a threat to the network [70]. Techniques such as certificate revocation
lists (CRLs) and the Online Certificate Status Protocol (OCSP) have been adapted for IoT
environments, but these solutions often face challenges related to the timely propagation of
revocation information and the overhead of maintaining revocation infrastructure [71–74].

In summary, device authentication and identity management in IoT are complex,
multifaceted challenges that require solutions tailored to the unique characteristics of
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IoT environments. The development of lightweight, scalable, and secure authentication
mechanisms is critical to ensuring the integrity and trustworthiness of IoT networks. As the
IoT continues to evolve, the integration of emerging technologies such as PUFs, blockchain,
and federated identity models will be essential in addressing the security challenges
associated with the massive scale and heterogeneity of IoT devices [75–77]. A summary of
the works that analyzed the aspects of device authentication and identity management in
IoT is captured in Table 2.

Table 2. Summary of studies related to device authentication and identity management in IoT.

Topic References Summary

IoT Device
Authentication [26–36]

IoT device authentication and identity management are crucial for securing
heterogeneous and dynamic IoT environments, addressing challenges such as trust,
scalability, and compliance with specific requirements across diverse applications
like healthcare, industrial, and smart city systems.

PKI [37–40]
Focuses on the challenges and applications of PKI in IoT, including the
computational overhead and the specific issues related to managing and
distributing keys in IoT systems.

ECC [41–45]
Examines ECC as an efficient cryptographic method for IoT devices, offering robust
security with smaller key sizes that are suitable for devices with limited processing
power.

Symmetric Key
Cryptography [46–53]

Discusses the use of symmetric key cryptography, particularly AES, for IoT
authentication. It includes challenges related to secure key management, such as the
adaptation of Diffie–Hellman key exchange, and addresses issues of scalability and
security in large IoT networks.

PUFs [54–60]

Covers PUFs as a hardware-based authentication method in IoT, leveraging unique
physical characteristics of devices to provide secure and low-cost authentication
solutions. These references discuss implementation challenges and potential
applications in diverse IoT environments.

Decentralized
and Blockchain-
Based Identity
Management

[61–65]
Discusses the role of blockchain and decentralized ledger technologies in managing
IoT identities. These references highlight the potential of blockchain to provide
secure, scalable, and tamper-proof identity management systems in IoT.

Federated
Identity Models [66–69]

Focuses on federated identity management in IoT, enabling devices to authenticate
across multiple domains or networks without needing to re-establish their identities.
The references discuss trust frameworks and the integration of federated identity
systems in complex IoT environments.

Identity
Revocation [70–77]

These references address the processes for revoking the identities of IoT devices that
are no longer trusted or operational. Methods like CRLs, OCSP, and
blockchain-based revocation systems are discussed.

3. Data Integrity and Privacy
The challenges of data integrity and privacy in the IoT ecosystem are both profound

and multifaceted, driven by the inherent characteristics of IoT networks, including hetero-
geneity, scale, and the frequent deployment of devices in untrusted or physically exposed
environments. Ensuring data integrity within this context requires more than the applica-
tion of conventional cryptographic techniques [78]; it demands a nuanced understanding
of the specific threats and the development of solutions that are adaptable to the constraints
and operational contexts of IoT devices [79].
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3.1. Advanced Cryptographic Techniques for Data Integrity

Traditional methods such as hash functions [80–82], digital signatures [83–85], and
message authentication codes (MACs) [86–88] are commonly utilized to ensure data in-
tegrity by verifying that data have not been altered. However, the resource constraints
of IoT devices necessitate the adaptation of these techniques. Lightweight cryptographic
algorithms like lightweight block ciphers (e.g., PRESENT, SPECK) and reduced-round
hash functions have been specifically designed to operate within the limited computational
capabilities of IoT devices [89–91]. Despite these adaptations, ensuring the integrity of data
in transit and at rest remains challenging, particularly in environments where devices are
exposed to physical tampering or where secure key management is problematic [92].

3.1.1. Homomorphic Encryption: Technical Depth and Mathematical Framework

Emerging research has also explored the use of homomorphic encryption, which is a
cryptographic technique that allows computations to be carried out directly on encrypted
data, producing results that, when decrypted, correspond to those obtained by performing
the same operations on the plaintext. This property ensures that data remain confidential
during computation, a critical requirement in secure data processing [93,94].

The mathematical foundation of homomorphic encryption can be described as follows.
Let E be the encryption function, D the decryption function, and ⊕ and ⊗ the addition
and multiplication operations, respectively. For a plaintext space P and ciphertext space
C, homomorphic encryption satisfies the following properties. For addition, the scheme
ensures E(m1)⊕E(m2) = E(m1 +m2), where m1, m2 ∈ P . For multiplication, it guarantees
E(m1)⊗ E(m2) = E(m1 · m2). The decryption of the resulting ciphertext yields the corre-
sponding operation performed on the plaintext, such that D(E(m1)⊕ E(m2)) = m1 + m2

and D(E(m1)⊗ E(m2)) = m1 · m2.
Homomorphic encryption can be categorized into three main types based on the extent

of operations it supports. Partially homomorphic encryption allows either addition or
multiplication but not both. For example, RSA (Rivest–Shamir–Adleman) is a partially
homomorphic encryption scheme supporting multiplication. In RSA, encryption is per-
formed as E(m) = me mod N, where e is the public exponent and N is the modulus. For
two plaintexts m1 and m2, the multiplicative homomorphic property ensures E(m1) · E(m2)

mod N = (m1 · m2)
e mod N, preserving the multiplication under encryption [95].

Somewhat homomorphic encryption extends partially homomorphic encryption by
supporting a limited number of additions and multiplications. This approach is exemplified
by schemes such as Brakerski–Gentry–Vaikuntanathan, which use polynomial rings and
modular arithmetic to enable operations while controlling computational complexity [96].

Fully homomorphic encryption represents the most powerful form of homomorphic
encryption, allowing an arbitrary number of additions and multiplications on ciphertexts.
A foundational fully homomorphic encryption scheme, such as Gentry’s construction,
builds upon the learning-with-errors problem, a lattice-based cryptographic challenge
believed to be resistant to quantum attacks. The key generation process involves selecting a
secret key s ∈ Zn

q , a public key matrix A ∈ Zm×n
q , and a noise vector e ∈ Zm

q . The ciphertext
is formed as b = As + e mod q.

Encryption in fully homomorphic encryption involves encoding the plaintext m ∈
{0, 1} by adding it to the ciphertext modulus q scaled by ⌊q/2⌋. Thus, the ciphertext is
expressed as E(m) = (A, b + m · ⌊q/2⌋ mod q). Decryption is achieved by recovering m
through modular arithmetic using the secret key s. Specifically, the plaintext is obtained as
m = ⌈(b − As)/⌊q/2⌋⌉ mod 2.

The evaluation of operations on ciphertexts is performed using modular arithmetic.
The addition and multiplication of encrypted values increase the noise inherent in cipher-
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texts. Fully homomorphic encryption schemes address this by periodically reducing noise
through bootstrapping, which involves refreshing ciphertexts to enable continued opera-
tions. Homomorphic encryption, particularly fully homomorphic encryption, represents a
significant advancement in cryptographic techniques by enabling secure computation on en-
crypted data. Its mathematical rigor ensures the preservation of confidentiality throughout
the data lifecycle, providing a robust foundation for privacy-preserving applications [97].

3.1.2. Quantum Computing and IoT Security

Quantum computing represents a transformative technological development, offering
unparalleled computational capabilities while simultaneously posing significant threats to
the security of classical cryptographic systems. In the context of IoT security, the emergence
of quantum computing necessitates a reevaluation of cryptographic protocols to ensure
long-term resilience against quantum attacks [98].

Classical cryptographic systems, such as RSA and elliptic curve cryptography, rely on
the computational difficulty of problems like integer factorization and the discrete logarithm
problem. Quantum algorithms, such as Shor’s algorithm, efficiently solve these problems,
rendering these cryptosystems vulnerable. For example, RSA encryption relies on the
hardness of factoring a large composite modulus N, where N = p · q for two large primes
p and q. Shor’s algorithm can factor N in polynomial time, undermining the security
of RSA-encrypted communications. To mitigate these risks, the field of post-quantum
cryptography focuses on developing cryptographic protocols resistant to quantum attacks.
These protocols are based on mathematical problems believed to remain intractable even
for quantum computers, such as lattice-based cryptography, code-based cryptography,
hash-based signatures, and multivariate polynomial problems [99].

Lattice-based cryptography is particularly promising due to its versatility and effi-
ciency. One example is the learning-with-errors problem, which serves as the foundation
for many lattice-based schemes. The learning-with-errors problem can be stated as follows.
Given a matrix A ∈ Zm×n

q , a secret vector s ∈ Zn
q , and a noise vector e ∈ Zm

q , compute
the vector b = As + e mod q. The task of recovering s from (A, b) is computationally
hard, even with quantum resources. This hardness forms the basis of several cryptographic
primitives, including encryption schemes, key exchanges, and digital signatures [100].

Code-based cryptography leverages the hardness of decoding random linear codes.
One notable example is the McEliece cryptosystem, which uses error-correcting codes to
provide secure communication. Similarly, hash-based signatures, such as those based on
Merkle trees, offer quantum-resistant authentication mechanisms by relying on the one-way
nature of cryptographic hash functions [101].

Multivariate polynomial cryptography is another approach where the security relies
on the difficulty of solving systems of multivariate quadratic equations over finite fields.
Protocols based on this approach are efficient and suitable for resource-constrained environ-
ments, such as IoT devices. The adoption of post-quantum cryptographic protocols presents
unique challenges for IoT systems. Many IoT devices are resource-constrained, with limited
computational power, memory, and energy availability. Implementing quantum-resistant
algorithms in such environments requires careful optimization to balance security and
performance. Additionally, the transition to post-quantum cryptography involves en-
suring compatibility with existing systems and standards, which adds complexity to the
integration process [102].

3.2. Data Integrity in Distributed Architectures

IoT systems often rely on distributed architectures, such as edge computing, where
data processing occurs at the edge of the network, closer to the data source. In such
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architectures, ensuring data integrity requires secure communication channels, resilient
storage mechanisms, and robust synchronization protocols between edge devices and
the central cloud [103,104]. Techniques such as secure multiparty computation (SMPC)
and threshold cryptography have been explored to enable secure data aggregation and
processing across distributed nodes, ensuring that even if some nodes are compromised,
the overall integrity of the data is maintained [105–108].

Blockchain technology has also been proposed as a means to enhance data integrity
in distributed IoT systems. By creating an immutable and distributed ledger of trans-
actions, blockchain can ensure that data records are tamper-proof and verifiable by all
participants in the network. However, the integration of blockchain into IoT presents
significant challenges, particularly in terms of scalability and energy efficiency. The high
computational cost and latency associated with consensus mechanisms like proof of work
make blockchain less suited for real-time IoT applications, driving the need for alternative
consensus algorithms, such as proof-of-stake or directed acyclic graphs (DAGs), which are
more resource-efficient [109–114].

Secure Multiparty Computation and Threshold Cryptography

SMPC and threshold cryptography are advanced cryptographic techniques designed
to enhance the security and privacy of distributed systems. These methods are particularly
relevant in scenarios involving sensitive data processing across multiple entities, such
as in IoT environments, where devices often interact within decentralized and untrusted
networks. SMPC enables a group of parties to jointly compute a function over their inputs
while keeping those inputs private. This ensures that no individual party learns the inputs
of the others beyond what is revealed by the function’s output. Formally, consider n parties,
each with a private input xi, and a function f (x1, x2, . . . , xn) to be computed collaboratively.
SMPC ensures that the parties compute the function correctly while preserving the privacy
of xi for all i.

The mathematical framework of SMPC typically relies on secret sharing schemes [115].
In Shamir’s secret sharing, for instance, a secret s is divided into n shares (s1, s2, . . . , sn)

such that any subset of t or more shares can reconstruct the secret, while fewer than t shares
reveal no information about s [116]. This is achieved using polynomial interpolation. The
secret s is represented as the constant term of a randomly chosen polynomial P(x) of degree
t − 1 over a finite field Fq:

P(x) = s + a1x + a2x2 + · · ·+ at−1xt−1,

where a1, a2, . . . , at−1 are random coefficients. Each party is given a share si = P(xi), where
xi is a unique identifier for that party.

The privacy and correctness of SMPC are ensured through protocols such as the
GMW (Goldreich–Micali–Wigderson) and BGW (Ben–Or–Goldwasser–Wigderson) proto-
cols. These protocols allow secure computation of any function represented as a Boolean
or arithmetic circuit by ensuring that intermediate values during computation remain
secret [117].

Threshold cryptography extends the principles of secret sharing to cryptographic op-
erations, enabling secure key management and distributed trust [118]. In a (t, n)-threshold
scheme, a private cryptographic key k is divided into n shares, such that any t or more
shares can reconstruct k, but fewer than t shares reveal no information about the key.
Threshold cryptography is particularly useful in distributed systems for tasks such as digi-
tal signing, decryption, and key generation. For example, in a threshold digital signature
scheme, a group of parties collectively signs a message without reconstructing the private
signing key. Let H(m) represent the hash of a message m, and let the private key k be shared
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among n parties. A subset of t parties collaborates to produce partial signatures, which
are then combined into a valid signature on m. Mathematically, threshold cryptography
leverages techniques such as Lagrange interpolation for share reconstruction. Given t
shares (x1, y1), (x2, y2), . . . , (xt, yt), the secret k can be reconstructed as

k =
t

∑
i=1

yi ∏
j ̸=i

xj

xj − xi
mod q,

where q is the modulus of the finite field.

3.3. Privacy Preservation in IoT

Privacy concerns in IoT extend beyond the mere protection of data during trans-
mission and storage; they encompass the broader issue of preventing the unauthorized
inference of sensitive information. IoT devices often generate vast amounts of data that,
when aggregated and analyzed, can reveal patterns and insights about individuals or orga-
nizations. This has given rise to the concept of data minimization, where only a minimal
amount of necessary data are collected and processed, thus reducing the risk of privacy
breaches [119–121].

Techniques such as differential privacy have gained traction as a means to balance
data utility with privacy. Differential privacy is a robust mathematical framework designed
to protect individual privacy during data analysis. By introducing controlled noise into
computations, differential privacy ensures that the inclusion or exclusion of a single data
point has a negligible impact on the output, thereby safeguarding sensitive information
about individuals [122–124].

Differential privacy is formally defined as follows. Let M be a randomized algorithm
that operates on a dataset D, producing an output in a range R. The algorithm M satisfies
ϵ-differential privacy if, for all datasets D and D′ differing in at most one element, and for
all subsets S ⊆ R,

Pr[M(D) ∈ S ] ≤ eϵ · Pr[M(D′) ∈ S ],

where ϵ > 0 is the privacy loss parameter. A smaller ϵ indicates stronger privacy guarantees.
This definition ensures that an observer cannot confidently determine whether any

individual’s data are included in the dataset based on the output of M. The parameter
ϵ controls the trade-off between privacy and utility: lower values of ϵ provide stronger
privacy but may reduce the utility of the output.

Differential privacy is typically achieved by adding noise to the output of a compu-
tation. Two commonly used mechanisms are the Laplace Mechanism and the Gaussian
Mechanism [125,126].

Laplace Mechanism:

For a function f : D → Rk, the Laplace Mechanism adds noise sampled from the
Laplace distribution. If ∆ f is the global sensitivity of f , defined as

∆ f = max
D,D′

∥ f (D)− f (D′)∥1,

the mechanism outputs
M(D) = f (D) + Lap(∆ f /ϵ),

where Lap(b) denotes the Laplace distribution with scale parameter b.
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Gaussian Mechanism:

The Gaussian Mechanism is suitable when privacy is measured using (ϵ, δ)-differential
privacy, a relaxed version of the standard definition. It adds Gaussian noise with variance
proportional to the global sensitivity:

M(D) = f (D) +N (0, σ2), σ =
√

2 ln(1.25/δ) · ∆ f /ϵ.

In addition to differential privacy, the concept of federated learning has emerged as
a promising approach to privacy-preserving ML in IoT. In federated learning, instead of
sending raw data to a central server, IoT devices locally train ML models on their data
and then send only the model updates to the central server. This approach significantly
reduces the amount of sensitive data that need to be transmitted and stored centrally,
thus enhancing privacy. However, federated learning introduces new challenges, such as
ensuring the integrity and authenticity of the model updates and mitigating the risk of
model inversion attacks, where adversaries attempt to reconstruct the original data from
the model updates [127–129].

3.4. Privacy in Resource-Constrained Devices

The resource limitations of many IoT devices pose significant challenges for imple-
menting robust privacy-preserving mechanisms. Traditional encryption methods, while
effective, are often too resource-intensive for small, battery-powered devices [130]. To ad-
dress this, lightweight encryption algorithms, such as the Advanced Encryption Standard
(AES) in its truncated versions or custom lightweight block ciphers, have been developed
to provide a balance between security and performance [131–134].

Moreover, the adoption of hardware-based security features, such as Trusted Execution
Environments (TEEs) and PUFs, has been explored as a means to enhance privacy in
resource-constrained IoT devices. TEEs provide a secure area within the device’s processor
that can execute code and store data in a manner that is isolated from the rest of the system,
thereby protecting sensitive information even if the device is compromised [135–137].
PUFs, on the other hand, exploit the unique physical characteristics of semiconductor
devices to generate unique cryptographic keys that cannot be replicated, thus providing a
hardware-based root of trust [138–140].

3.5. Emerging Threats and Countermeasures

As the IoT continues to evolve, so do the threats to data integrity and privacy. One
emerging threat is the use of AI by adversaries to carry out sophisticated attacks, such as
data poisoning or model inversion, which can compromise both the integrity and privacy
of IoT systems. Countering these threats requires a multi-faceted approach, combining
traditional cybersecurity measures with advanced AI-based defenses, such as anomaly
detection systems that can identify and mitigate suspicious activities in real-time [141–143].

In conclusion, ensuring data integrity and privacy in IoT systems is a complex and
ongoing challenge that requires the continuous development and refinement of security
mechanisms. As IoT continues to permeate every aspect of our lives, the importance of
robust data integrity and privacy protection cannot be overstated. Thus, we should focus
on developing scalable, efficient, and adaptable security solutions that can keep pace with
the rapidly evolving IoT landscape, ensuring that the benefits of IoT can be realized without
compromising security [144,145]. A summary of the works that analyzed the aspects of
data integrity and privacy in IoT is shown in Table 3.
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Table 3. A summary of studies related to data integrity and privacy in the IoT.

Topic References Summary

Advanced
Cryptographic
Techniques for
Data Integrity

[79–102]

Discusses traditional and lightweight cryptographic
techniques such as hash functions, digital signatures,
and homomorphic encryption. Also covers
post-quantum cryptography and its applicability to
IoT data integrity.

Data Integrity in
Distributed
Architectures

[103–118]

Explores methods like SMPC, threshold
cryptography, and blockchain technology for
maintaining data integrity in distributed IoT systems,
particularly in edge computing environments.

Privacy
Preservation in
IoT

[119–129]

Focuses on privacy-preserving techniques such as
differential privacy and federated learning.
Discusses the challenges of implementing these
techniques in IoT, especially in scenarios with
large-scale data analytics.

Privacy in
Resource-
Constrained
Devices

[130–140]

Analyzes the implementation of privacy-preserving
mechanisms in IoT devices with limited resources,
including lightweight encryption algorithms and
hardware-based security features like TEEs and
PUFs.

Emerging
Threats and
Countermea-
sures

[141–145]

Identifies emerging threats to data integrity and
privacy in IoT, such as AI-based attacks, and
discusses potential countermeasures, including
AI-driven security solutions and anomaly detection
systems.

4. Network Security and Communication Protocols
The security of IoT networks is a complex and multifaceted challenge, deeply rooted in

the diversity and heterogeneity of the communication protocols that facilitate interactions
among IoT devices. These protocols, which govern the data exchange processes, are critical
to ensuring the confidentiality, integrity, and availability of information transmitted across
the IoT ecosystem. Given the limited resources of IoT devices, protocols are often designed
with an emphasis on efficiency, which can result in trade-offs with security. This section
delves into the intricacies of IoT network security, exploring the specific vulnerabilities
associated with widely used communication protocols, advanced mitigation techniques,
and emerging trends in protocol design and security [146–148].

4.1. Security Challenges in IoT Protocols

IoT communication protocols are essential for enabling seamless connectivity and data
exchange in IoT ecosystems. However, their design for efficiency and resource-constrained
environments often leads to significant security challenges. This section discusses the
security issues associated with widely used protocols, including MQTT (Message Queu-
ing Telemetry Transport) [149–151], CoAP (Constrained Application Protocol) [152–154],
Zigbee [155–157], and additional protocols such as Bluetooth [158], Z-Wave [159], Lo-
RaWAN [160], Thread [161], and Wi-Fi [162].

MQTT, which is widely used in industrial IoT and smart home applications, operates
on a publish–subscribe model that, while efficient, is susceptible to several attack vectors,
including man-in-the-middle (MitM) attacks [163], replay attacks [164], and unauthorized
access due to its default lack of encryption [165]. Although TLS (Transport Layer Security)
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can be layered over MQTT to secure communication, the overhead introduced by TLS can
be prohibitive for resource-constrained IoT devices [166].

CoAP, designed for use in lightweight M2M (machine-to-machine) communication,
is another protocol that faces security issues due to its reliance on UDP (User Datagram
Protocol), which inherently lacks the reliability and security features of TCP (Transmission
Control Protocol) [167]. CoAP’s use of DTLS (Datagram Transport Layer Security) to
secure its communications adds a layer of protection, but challenges such as the proper
implementation of DTLS in constrained environments and the potential for DoS attacks
remain significant concerns [168,169].

Zigbee, commonly used in wireless sensor networks and smart home applications,
operates on the IEEE 802.15.4 standard and uses AES-128 for encryption. Despite this,
Zigbee networks have been shown to be vulnerable to attacks such as key extraction,
traffic analysis, and device impersonation. The open nature of the Zigbee protocol stack,
while beneficial for interoperability, also exposes it to a wide range of potential security
threats [170–172].

Bluetooth, particularly Bluetooth Low Energy (BLE), is widely used in wearable
devices and short-range IoT systems. Although BLE improves energy efficiency, it remains
vulnerable to attacks like eavesdropping, replay attacks, and unauthorized device pairing.
Enhanced authentication mechanisms and the adoption of Secure Simple Pairing (SSP)
protocols can improve security in Bluetooth-based IoT applications [173,174].

Z-Wave, a low-power communication protocol often used in home automation sys-
tems, faces threats such as DoS attacks and encryption key compromise. Strengthening
Z-Wave networks requires improved key management systems, regular firmware updates,
and the integration of advanced encryption protocols [175,176].

LoRaWAN, a protocol for long-range, low-power IoT communication, is commonly
used in smart agriculture, logistics, and urban infrastructure. It faces challenges like session
key distribution vulnerabilities and replay attacks. Adopting end-to-end encryption and
secure key provisioning methods can help secure LoRaWAN-based systems [177,178].

Thread, an IPv6-based low-power protocol for connected devices, offers strong security
through its mesh networking capabilities. However, effective key management remains
critical to preventing unauthorized network access and data breaches [179,180].

Wi-Fi, while ubiquitous in IoT applications, has its own vulnerabilities, such as suscep-
tibility to key reinstallation attacks (e.g., KRACK) and weak password policies. Advanced
security protocols like Wi-Fi Protected Access 3 (WPA3) provide enhanced encryption and
authentication mechanisms, addressing many traditional Wi-Fi security issues [181,182].

4.2. Advanced Security Mechanisms

To address these vulnerabilities, several advanced security mechanisms have been
developed and proposed. For MQTT, techniques such as payload encryption, token-
based authentication, and the integration of zero-trust architectures are being explored
to enhance security without significantly impacting performance. The concept of zero-
trust, where every device is authenticated and authorized before it can communicate,
is particularly relevant for IoT, where devices may be deployed in potentially hostile
environments [183–185].

In CoAP, the use of object security, where security is applied directly to the data being
transmitted rather than the transport layer, has been proposed as a means to improve
security without the overhead associated with DTLS [186]. This approach, combined with
the implementation of secure key management protocols such as OSCORE (Object Security
for Constrained RESTful Environments), can mitigate many of the security risks inherent
in CoAP-based systems [187,188].
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Zigbee’s security can be enhanced through the implementation of stronger key man-
agement practices and the use of frequency hopping techniques to make it more difficult
for attackers to intercept and analyze communications. Additionally, ongoing research into
the use of quantum-resistant cryptography for IoT networks promises to provide long-term
security solutions that can withstand the advances in computational power expected in the
coming years [189–191].

4.3. Emerging Trends and Protocol Innovations

As the IoT landscape continues to evolve, new communication protocols and security
paradigms are emerging. One significant trend is the integration of Software-Defined
Networking (SDN) with IoT, where SDN’s centralized control model can provide greater
visibility and control over network traffic, allowing for more dynamic and responsive
security measures. By decoupling the control and data planes, SDN enables the real-time
monitoring of network conditions and the application of security policies that can adapt to
emerging threats [192–195].

Another emerging trend is the use of blockchain technology to enhance the security
and integrity of IoT networks. Blockchain’s decentralized and tamper-resistant nature
makes it an attractive option for managing IoT device identities and securing commu-
nications. Protocols such as IOTA, designed specifically for IoT, leverage the Tangle ar-
chitecture—a DAG that allows for scalable and secure transactions without the need for
miners, which is resource-intensive. This approach is particularly suited for IoT envi-
ronments, where resources are constrained and traditional blockchain solutions may be
impractical [196–198].

Additionally, the development of protocol-agnostic security frameworks is gaining
traction, where security measures are abstracted from the specific protocol and instead
applied at a higher layer of the network stack. This allows for a more uniform application
of security policies across heterogeneous networks, addressing one of the key challenges in
IoT network security [199–201].

A summary of the above works that analyze network security and communication
protocols is captured in Table 4.

Table 4. A list of topics and related studies dedicated to network security and communication
protocols.

Topic References Summary

Communication
Protocols
Overview

[146–148] Surveys and reviews on IoT communication
protocols and their performance.

MQTT Protocol [149–151] Studies on the MQTT protocol, including use
cases, security challenges, and implementations.

CoAP Protocol [152–154]
Research on the CoAP protocol, focusing on
securing communications and performance
analysis.

Zigbee Protocol [155–157]
Analysis of the Zigbee protocol, including its
application in various networks and security
aspects.

Bluetooth
Protocol [158,173,174]

Overview of Bluetooth vulnerabilities, such as
eavesdropping, replay attacks, and pairing
security issues.
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Table 4. Cont.

Topic References Summary

Z-Wave Protocol [159,175,176]
Security analysis of Z-Wave, including
challenges like DoS attacks and encryption key
compromise.

LoRaWAN
Protocol [160,177,178] Examines LoRaWAN security challenges, such

as session key vulnerabilities and replay attacks.

Thread Protocol [161,179,180]
Studies on the Thread protocol, highlighting
security through mesh networking and key
management.

Wi-Fi Security
Issues [162,181,182]

Discusses Wi-Fi vulnerabilities such as KRACK
attacks and advancements with WPA3
encryption.

MQTT Security
Issues [163–166] Discussions on security challenges in MQTT,

including attacks like MitM and DoS.

CoAP Security
Enhancements [167–169] Enhancements to CoAP security, including

DTLS vulnerabilities and protection methods.

Zigbee Security
Vulnerabilities [170–172]

Exploration of security vulnerabilities in Zigbee
networks, such as key extraction and device
impersonation.

Advanced
MQTT Security
Mechanisms

[183–185]
Proposed enhancements to MQTT security
through payload encryption and zero-trust
architecture.

Advanced CoAP
Security
Mechanisms

[186–188] Improvement strategies for CoAP security, such
as OSCORE for better key management.

Zigbee
Quantum-
Resistant
Cryptography

[189–191] Studies on the application of quantum-resistant
cryptography in Zigbee networks.

SDN Integration
with IoT [192–195] Research on integrating SDN with IoT for

improved security.

Blockchain and
IoT [196–198] Use of blockchain technology in IoT to enhance

security and integrity.

Protocol-
Agnostic
Security

[199–201]
Development of security frameworks that are
abstracted from specific communication
protocols.

5. Artificial Intelligence and Machine Learning in IoT Security
The integration of AI and ML into IoT security represents a paradigm shift, offering

both novel defense mechanisms and enhancing existing cybersecurity frameworks. In the
context of IoT, AI and ML are not merely tools for automation but are fundamental in
addressing the unique security challenges posed by the complexity, scale, and dynamic
nature of IoT environments [202–204].

One of the most critical applications of AI in IoT security is anomaly detection [205].
Traditional security systems rely on predefined rules and signatures to identify threats [206].
However, IoT networks are characterized by high variability in device behavior, making
it difficult to distinguish between normal and malicious activities using static rules. ML
algorithms, particularly those employing unsupervised learning, can be trained to recognize
patterns in network traffic and device behavior, enabling the detection of anomalies that
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may indicate security breaches [207]. Techniques such as clustering, autoencoders, and
generative adversarial networks (GANs) are increasingly being employed to identify
deviations from normal behavior, which can be indicative of a cyberattack [208–210].

Moreover, supervised learning models are being utilized to enhance IDS within IoT
networks. By training on large datasets that include labeled instances of both normal and
malicious activities, these models can classify incoming traffic in real time, improving
the accuracy and speed of threat detection [211–213]. Ensemble methods, which combine
the strengths of multiple learning algorithms, have shown particular promise in boosting
detection rates while minimizing false positives. Furthermore, the deployment of federated
learning techniques allows models to be trained across multiple IoT devices without the
need for centralized data collection, preserving privacy while enhancing security [214–216].

AI and ML also play a crucial role in threat intelligence and predictive analytics within
IoT security [217]. The vast amount of data generated by IoT devices can be leveraged
to identify emerging threats and predict potential security incidents. Natural language
processing (NLP) techniques are used to analyze unstructured data from threat reports,
social media, and dark web forums, extracting actionable insights that can inform proactive
defense strategies. Additionally, time-series forecasting models can be applied to predict
the occurrence of security events based on historical data, enabling the development of
predictive maintenance schedules and proactive security measures [218–221].

Another significant application is in the domain of secure device management. AI-
driven solutions are being developed to automate the process of device enrollment, configu-
ration, and firmware updates in IoT ecosystems. These systems can identify vulnerabilities
in device firmware and initiate automated updates, reducing the window of exposure to
potential exploits [222–225]. Furthermore, AI can enhance the security of device authen-
tication processes by incorporating behavioral biometrics and continuous authentication
mechanisms. These approaches analyze patterns in device usage and interactions, allowing
for the dynamic assessment of trust and the detection of compromised devices [226–228].

In the context of cryptographic security, AI and ML are being employed to develop
more resilient encryption schemes tailored to the resource constraints of IoT devices. For in-
stance, AI-driven optimization techniques can be used to design lightweight cryptographic
algorithms that balance security with computational efficiency [229–231]. Additionally,
AI is being explored as a means to secure cryptographic keys through techniques such
as quantum key distribution (QKD), where ML models are used to optimize key genera-
tion and distribution processes, enhancing the security of communication channels in IoT
networks [232–234].

However, the integration of AI into IoT security is not without challenges. Adversarial
ML is an emerging threat where attackers craft inputs specifically designed to deceive
AI models. In the context of IoT, adversarial attacks can be particularly damaging, as
they can lead to the misclassification of malicious activities as benign or vice versa. Re-
search into robust AI models that can withstand such adversarial manipulations is critical.
Techniques such as adversarial training, where models are trained on both legitimate and
adversarial examples, are being explored to enhance the resilience of AI systems in IoT
environments [235–240].

Additionally, the use of AI in IoT security raises concerns about the interpretability
and transparency of ML models. In critical applications such as healthcare or industrial
automation, it is essential not only to detect security breaches but also to understand the
reasoning behind the AI’s decisions. Explainable AI (XAI) is a burgeoning field that seeks
to make ML models more transparent, allowing security analysts to comprehend the basis
for a model’s predictions and to trust its outputs in high-stakes scenarios [241–245].
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The deployment of AI in IoT security also intersects with issues of scalability and
energy efficiency. IoT networks can comprise millions of devices, each generating data
that need to be processed in real time. Scaling AI solutions to handle this data deluge
without overwhelming the computational resources of IoT devices is a significant challenge.
Edge AI, where ML models are deployed directly on IoT devices or nearby edge servers, is
emerging as a solution to this challenge. By processing data closer to the source, edge AI re-
duces latency and bandwidth usage while maintaining robust security measures. Research
into low-power AI models, which can function within the strict energy constraints of IoT
devices, is also gaining traction, with techniques such as model pruning and quantization
being used to optimize the energy efficiency of AI algorithms [246–250]. The previously
discussed works that describe the synergy of AI and ML for cybersecurity in IoT are listed
in Table 5.

Table 5. A summary of studies related to AI and ML in IoT security.

Topic References Summary

AI and ML for
Anomaly Detection [202–210]

These references discuss the use of AI and ML
techniques, especially unsupervised learning,
to detect anomalies in IoT networks.

Supervised Learning
for Intrusion
Detection

[211–216] Focuses on supervised learning models to
enhance IDS in IoT environments.

AI in Threat
Intelligence and
Predictive Analytics

[217–221]
References cover AI and ML applications in
threat intelligence and predictive analytics for
IoT security.

Secure Device
Management with
AI

[222–228]

These studies explore AI-driven solutions for
secure device management, including
automated updates and continuous
authentication.

AI for
Cryptographic
Security

[229–234]
Focus on AI applications in developing
resilient cryptographic schemes and
optimizing key distribution in IoT.

Challenges with
Adversarial ML [235–240]

Discusses the risks and countermeasures
associated with adversarial machine learning
in IoT security contexts.

XAI for IoT Security [241–245]
References that delve into the importance of
explainability in AI models used for IoT
security.

Scalability and
Energy Efficiency in
AI for IoT

[246–250]
Covers research on scaling AI solutions and
improving energy efficiency in IoT, including
edge AI techniques.

6. Challenges and Future Directions
The field of IoT cybersecurity is confronted with an array of multifaceted challenges,

which are exacerbated by the rapid and often haphazard deployment of IoT devices across
diverse environments. These challenges are not only technical in nature but also span
regulatory, economic, and operational domains, each with its own set of complexities that
must be navigated to secure the IoT ecosystem effectively [251–253].

One of the most pressing challenges is the heterogeneity of IoT devices, which vary
widely in terms of hardware capabilities, communication protocols, and security require-
ments. This diversity is particularly evident across application domains. Industrial IoT
systems require real-time protection mechanisms to secure critical operational data and
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prevent downtime in predictive maintenance processes [254]. Wearable devices, used
extensively in fitness and healthcare, demand advanced privacy mechanisms to safeguard
sensitive personal data while respecting user consent [255]. Autonomous vehicles, mean-
while, require ultra-low-latency communication systems to ensure safe navigation and
resilience against cyberattacks on sensor data or control systems [256]. These examples high-
light the need for domain-specific security strategies that consider the unique operational
and regulatory contexts of each IoT application [257–259].

Another significant challenge is the issue of legacy devices, which were not designed
with security in mind and are often difficult or impossible to update. These devices
represent a substantial portion of the current IoT landscape and pose serious security risks.
The presence of these legacy systems creates a situation where new, secure devices must
coexist with older, vulnerable ones, leading to a weakest-link problem in the network.
Addressing this challenge requires innovative approaches such as retrofitting security
mechanisms onto existing devices or developing gateway solutions that can act as a security
intermediary between legacy devices and the broader network [260–262].

Interoperability among IoT devices and systems is another critical challenge, particu-
larly in environments where devices from multiple vendors must work together seamlessly.
The lack of standardized communication protocols and security frameworks can lead to
significant vulnerabilities, as attackers may exploit gaps between different systems. Future
research must focus on the development of robust interoperability standards that incorpo-
rate security as a foundational element. This includes not only technical standards but also
agreements on governance and accountability mechanisms across different stakeholders,
ensuring that security responsibilities are clearly defined and enforced [263–265].

Privacy concerns in IoT go beyond the mere protection of data; they encompass the
need to provide users with control over their data and transparency about how it is used.
The challenge lies in balancing the need for data collection, which is often essential for
IoT functionality, with the need to respect user privacy. This is particularly complex in
scenarios involving large-scale data aggregation and analysis, where the anonymization
techniques may not be sufficient to prevent the re-identification of individuals. Advanced
privacy-preserving techniques, such as secure multi-party computation and federated
learning, are promising avenues for research, but their integration into IoT systems remains
challenging due to resource constraints and the need for real-time processing [266–268].

The dynamic and often unpredictable nature of IoT environments also presents a
significant challenge for security. Unlike traditional IT systems, IoT networks are highly
distributed and decentralized, with devices frequently joining and leaving the network.
This fluidity complicates the implementation of consistent security policies and makes
it difficult to detect and respond to threats in real time. Traditional security monitoring
tools are often inadequate for IoT environments, necessitating the development of new
approaches that can handle the scale and dynamism of IoT networks. Techniques such as
distributed ledger technology (DLT) and decentralized identity management systems hold
promise in this regard, offering the potential to enhance the security and resilience of IoT
networks by distributing trust and reducing single points of failure [269–271].

Emerging technologies such as 5G and edge computing are expected to further com-
plicate the IoT security landscape. While these technologies offer significant performance
improvements, they also introduce new attack vectors and exacerbate existing vulnerabili-
ties. For instance, the shift towards edge computing, where data processing occurs closer
to the source of data generation, reduces latency but also increases the attack surface by
distributing processing across numerous, potentially insecure, edge devices. Securing these
edge environments requires new approaches to threat detection and response, including
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the use of AI-driven security analytics that can operate in real time and adapt to evolving
threats [272–275].

Furthermore, the regulatory environment surrounding IoT security is still in its nascent
stages, with many regions lacking comprehensive legal frameworks to address the unique
challenges posed by IoT devices. The absence of clear regulations and standards leads to a
patchwork of security practices that vary widely across industries and geographies. There
is a critical need for international cooperation in establishing regulatory standards that can
provide a consistent baseline for IoT security while allowing for regional adaptations. This
involves not only technical standards but also frameworks for data protection, privacy, and
the ethical use of IoT technologies [276–279].

Economic factors also play a crucial role in shaping the IoT security landscape. The cost
of implementing advanced security measures can be prohibitive for many organizations,
particularly in sectors such as agriculture and small-scale manufacturing where margins
are thin. This economic barrier often leads to security being deprioritized, resulting in
vulnerable systems that are ripe for exploitation [280,281].

In conclusion, the challenges facing IoT cybersecurity are vast and varied, requiring a
multidisciplinary approach that goes beyond technical solutions to encompass regulatory,
economic, and operational considerations. Future research could explore cost-effective secu-
rity solutions that do not compromise on protection, as well as innovative business models
that incentivize investment in IoT security. Also, it should focus on developing adaptive,
scalable, and cost-effective security solutions that can keep pace with the rapid evolution of
IoT technologies. As the IoT continues to expand, the need for robust, integrated security
measures will become increasingly critical, necessitating ongoing collaboration between
industry, academia, and government to ensure the safety and resilience of the IoT ecosys-
tem [282–287]. The list of key topics related to challenges of cybersecurity in IoT and future
directions is summarized in Table 6.

Table 6. A summary of studies related to challenges and future directions of cybersecurity in the IoT.

Topic References Description

Security
Challenges in IoT [251–259]

IoT cybersecurity faces diverse challenges driven by device heterogeneity,
regulatory constraints, and application-specific requirements such as real-time
protection in IIoT, privacy in wearables, and ultra-low-latency in autonomous
vehicles.

Legacy Devices
and Security Risks [260–262] Focuses on the challenges posed by legacy IoT devices that were not designed

with security in mind and potential solutions like retrofitting.

Interoperability
and
Standardization

[263–265] Highlights the challenges related to interoperability among IoT devices and
the need for standardized communication protocols and security frameworks.

Privacy and Data
Protection [266–268] Addresses privacy concerns, emphasizing the need for advanced

privacy-preserving techniques and secure data management in IoT.

Decentralized
Security Solutions [269–271] Discusses decentralized approaches like blockchain and DLT for enhancing

security in distributed IoT environments.

Emerging
Technologies and
IoT Security

[272–275] Explores the impact of emerging technologies like 5G and edge computing on
IoT security and the associated new attack vectors.

Regulatory and
Economic
Considerations

[276–281]
Examines the regulatory landscape and economic factors influencing IoT
security, emphasizing the need for international cooperation and cost-effective
solutions.

Future Research
Directions [282–287] Suggests future research directions focusing on scalable security solutions,

adaptive strategies, and enhancing stakeholder collaboration for IoT security.
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7. Conclusions
The landscape of IoT cybersecurity is marked by both significant advancements

and persistent challenges, reflecting the complexity and scale of IoT ecosystems. The
diversity of IoT devices, coupled with their widespread deployment across critical sectors,
necessitates a multifaceted approach to security that goes beyond traditional measures. The
advancements in lightweight cryptographic techniques, privacy-preserving algorithms,
and AI-driven anomaly detection represent important strides in securing IoT environments.
However, these developments are not sufficient on their own to address the full spectrum
of cybersecurity threats faced by IoT systems.

One of the critical insights from this survey is the need for holistic, end-to-end se-
curity frameworks that can be seamlessly integrated into the IoT lifecycle—from device
manufacturing and deployment to ongoing operation and decommissioning. The lack of
standardized security protocols and frameworks across different IoT ecosystems continues
to be a significant barrier to achieving robust security. This fragmentation leads to incon-
sistent security postures across devices and networks, creating vulnerabilities that can be
exploited by attackers. Future research must prioritize the development of interoperable
and scalable security frameworks that can be adapted to the diverse range of IoT devices
and applications.

Moreover, the rapid pace of technological innovation in IoT has outstripped the devel-
opment of corresponding security measures. As IoT devices become more sophisticated
and interconnected, the attack surface grows exponentially, making it increasingly difficult
to secure these systems using conventional approaches. This necessitates a shift toward
more proactive and adaptive security strategies. The integration of AI and ML in cyber-
security, while promising, also introduces new risks that must be carefully managed. For
instance, adversarial attacks on AI models could undermine the effectiveness of these
systems, leading to false positives or, worse, undetected breaches. This underscores the
importance of developing resilient AI models that can withstand such attacks, as well
as the need for continuous monitoring and updating of these models to keep pace with
emerging threats.

Another crucial aspect highlighted in this survey is the need for enhanced collaboration
between different stakeholders in the IoT ecosystem, including device manufacturers,
network operators, service providers, and regulatory bodies. The complexity of IoT security
challenges cannot be addressed by any single entity; rather, it requires coordinated efforts
across the entire supply chain. This includes the establishment of industry-wide best
practices, regulatory standards, and compliance frameworks that ensure a baseline level
of security across all IoT devices and networks. The role of government and international
regulatory bodies is particularly critical in setting these standards and ensuring their
global adoption.

Looking forward, there is a pressing need to focus on the scalability of IoT security
solutions. As the number of IoT devices continues to grow exponentially, security mech-
anisms must be capable of scaling accordingly. This includes not only the scalability of
cryptographic and authentication mechanisms but also the ability to manage large-scale,
distributed IoT networks securely. Techniques such as DLT, including blockchain, offer
promising avenues for achieving decentralized and scalable security in IoT, but their inte-
gration into existing IoT infrastructures poses significant challenges that must be overcome.

Finally, the human factor remains a critical, yet often overlooked, component of IoT
security. User awareness and education about IoT security risks, as well as the development
of user-friendly security interfaces, are essential for ensuring that security measures are
effectively implemented and maintained. As IoT devices increasingly permeate everyday
life, the onus is on both manufacturers and users to prioritize security.
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In conclusion, while the field of IoT cybersecurity has made considerable progress, it
remains a dynamic and rapidly evolving area of research. The complexity of IoT ecosys-
tems, combined with the ever-expanding threat landscape, requires continuous innovation
in security approaches. By building on the current advancements and addressing the
identified gaps, the research community can develop more robust and adaptive security
solutions that are capable of protecting the next generation of IoT devices and networks.
The future of IoT security lies in the ability to anticipate and counter emerging threats while
ensuring that security solutions are scalable, interoperable, and user-centric.
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