
Academic Editor: Qiang Qu

Received: 28 November 2024

Revised: 7 January 2025

Accepted: 8 January 2025

Published: 13 January 2025

Citation: Ferone, A.; Verrilli, S.

Exploiting Blockchain Technology for

Enhancing Digital Twins’ Security and

Transparency. Future Internet 2025, 17,

31. https://doi.org/10.3390/

fi17010031

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Exploiting Blockchain Technology for Enhancing Digital Twins’
Security and Transparency
Alessio Ferone *,† and Stefano Verrilli *,†

Department of Science and Technology, University of Naples Parthenope, 80143 Naples, Italy
* Correspondence: alessio.ferone@uniparthenope.it (A.F.); stefano.verrilli001@studenti.uniparthenope.it (S.V.)
† These authors contributed equally to this work.

Abstract: Blockchain technology has been applied in a wide range of domains and has
seen major developments in the last years, notably when integrated with other emerging
technologies. In this paper, we focus on the integration of blockchain and digital twins with
the aim of enhancing the capabilities of both technologies. In particular, we demonstrate
how blockchain can improve critical aspects of the security and transparency of digital
twins by analyzing a real-world scenario and evaluating produced experimental data.
This research identifies and addresses critical vulnerabilities in digital twins, particularly
data integrity and transparency, through blockchain-based validation mechanisms and
smart-contract integration. Various blockchain-related and digital twin-related technologies
are employed to enable the repeatability of the suggested approach. Additionally, an in-
depth analysis of such integration is provided to facilitate a symbiotic relationship between
these technologies by addressing key challenges, such as scalability, interoperability, and
performance, along with viable solutions that could advance their co-evolution in both
academic research and industrial applications.

Keywords: blockchain; digital twin; surveillance; Ethereum; smart contract

1. Introduction
In the current industrial landscape, digital twin technologies have emerged as a

prominent application to modern day challenges, along with the Internet of Things (IoT), by
enabling faster data generation and collection. A digital twin offers a robust framework for
representing physical objects and systems, allowing for the simulation and analysis of their
real-time behavior and performance. By leveraging digital twin technologies, industries
can optimize operations, predict potential issues, and make data-driven decisions that
enhance efficiency and reduce operational costs.

Meanwhile, IoT technologies have become a common solution in industrial applica-
tions, enabling faster, autonomous communication between interconnected devices. This
network of devices collects and exchanges data over the internet, fostering automation and
real-time decision-making across various sectors. The integration of IoT with digital twin
technologies has further revolutionized industrial operations by enhancing the flow of data
and facilitating more dynamic and informed control over processes.

The widespread use of digital representations in the industrial processes has resulted
in a constant rise in the consumption and exchange of industrial data. In the broader
landscape of IoT technologies, the cooperation between interconnected devices and the
extended reflection of those interactions to the physical counterpart has further increased
the impact on industrial operations and represented one of digital twins’ main advantages

Future Internet 2025, 17, 31 https://doi.org/10.3390/fi17010031

https://doi.org/10.3390/fi17010031
https://doi.org/10.3390/fi17010031
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-4883-0164
https://doi.org/10.3390/fi17010031
https://www.mdpi.com/article/10.3390/fi17010031?type=check_update&version=1

Future Internet 2025, 17, 31 2 of 29

over classical smart devices [1]. Moreover, this seamless exchange of information between
digital twins enhances control over system-generated data and enables the continuous
monitoring of potential malfunctions within the created ecosystem. Ref. [2] emphasizes
that the bidirectional communication between physical and digital realms ensures robust
performance monitoring and rapid fault detection.

However, as emphasized in numerous studies addressing the security challenges of
IoT technologies, digital twin systems are frequently targeted by potential attackers due
to their often inadequate security measures and widespread deployment in environments
with limited control. In particular, ref. [3] highlights vulnerabilities in the authentication
protocols of IoT devices, which can be exploited in digital twin systems. Ref. [4] dis-
cusses common attack vectors, such as data spoofing and unauthorized access, that can
compromise the integrity of digital twins.

As an extension of IoT smart devices, digital twin technologies can face similar risks,
including the possibility of data tampering and theft, which could potentially lead to data
breaches or leakage in the worst-case scenario. Studies such as [5,6] have examined real-
world instances where such security lapses resulted in significant operational disruptions,
underlining the need for enhanced protective measures.

A robust security ecosystem for digital twins must be established to facilitate a trans-
parent information exchange between digital representations while minimizing the perfor-
mance loss for the underlying physical devices. Ref. [7] proposes a multi-layered security
framework that combines encryption, authentication, and anomaly detection techniques to
address these challenges through third-party systems. Furthermore, the security solution
should be resistant to direct attacks aimed at compromising the security system’s infras-
tructure. Ref. [8] introduces EtherTwin, a blockchain-based system designed to ensure
tamper-proof and verifiable interactions in digital twin ecosystems.

Many possible solutions have been proposed over the years, addressing the problem
mainly by introducing internal controls over potentially unsafe information exchanges.
Ref. [9] highlights the role of blockchain-based distributed ledgers in ensuring data im-
mutability, while [3] underscores the importance of decentralized access control mecha-
nisms. These solutions primarily focus on the integrity and confidentiality of data but often
neglect the underlying security system’s vulnerability to a direct attack.

This research proposes an innovative approach that leverages the adaptability potential
of blockchain technology, a decentralized system that has experienced rapid adoption in
recent years. Refs. [10,11] discuss the widespread adoption of blockchain across industries,
highlighting its versatility in securing transactional and operational data. Beyond its initial
application in cryptocurrencies, blockchain has found widespread use in various domains.
Ref. [12] examines its integration into supply chains, showing how blockchain improves
traceability and accountability. The decentralized nature of blockchain enables the secure
and immutable storage of diverse data types, including documents, facts, packets, and
transactions, as [13,14] demonstrate in their respective studies.

However, despite these advances, a significant gap remains in ensuring the transparent
and secure integration of digital twin management systems with robust security frame-
works. This research aims to address this challenge by pioneering an innovative approach
that bridges digital twin ecosystems with blockchain technology. The intent is to create
a seamless integration that not only enhances data security and traceability but also en-
sures transparency in operations without compromising system performance. By enabling
real-time, secure interactions between digital twins and blockchain systems in a symbi-
otic relationship, this approach advances the state of the art, transforming how industrial
ecosystems manage and secure their data. The following paragraphs explore a potential

Future Internet 2025, 17, 31 3 of 29

application of this technology within the context of digital twin security, aiming to minimize
communication between the physical system and its blockchain-based counterpart.

In Section 4, we evaluate the proposed system’s performance, focusing on scalability
and its contribution to enhanced security while ensuring the correct functioning of the
solution proposed through multiple tests. Section 5 demonstrates its real-world application
using a real system and the newly integrated security system.

2. Related Works
In recent years, substantial academic attention has been directed towards the intersec-

tion of blockchain technologies and digital twin systems, driven by the increasing need
for enhanced data integrity, transparency, and security in industrial applications. The
paper [15] provides a comprehensive survey on blockchain applications in industries,
highlighting how blockchain’s decentralized and immutable nature can address critical
challenges in transparency, traceability, and security. Their work emphasizes the trans-
formative potential of blockchain for ensuring accountability and trust in data sharing,
particularly in resource-constrained environments.

Further, Ref. [16] explores the integration of digital twins and blockchain in the context
of construction projects, emphasizing how blockchain enhances accountability in informa-
tion sharing, thus enabling more trustworthy decision-making and reducing risks of data
manipulation. Their framework offers a novel approach to mitigating conflicts of interest in
large-scale projects by leveraging the blockchain’s distributed ledger capabilities to ensure
traceability and access control.

Another critical contribution is the work by [6], who conducted a systematic review
on the integration of blockchain and digital twins in smart-built environments. They
highlighted how blockchain enhanced the trustworthiness of digital twin systems by
providing mechanisms for secure and verifiable data exchange, particularly useful in
environments characterized by decentralized operations and distributed data.

Furthermore, Ref. [4] discusses digital twin security threats and countermeasures,
emphasizing the necessity for robust security frameworks in digital twins. Their findings
underscore the importance of blockchain’s role in mitigating security risks, such as unau-
thorized access and data tampering, which are especially critical in industrial applications
like manufacturing processes and smart cities.

Overall, these studies collectively underscore that the integration of blockchain and
digital twins not only addresses technological challenges but also significantly enhances
data security, accountability, and efficiency in industrial applications. They demonstrate
that leveraging blockchain for digital twins helps to foster more trustworthy and secure
systems in environments that demand high degrees of data transparency and integrity.

2.1. Consensus Algorithm

The consensus mechanisms employed in these blockchain types differ significantly.
For public blockchains, consensus algorithms such as Proof-of-Work (PoW) and Proof-of-
Stake (PoS) are typically used, where the emphasis is placed on computational power and
economic incentives to maintain network integrity. On the other hand, private blockchains
often rely on the Proof-of-Authority (PoA) consensus algorithm [17]. PoA operates by
relying on a system of trusted validators, where a committee of pre-approved nodes is
responsible for verifying transactions [18]. This approach assumes a higher level of trust
among participants, which enables faster transaction validation and scalability [10].

The use of PoA is particularly advantageous in private blockchain settings, as the pres-
ence of a designated group of validators not only accelerates transaction processing but also
addresses one of the fundamental challenges associated with blockchain technology—the

Future Internet 2025, 17, 31 4 of 29

need for rapid data exchange in environments with increasing volumes of information.
Hence, the application validity of one blockchain type over the other is the main aspect to
consider while choosing a suitable infrastructure solution and thus determine the superior-
ity of one consensus mechanism over the other.

2.2. Smart Contracts

Another prominent issue concerning blockchain technologies regards the lack of a
programmable way of interacting with it. This lack of classical distributed ledgers coupled
with the impossibility of modifying written transactions could lead to a loss of data integrity
and, in the worst-case scenario, data loss.

The academic discourse in this area predominantly highlights the transformative
potential of smart contracts in automating blockchain operations, thereby reducing or
entirely eliminating the need for third-party intermediaries in transactions. The deployment
of smart contracts within blockchain systems not only streamlines these processes but also
significantly enhances transparency and facilitates the debugging of complex workflows,
particularly in industrial environments [19,20].

Furthermore, the introduction of the auxiliary use of smart contract could also address
the problem related to the blockchain unsuitability for data storage by introducing accessi-
ble data structures designed for this task. This prominent characteristic of smart contracts
of storing a small quantity of data under the data structure’s element could eliminate the
need for off-chain storage solutions and integrate them into the digital twin blockchain
system [21].

On the other hand, this kind of reasoning is only possible by considering the small
quantity of data usually employed for controlling capabilities. In fact, since smart contracts
and their data are stored on the blockchain itself, the transfer of related information is
deemed to be at a slower speed compared to an off-chain solution. Also, in this case, the
adopted data storage solution is tied to a trade-off problem, the speed of the off-chain
solution or the trustworthiness of its on-chain counterpart.

In the context of integrating smart-contract technology with digital twin systems,
several studies have suggested leveraging ERC721 and ERC20 standards to maximize the
benefits of these systems [22]. By developing scripts on blockchain platforms that support
smart contracts, it is possible to standardize procedures and improve their auditability
and security characteristics. This standardization is particularly relevant for enhancing the
interoperability of smart contracts and ensuring secure data exchange across various nodes
in the network.

The ERC721 standard enables, in the digital twin context, the unique identification
and traceability of individual twin instances. For instance, in industrial applications, each
digital twin can be represented by an NFT, encapsulating key parameters of its physical
counterpart. This approach guarantees tamper-proof tracking of system changes, enhancing
accountability and reducing risks of data manipulation in shared environments. These
tokens, being distinct and non-interchangeable, provide a reliable means to track and
manage assets, thus preserving the integrity of the information associated with them.

Despite the described advantages, the implementation of a blockchain-based represen-
tation for digital twins also introduces certain challenges. One key concern is the potential
for increased complexity and abstraction in an already complex system. The additional
layer of blockchain could potentially complicate the digital twin infrastructure, making it
more challenging to manage and operate.

Moreover, while the immutability of smart contracts is often regarded as a benefit for
ensuring data integrity, it also introduces significant limitations. Once deployed, smart
contracts cannot be altered, which reduces their flexibility and hinders the ability to make

Future Internet 2025, 17, 31 5 of 29

iterative improvements. In response to these challenges, standards such as EIP-1967 [23]
and EIP-2535 [24] have emerged as key advancements in smart-contract engineering [25].
For example, EIP-1967 formalizes a method for proxy storage slot allocation, enabling
proxy contracts to delegate function calls to an implementation contract while securely
referencing its address within a fixed storage slot.

Additionally, EIP-1822 [26] introduced the UUPS (Upgradable and Upgradable Proxy
Standard), which aims to enhance the upgradability of smart contracts while preserving
their immutability and state integrity. This framework allows developers to implement
upgradable smart contracts without losing essential state or data. Traditional smart con-
tracts are immutable once deployed on the blockchain, meaning any necessary bug fixes or
feature enhancements require the deployment of a new contract address. The UUPS ad-
dresses this limitation by introducing a proxy mechanism that decouples contract logic from
data storage. The proxy contract retains state variables, while the implementation contract
contains the business logic. This separation ensures that contract upgrades can be applied
without altering stored data, maintaining the system’s integrity and ensuring continuity.

This approach minimizes the risk of storage collision and facilitates the upgrade
process. Proxy patterns utilizing EIP-1967, such as the Transparent Proxy Pattern and the
Universal Upgradable Proxy Standard (UUPS), have become foundational tools in modern
contract development [27]. By enabling pseudo-upgradability through carefully designed
versioning protocols, developers can achieve a balance between the immutability required
for security and the adaptability demanded by dynamic application scenarios [28].

2.3. Digital Twins

Digital twins represent one of the most prominent technologies to empower the IoT
infrastructure enabling data-driven approaches for industry management. Their implemen-
tation, however, faces significant challenges as pointed out by [29,30]: communication and
data security constitute a major downside and can be extremely challenging to integrate
into already established systems. Moreover, these authors highlight that the lack of a
clear data standardization and diversity in source systems represent another significant
inconvenience concerning the data exchange protocols used.

In the context of data security, particularly regarding communication with digital
twins, Refs. [31,32] broadly explored blockchain integration as one of the possible solutions
to address these challenges. The cooperative interaction between these two distinct tech-
nologies resembles an instance of technology fusion, a phenomenon which, as analyzed
by [33], has frequently recurred throughout technological history.

Although digital twins provide industrial systems with a precious source of analytical
information, Ref. [34] emphasizes that they lack the accountability and responsibility for
shared information, which could in turn negatively impact the integrity of data. Addition-
ally, these authors point out that data standardization remains a critical issue within the
digital twin ecosystem. The diversity of systems and platforms used across industries often
leads to the adoption of proprietary software solutions that handle data in ways that are
not universally compatible. This fragmentation impedes the seamless integration of digital
twins with other systems, hindering the effective exchange of information and limiting the
scalability and interoperability of digital twin applications.

3. Proposed Approach
To address the challenges related to the digital twin’s security system and avoiding

potential information leakage, we proceeded by defining the key objectives to satisfy. The
first is undoubtedly tied to the implementation of an access control system; this measure
safeguards the information exchanged with the digital twins and ensures that data are

Future Internet 2025, 17, 31 6 of 29

handled solely by authorized entities, thereby preventing their misuse for unauthorized
purposes. The first proposed measure to ensure the security of exchanged data is based
on the integration of blockchain accounts assigned to all authorized entities in the system.
Each authorized entity requires a corresponding blockchain address granting as proof of
his authenticity.

The validation system of communication sources relies on the introduction of a private
backbone blockchain. This blockchain records the entities interacting with the digital twin,
enhancing the overall security of the communication process. Due to the requirements
of our system, no monetary transaction is performed over this backbone structure, and
any transaction fee is totally excluded from the equation. Regarding the integrity of data
within the security system, a validation component is integrated to ensure that received
data correspond to the data sent by the originating entity. This measure is essential to avoid
discrepancies and to guarantee the reliability and authenticity of the exchanged data.

To achieve this objective, the system incorporates a data validation mechanism within
the smart-contract subsystem, complemented by a middleware component integrated into
the communication infrastructure. By leveraging the autonomy of the introduced stub
component within the digital twin subsystem, off-chain transaction signing is employed,
thereby maintaining the locality of the operation and avoiding unnecessary data transfers.
The integrated middleware component of the system manages the logical operations
serving as a foundation for the administrative control and management of the digital
environment and its full description is represented in Figure 1.

Blockchain Stub
(0x155e13...)

Digital twin system
Incoming

data Sending dataSending system

Blockchain Stub
(0x165e14...)

Sending hash Requesting hash Sending hash

Blockchain Stub
(0x143e11...)

Receiving system

Requesting hash

Underlying Blockchain

Blockchain
subsystem

Middleware
Component

Logical layer

Figure 1. Diagram of the proposed architecture for the communication between the system’s compo-
nents and the underlying blockchain.

To further enhance the security of data transmitted to the blockchain component,
a hashing mechanism is employed. The hash of the data is computed and transmitted
alongside the signed transaction. In a hypothetical communication, the digital twin only
accepts pre-validated information on the blockchain through the middleware component.
Additionally, data transmission from the digital twin occurs only after undergoing an
additional layer of validation. This approach ensures that the logical layer retains only the
“fingerprint” of the shared information, enriching the overall data locality while minimizing
the stored volume of data on the blockchain.

In order to guarantee a deterministic and programmatic approach to the digital twin’s
information and the underlying blockchain, a smart-contract-based subsystem is adopted to

Future Internet 2025, 17, 31 7 of 29

manage the logic governing the system’s components. Furthermore, to allow an incremental
upgradability of the proposed solution, the EIP-1967 design pattern is adopted over the
system logic through the implementation of an UUPS proxy.

The long-term usability of the system is strictly related to those characteristics, as they
are essential for ensuring the solution’s adaptability to evolving security requirements.
Those factors play a crucial role in the system’s future development and ensure a sustained
operational efficiency.

In addition to the specific security measures previously outlined, it is essential that
the proposed system incorporate robust administrative functionalities. These capabilities
enable continuous monitoring and dynamic modification of communication flows within
the digital environment. This characteristic is crucial for detecting and diagnosing potential
security vulnerabilities by allowing proper interventions in order to address them.

Furthermore, to enhance the overall security framework, it is necessary to establish an
internal security measure within the system to prevent unauthorized communication with
digital twins. This measure aims to isolate internal issues within individual sections of the
system and prevent them from spreading throughout the digital environment, which could
otherwise compromise the operational integrity of other connected components.

To implement these desired capabilities, the system architecture employs the Princi-
ple of Least Privilege (PoLP) approach. The latter is achieved through a clear structural
separation within the smart-contract design, explicitly distinguishing administrative func-
tionalities handled by the Manager sub-system from lower-level operations handled by the
Storing sub-system. This modular architecture results in the development of two distinct
smart contracts that, while operating independently, act as a cohesive entity with clearly
defined roles and responsibilities.

An additional advantage provided by the combined implementation of the upgradable
proxy pattern and role-based division within the smart-contract architecture is the ability
to continuously develop and update managing tasks without losing stored information in
the storage contract. This interesting feature of the proposed system enables the seamless
integration of new business logic into the existing framework without disrupting the natural
flow of information in the system. The path followed by data regarding the interaction
with this component is illustrated in Figure 2.

The final aspect of the proposed solution to address regards the performance of the
validation system employed, since the integration of blockchain technology into the system
architecture may introduce delays. Specifically, the performance bottlenecks could originate
from the concentration of requests towards a particular node potentially resulting in the
congestion of the network and delays in the processing of the requests.

To address the challenge related to the uneven distribution of requests, the system
involves the deployment of a load-balancing mechanism to evenly distribute the number
of incoming requests across multiple nodes, as shown in Figure 3. The load balancer
acts as a gateway for the middleware component and provide the appropriate address to
communicate with the blockchain. Regarding the consensus protocol employed by the
network nodes, which plays a critical role in determining system performance, a detailed
analysis is presented in the results section (see Section 4).

Future Internet 2025, 17, 31 8 of 29

Manager Contract V.4
Manager Contract V.4Manager Contract V.4

Upgradable proxyUnderlying Blockchain

Manager Contract V.4 Storage Contract

Blockchain subsystem

Administrator

Middleware Components

Smart contracts subsystem

Figure 2. Architecture used for the implementation of the smart contracts’ subsystem. The system’s
hashes are stored into a low-privilege contract while managing functionalities and access control
capabilities are accessed through a manager contract.

Underlying Blockchain

Middleware Components

Load balancer
Requests

Receive

Figure 3. The solution proposed to allow a balanced flow of requests from the system’s actors to the
nodes of the blockchain.

3.1. Implementation

In the next paragraphs, the methodology and practical implementation strategies
undertaken to fulfill the required objectives are analyzed.

3.1.1. Blockchain Creation

The architectural requirements outlined in this research necessitate a blockchain proto-
col that supports robust smart-contract functionality while allowing for future system up-
grades. To meet these criteria, we adopted the Ethereum protocol due to its well-established
presence in the blockchain industry and its comprehensive support for smart-contract de-
velopment.

The blockchain infrastructure for this study was implemented using Hyperledger
Besu [35], a highly regarded Ethereum client known for its enterprise-grade capabilities.
Besu offers exceptional flexibility in configuring private networks, making it particularly

Future Internet 2025, 17, 31 9 of 29

suitable for applications requiring secure, permissioned environments. Additionally, the
rich ecosystem provided by the Hyperledger suite ensures seamless integration with ana-
lytical tools and complements the experimental framework.

Hyperledger Besu was chosen for its compatibility with enterprise-level blockchain
requirements, particularly in the context of digital twin systems. Its robust support for smart
contracts and permissioned configurations aligns perfectly with the security, scalability, and
reliability demands of such systems. Moreover, Besu’s interoperability with the broader
Ethereum ecosystem ensures long-term adaptability, enabling smooth integration with
existing blockchain tools and frameworks.

Beyond addressing performance and security objectives, Hyperledger Besu enhanced
the reproducibility of the proposed blockchain architecture through a docker-based solution.
This capability facilitated straightforward deployment across diverse business-oriented
blockchain applications, ensuring the scalability, versatility, and practicality of the frame-
work in real-world scenarios.

It is important to note that while Hyperledger Besu was used in this implementation
for its ease of use and rich feature set, the proposed system is not dependent on this specific
software. Any blockchain platform that supports robust smart-contract functionality and
permissioned configurations can be utilized, as the general design of the approach is
platform-agnostic. In order to communicate with the blockchain, each actor involved in the
system requires a pre-authenticated address, already available at the moment of network
creation or added afterward. Once the communication is established without rejection from
the network, the encapsulated stub proceeds to validate its communications with the digital
twin by sending a signed message through the blockchain. Each validated transaction is
then stored in the isolated blockchain and recorded in the shared ledger.

3.1.2. Virtualization

In alignment with the requirements outlined in the preceding paragraph, the primary
objective of our proposed architecture was to establish a secure and isolated security system
while enabling the reproducibility of the proposed solution. To fulfill these requirements
for the designed backbone blockchain, we decided to introduce an additional layer of
abstraction by containerizing each component within the blockchain. This decision was
executed through the employment of the Docker engine [36], facilitating the creation of
blockchain nodes and the integrated load balancer. The additional system layer ensured
a controlled and secure interaction between components while maintaining them in an
isolated virtual environment.

Using the Docker-provided images for Hyperledger Besu nodes, our approach in-
volved configuring each node to align with the validation requirements of the network. The
abstracted configuration was then encapsulated in Dockerfile format, creating a modular
and flexible solution suitable for various network tasks. Following the virtual environment
configuration of the security subsystem, an entry point for network tasks was created
through port binding on the load balancer’s host machine. The configured solution was
then deployed as a component in the security solution ready to serve any request coming
from the involved actors of the system.

3.1.3. Smart Contracts

After establishing the foundational blockchain protocol, the next phase involved
defining the implementation of smart contracts to be utilized within the validation system.
For this development, Solidity was selected as the programming language, given its wide
recognition as a core language for smart contract programming on blockchain platforms [37].
Solidity’s robust features make it particularly well suited for constructing secure and reliable

Future Internet 2025, 17, 31 10 of 29

validation mechanics while ensuring alignment with industry standards. Moreover, the
integration of standardized contracts such as EIP-1967 further enhanced the development
experience of the proposed solution.

The development of the manager contract followed this path by integrating into its
deployment an upgradable proxy, which served as a stepping stone to integrate additional
features in previous iterations of the solution. In terms of its own logic, the manager con-
tract served as an on-chain security measure by enabling component communications and
providing administrative access to designed network addresses. To establish precise direc-
tionality between entities within the system, each approved communication was recorded
in the manager contract as a sender–receiver tuple within a stored list. This structured rep-
resentation of interactions ensured that all communications within the producer–consumer
framework complied with the predefined security protocols.

Furthermore, the administrative contract was uniquely designated as the sole autho-
rized entity for direct communication with the on-chain storage counterpart. This storage
component was configured to accept transactions exclusively from the manager contract
which initiated the connection and subsequently retrieved the required hash data. By
implementing a decoupled smart-contract architecture, the system ensured a robust data
preservation and recovery policy, minimizing the risk of data loss while providing an
interface-based communication between parts. This modular approach also allowed for
seamless updates to the manager contract without compromising the security infrastruc-
ture, thus maintaining the essential security support needed. Pseudocode describing the
functionalities provided by the manager contract to communicate with the storage contract
is provided below in Algorithm 1:

Algorithm 1 Manager communication logic with the connected storage contract

1: procedure MAPPINGEXISTS(_key)
2: return corresponding[_key].exists
3: procedure GETADMINLIST
4: Return AdminContractInstance.getAdmins()
5:
6: procedure STOREINTERFACE(Hash)
7: if MappingExists(msg.sender) is false then
8: revert
9: Call StoreVal(Hash, msg.sender) on StorageContractProxyInstance

10: procedure RETRIEVEINTERFACE(_receiver)
11: if correspondings[msg.sender].to ̸= _receiver then
12: revert
13: Call RetrieveVal(msg.sender) on StorageContractProxyInstance

Moreover, for reproducibility reasons, the code employed to perform the administra-
tive functionalities for the system’s topology management is provided through the same
framework as the previous pseudocode exemplification Algorithm 2.

The corresponding pseudocode representing the implementation logic of a “Storage”
smart contract is provided, as a direct counterpart to the previously defined manager
contract, in Algorithm 3. The contract serves as a secure data repository, with functionality
for storing and retrieving hashed values. It also incorporates access control mechanisms
to ensure that only authorized entities, such as a manager proxy, can interact with the
contract’s critical functions. The pseudocode highlights the logical flow of these operations
and the modifiers that enforce security.

Future Internet 2025, 17, 31 11 of 29

Algorithm 2 Manager contract administrative functionalities

1: procedure NEWCORRESPONDING(_sender, _receiver)
2: if MappingExists(_sender) is true then
3: revert
4: Set correspondings[_sender].to← _receiver
5: Set correspondings[_sender].exists← true
6: procedure DELETECORRESPONDING(_sender)
7: if MappingExists(_sender) is false then
8: revert
9: Set correspondings[_sender].exists← false

10: procedure UPDATEENTITY(_sender, _receiver)
11: if MappingExists(_sender) is false then
12: revert
13: Update correspondings[_sender].to← _receiver

Algorithm 3 Storage Contract Operations

1: procedure INITIALIZE
2: Set owner← msg.sender
3: procedure ISCALLER
4: require(ManagerProxyAddress == msg.sender)
5: Continue
6: procedure ISOWNER
7: require(owner == msg.sender)
8: Continue
9: procedure AUTHORIZEUPGRADE(newImplementation) override

10: if IsOwner condition is not met then
11: revert
12: procedure STOREVAL(Hash, Storer)
13: if IsCaller condition is not met then
14: revert
15: if ManagerProxyAddress ̸= msg.sender then
16: revert
17: Set CheckSum[Storer]← Hash
18: procedure RETRIEVEVAL(fromPK)
19: if IsCaller condition is not met then
20: revert
21: if then ManagerProxyAddress ̸= msg.sender
22: revert
23: Return CheckSum[fromPK]
24: procedure SETCALLER(CallerAddress)
25: if IsOwner condition is not met then
26: revert
27: Set ManagerProxyAddress← CallerAddress

The complete architecture regarding the developed smart contracts is provided in
the form of a class diagram in Figure 4. This representation highlights the symbiotic
relationship established between the contracts and the integration, in terms of pattern
utilization, of the UUPS.

Future Internet 2025, 17, 31 12 of 29

Figure 4. Relationship, in terms of contract’s functions, established in the component, clarifying the
role division enforced in the system.

3.1.4. Stub Components

To achieve the validation objectives designated for the middleware component within
the system, multiple implementations of the underlying logic were developed to commu-
nicate with the digital twin and the data senders and receivers. Specifically, in this study,
stubs were created in different programming languages, including Java 11 and C++ 11 with
Python 3-bound code and are available in the paper repository. Although the task of stub
development might appear dependent on the specific characteristics of each system’s actor,
consistent logic was applied across all implementations in order to guarantee coherence of
the system as a whole.

Thus, the implementation preserved core logic integrity across diverse programming
environments, aligning the middleware’s behavior consistently with the system’s broader
validation requirements. In particular, each stub component of the system presented a
corresponding implementation of the hash storing and retrieving while implementing a
system’s consistent hashing procedure in order to guarantee the autonomy of the solution
within the containing environment.

To ensure consistent functionality across all system stubs, each component was de-
signed to communicate autonomously with the blockchain subsystem, enabling seamless
data exchange with the digital twin. This interaction was facilitated by the hashing valida-
tion system, which served as an intermediary component to authenticate communication
within the architecture. The hashing validation system not only verified the legitimacy of
exchanges but also ensured robust security by systematically rejecting any unauthorized
communication. The final diagram examining a communication interaction between a
sending system and the digital twin is represented in Figure 5, which describes the data
flow during a canonical communication.

In order to allow interoperability by blockchain operators, we decided to implement
each of the component through the utilization of the Web3 functionalities. In fact, over its
vast use in different blockchain applications, the Web3 library also presents multiple imple-
mentations in different programming languages and a large following in the blockchain
community. Due to its flexibility, the Web3 library represents a suitable solution to provide
a shared implementation procedure while adopting a common logic between stubs.

Future Internet 2025, 17, 31 13 of 29

Sending system

Blockchain Stub Blockchain Stub

Digital twin system
Smart contract

system

Send
confirm

Send hash
transaction

Send data

Require
hash

Send
hash

Consume data

Figure 5. Sequence diagram of the communication steps in a data transmission.

4. Experimental Results
In this section, we present the experimental evaluation of the implemented system,

using the practical application described in Section 5 as a testbed. The experimental results
were derived from transaction logs collected from the blockchain network’s nodes and
Docker container consoles, providing a comprehensive view of the system’s operational
dynamics. The evaluation focused on two primary aspects: the security and administra-
tive functionalities of the system’s components and the performance of the underlying
blockchain framework. Initially, we conducted an in-depth analysis of the data flow during
communication with the digital twin system, examining both sending and receiving opera-
tions to ensure reliability and consistency. Additionally, security tests simulated scenarios
involving unauthorized data submissions and directionality mismatches to validate the
system’s resilience and the effectiveness of its smart-contract mechanisms.

Moreover, to assess the framework’s performance and robustness, we employed
Hyperledger Caliper, a blockchain benchmarking tool, to conduct a series of experiments.
These experiments measured critical metrics such as transaction throughput, latency, and
network scalability under varying conditions.

4.1. Security Analysis

This section provides an analysis of the tests conducted to evaluate the security
integrity of the proposed system. The examination focused on the security robustness of
smart contracts and supporting stub components, analyzing their functionalities within the
framework of established security requirements. Multiple tests were executed, and detailed
results were systematically recorded through logging outputs to validate the operational
logic and security measures implemented.

The smart contracts serve as the main mechanism for enforcing security policies in the
system. Unauthorized transactions involving actors different from those designed for the
communications can potentially lead to the malfunctioning of the system. Specifically, the
manager contract is crucial in securing the system, acting as a gateway for managing data
hashes and facilitating secure communication protocols.

Future Internet 2025, 17, 31 14 of 29

To assess the access control mechanisms, two separate account addresses were instan-
tiated for testing, one with administrative privileges and the other without. Both accounts
attempted to access restricted functions within the manager contract to update the list of
authorized communications. The transaction logs from these attempts provided insights
into the system’s response to authorized and unauthorized access requests.

Results showed that transactions initiated by the authorized administrative account
were processed successfully across all tested operations, as anticipated, while attempts
initiated by the unauthorized account were appropriately denied, consistent with the
system’s communication protocols and the access level assigned to the secondary address.
This outcome validates that access control mechanisms effectively restrict administrative
functionalities, aligning with the security objectives of the system.

Following the verification of the secure access to administrative functionalities within
the contracts, the next phase of analysis focused on evaluating the communication dynamics
between data-sending actors and the digital twin system. This specific test was designed to
examine the system’s resilience against unauthorized communication attempts that could
potentially alter the data representation within the digital environment.

Similarly to the access control testing performed on the smart contract’s administrative
functions, this test assessed the system’s response by initiating transactions from two
distinct addresses: one authorized as a valid data sender and another unregistered. The
anticipated outcome was an accepted transaction for the authorized address and a rejection
for the unauthorized one.

For this phase of testing, access restrictions provided by the backbone blockchain
were temporarily disabled to enable an isolated assessment of the management compo-
nent’s behavior in handling secure communications. Without this adjustment, the network
validators would automatically reject any transaction originating from a sender lacking
a registered address, preventing an authorized update of the digital twin’s information.
This approach allowed for a focused analysis of the system’s internal security mechanisms
independent of external blockchain-based access controls.

Also, in this case, the results of that testing phase were favorable, aligning with the
expected behavior of the manager contract’s security protocols. When data transmissions
were initiated from both addresses, the authorized address successfully completed a trans-
action recorded by a blockchain node, indicating that the manager contract’s internal
security systems approved the communication. On the other hand, for the second address,
a revert message was recorded by the blockchain’s nodes assessing the invalid nature of
the communication route followed.

In order to complete the tests performed over the manager’s account security re-
quirements, a last test was performed to assess the capability of the latter to validate
communication routes following a correct directionality. In this last scenario, both ad-
dresses were previously authenticated in the system with a communication path initialized
from the first account and received by the second one. In that test, we performed a reversed
transmission initialized by the second account and received from the first one.

According to the security logic, although a valid communication existed between the
two involved addresses, the directionality of that transmission should result in a rejection
from the manager contract. Although the results showed that the transmission was correctly
signed and sent, the outcome result was a rejection by the gateway contract indicating an
unauthorized communication between parties.

This series of tests confirmed our expectations regarding the manager contract’s
behavior, thereby confirming the security requirements outlined in Section 3.1 for the
overall smart-contract architecture. In the next phase of analysis, we extended the validation
of these security requirements to the system’s stub components, examining potential

Future Internet 2025, 17, 31 15 of 29

vulnerabilities in the communication framework from an alternative perspective within the
proposed solution.

4.2. Stub Testing

In order to guarantee the interoperability between the hosting system component and
the blockchain’s stub integrated into each of the actors involved, we now analyze the steps
followed by the security measures introduced. Moreover, in the last part of this discussion,
we focus on the security aspects regarding the consumption of invalidated data from the
digital twin’s system.

Following a canonical path of communication between the system’s actors, after a
channel initialization, a sender started to communicate with the digital twin while sending
data hashes to the storing contract through the manager gateway. The path followed by the
signed transactions was recorded by the validating nodes, which traced the steps followed
by the system in the update of the digital twin’s information.

Within the provided information, each functional aspect of the associated sub-module
could be identified, enriched with specific information regarding the processed data. The
hash values corresponding to the generated JSON files were recorded as input parameters,
followed by the receipts associated with the submissions of hashes to the blockchain.

While data were received from the direct communication channel connecting the
sender module and the digital twin, hashes were required from the blockchain’s smart
contract to be compared with the one obtained locally. The collected logs confirmed that
the data transmission by the auxiliary sender sub-module were successfully received by
the digital twin and were ready to be subsequently processed by the Hosting system.

As the last step of the message validation life cycle, the received information was
correctly validated by the sub-system, and the digital twin software proceeded to update
the information of the model, updating the underlying model. This fundamental test
allowed us to assert the correct behavior of the system under correct conditions, though it
left open important questions regarding the security protocols put in place.

In order to evaluate the security requirements of the communication process, we car-
ried out a behavioral analysis using as an example a transaction unknown to the validation
system forwarded to the digital twin system only by standard communication means. The
expected results described by the transaction life cycle should imply a discarded transac-
tion from the system. The following test simulated the concurrent transmission of both
unconfirmed data and confirmed data to the digital twin system.

The purpose of that test was mainly to evaluate the system’s robustness in preventing
interference by a potential malicious actor attempting to exploit the primary transmission
channel to compromise the digital twin’s management mechanism. It was expected that the
receiver system would maintain its intended functionality by disregarding any unconfirmed
messages, thereby continuing to receive an additional hash value and validate subsequent
incoming data.

In the specified test scenario, we configured two kinds of sender actors: a fraudulent
source only communicating with the digital twin through direct messages, and a canonical
source acting as intended for the system. Both actors involved proceeded to send syntac-
tically correct messages to the digital twin’s system, and the response of the latter was
registered through specific logging messages in the stub.

Through this analysis, we were able to assert the formulated hypothesis, obtaining
evidence of the predicted behavior. Any fraudulent transmission attempt resulted in a
mismatch between hash values received from the sources, leading the receiver module
to reject the received data for the digital twin update. Following this rejection, canonical
system operation resumed, allowing the validation cycle to continue as intended without

Future Internet 2025, 17, 31 16 of 29

causing service interruptions. The provided tests were essential to assess the security
requirements for the components of the system mostly subjected to possible attacks and
provided an opportunity to closely examine the actual functionality of the final system in
different scenarios.

Moreover, it is possible to further analyze the recorded results with respect to the CIA
Triad model to better highlight the design choices from a security strategy point of view.
The aforementioned model comprised three essential aspects:

• Confidentiality ensures that only authorized users have access to information;
• Integrity ensures information non-repudiation and authenticity;
• Availability ensures reliable access to information.

In this regard, the choice of the blockchain as the underlying distributed ledger for
secure information exchange aimed to follow the model prescriptions. In fact, the massive
use of encryption, both for saving data and service access, naturally enforces confidentiality
and integrity. In addition, by its distributed architecture, the decentralized nature of
blockchain ensures a high degree of availability.

For what concerns the systems components, considering the analysis summarized in
Table 1, it is clear that the proposed approach guarantees confidentiality, allowing only
authorized transactions to be propagated and hence recorded on the blockchain as a hash
value (thus enforcing integrity). The availability of the system is strongly connected to the
availability of the blockchain, because the smart contracts are also stored on the blockchain
and hence their availability is also guaranteed.

Table 1. Summary of security analysis for different components, showcasing potential threats and
system responses.

Tested Component Possible Threat Recorded Behavior Tested Scenario

Manager contract

• Illegal operations
• Data leaks
• Digital twin attack

Transaction reverted from the
manager contract

Updating admin list from an
unauthorized address

• Illegal communications
• Digital twin invalidation
• System malfunction

Transaction reverted as not
registered as a valid path

Sending hash data from an
unauthorized address

• Information misuse
• Data loss
• Coherence invalidation

Authorized actors, but
communication reverted

Invalid communication direction
from/to valid addresses

Stub components
• Unauthorized update
• Data invalidation
• System jamming

Discarded communications
without system interruptions

Data sent directly to the digital
twin system bypassing

hash validation

4.3. Performance Benchmarks

Although the provided tests for security requirements were essential to ensure the
system’s reliability, performance measurements were equally crucial in asserting the sys-
tem’s overall usability. The tests’ main objective in this paragraph concerned the evaluation
of multiple performance metrics regarding the blockchain backbone while providing a
reproducible environment for the results shown.

The provided tests leveraged the benchmarking capabilities of Hyperledger Caliper
in order to provide accurate and extensive results on the deployed blockchain network.
To achieve the following results, we proceeded by deploying in the digital twin system a
self-hosted private blockchain network through docker configuration files as defined in
Section 3.1. With the objective of registering performance metrics concerning transactions
traveling through the network, we introduced the additional docker container of the Caliper
image directly connected to the main network.

Future Internet 2025, 17, 31 17 of 29

The whole network was then deployed onto a suitable physical environment consist-
ing of an IMac machine equipped with 10 cores of computational power and 32 GB of RAM
and updated to the MacOS Monterey operating system. Full access to all the computational
resources described was then granted to the docker network, and it was connected with
the external environment through port binding on the host machine. Moreover, the com-
munication network between containers was managed through a local connection on the
specified machine to eliminate dependencies on the variable speed of the external network.

4.3.1. Performance Metrics

Evaluating the performance of a blockchain network is critical and requires a thorough
analysis, as it cannot rely on a single factor. Assessing network quality extends beyond
simply measuring transaction validation speed; a comprehensive examination of all avail-
able metrics is essential. As discussed in Section 2.1, a critical aspect of network transaction
speed and overall quality concerns the choice of a suitable consensus algorithm for the
designed problem. This section provides a quantitative analysis of several suitable proto-
cols to facilitate a data-driven approach in selecting the optimal solution. More generally,
network quality is assessed by identifying specific characteristics of the network and then
selecting those that best align with the requirements of the intended application. A short
summary of the included characteristics:

• Finality: capability of blockchain protocols to reach consensus between nodes without
creating additional branches in the network.

• Vitality: assessed through the maximum number of failing validation nodes before
reaching the collapse of the network’s validation capabilities.

• Throughput: speed at which transactions are evaluated and accepted by the network
and inserted in blockchain blocks.

• BFT (Byzantine fault tolerance): capability of the network to reach consensus in case
of partial validation node failing.

• Scalability refers to the network’s ability to sustain its validation rate as its configu-
ration change. Scalability is further divided into horizontal and vertical scalability.
Horizontal scalability measures the validation rate as the number of network validator
changes, while vertical scalability assesses the validation rate in response to variations
in available hardware resources.

While the characteristics outlined above provide valuable insights into the metrics
relevant for our testing phase, it is crucial to distinguish consensus protocols based on their
specific use cases. In this section, we analyzed several algorithms suitable for our objectives,
focusing in particular on the Clique, IBFT 2.0, and QBFT protocols. A short description of
the main characteristics of each of those protocols is provided:

• Clique: This protocol is designed for environments similar to Ethereum’s mainnet.
It allows for faster block addition and can operate with just one validator, making
it suitable for testing and demonstration purposes. However, it does not guarantee
immediate finality, which means forks can occur if the network experiences issues or
if there are insufficient validators available [38].

• IBFT 2.0 (Istanbul Byzantine Fault Tolerance): An evolution of the original IBFT
protocol, IBFT 2.0 requires at least four validators to ensure Byzantine fault tolerance.
It guarantees immediate finality, meaning once a block is added, it cannot be altered
or removed from the chain. This makes it suitable for production environments where
reliability is crucial [39].

• QBFT (Quorum Byzantine Fault Tolerance): Developed as an enterprise-grade version
of IBFT, QBFT also requires four validators and offers immediate finality. It incor-
porates a more efficient leader election process and reduces communication rounds

Future Internet 2025, 17, 31 18 of 29

needed for consensus compared to IBFT, making it better suited for larger networks
with higher scalability needs [38].

The unique characteristics, along with the primary similarities and differences of each
protocol, are summarized in Table 2. This table serves as a key reference in order to validate
our selection of the most appropriate consensus mechanism for our peculiar use case.

Table 2. Comparison of consensus protocols: Clique, IBFT 2.0, and QBFT.

Feature Clique IBFT 2.0 QBFT

Consensus type Proof of Authority (PoA) Byzantine fault tolerance
(BFT)

Byzantine fault tolerance
(BFT)

Fault tolerance Up to 50% of nodes Up to 33% of nodes Up to 33% of nodes

Performance High transaction throughput Moderate transaction
throughput

Moderate to high transaction
throughput

Block finality Probabilistic Immediate Immediate

Use cases Private networks High-security applications High-security applications

Strengths Simple, fast, effective in
trusted environments Strong finality, fault tolerance

Strong finality, improved
performance in BFT

environments

Limitations Lacks finality, vulnerable if
over 50% nodes fail

Lower throughput compared
to PoA Similar limitations as IBFT 2.0

4.3.2. Benchmarks on Throughput

The initial test conducted on our network configuration focused on evaluating the
network throughput by incrementally increasing the Transactions Per Second (TPS) sent to
the network for validation. In this analysis, we examined both the throughput and latency
performance across different consensus protocols to identify the most optimal protocol in
terms of transaction approval rate.

The transaction load began at a baseline of 100 TPS and progressively increased
until it reached 700 TPS. The transactions involved were associated with the “send hash”
functionality, which is designed to enable multiple concurrent connections to the digital
twin system. This setup served as a practical scenario for assessing the network’s ability to
handle varying levels of transaction demands while maintaining system efficiency.

As shown in Figure 6a, the results of the tests indicated that the throughput values
were generally similar across the three analyzed algorithms, with Clique exhibiting greater
instability in the number of transactions approved. Regarding the latency in Figure 6b, the
Clique algorithm slightly outperformed the others, showing a momentary equality when
reaching 600 transactions per second. In comparison, both QBFT and IBFT 2.0 demonstrated
nearly identical performance, with comparable latency times, reinforcing their similarity in
terms of overall performance.

Although the Clique protocol showed some important advantages in terms of valida-
tion speed, its inability to provide a consistent and stable environment for the digital twin’s
update requests made this protocol not well suited for our purposes in terms of reliability.
In the following tests, we still provided measurements utilizing that consensus protocol as
a comparison with the IBFT 2.0 and the QBFT counterparts.

Future Internet 2025, 17, 31 19 of 29

(a)100 200 300 400 500 600 700
0

100
200
300
400
500
600
700

Av
g

Th
ro

ug
hp

ut
 (T

PS
)

CLIQUE-Store
IBFT-Store
QBFT-Store

CLIQUE
IBFT2
QBFT

100 200 300 400 500 600 700
Transaction send Rates(req/s)

0.0

0.5

1.0

1.5

Av
g

La
te

nc
y

(S
)

(b)

Figure 6. The plot in (a) shows measurements of the average throughput due to a progressive
increase in transaction sending rate. Instead, the plot in (b) highlights the registered latency of the
three networks in the same scenario. (a) Throughput plot with respect to the consensus protocols.
(b) Latency plot with respect to the consensus protocols.

The next test aimed to evaluate the scalability characteristics of the consensus protocols
under consideration, with particular emphasis on their horizontal scalability. To investigate
that behavior, we assessed the network’s performance by gradually increasing the number
of validators, starting from a baseline of 4 and scaling up to a maximum of 14. During
that process, transactions were sent at a rate of 400 transactions per second, for a total
of 2000 transactions. The obtained results regarding the transaction throughput and the
effective latency are outlined in Figure 7a,b, respectively.

4 6 8 10 12 14
0

50
100
150
200
250
300
350
400
450

Av
g

Th
ro

ug
hp

ut
 (T

PS
)

CLIQUE
ibft2
QBFT

4 6 8 10 12 14
Network Size (Num of Validators)

0
20
40
60
80

100

Av
g

La
te

nc
y

(S
)

(a)4 6 8 10 12 14
0

50
100
150
200
250
300
350
400
450

Av
g

Th
ro

ug
hp

ut
 (T

PS
)

CLIQUE
ibft2
QBFT

4 6 8 10 12 14
Network Size (Num of Validators)

0
20
40
60
80

100

Av
g

La
te

nc
y

(S
)

(b)

Figure 7. Performance of the different consensus protocols in increasing network’s size configurations.
(a) Throughput plot with respect to the horizontal scalability. (b) Latency plot with respect to the
horizontal scalability.

Future Internet 2025, 17, 31 20 of 29

In this scenario, the Clique algorithm also reaffirmed its position as the protocol with
the lowest latency, although it demonstrated a lower transaction approval rate compared to
the others, due to the probabilistic nature of its consensus mechanism. Instead, the IBFT 2.0
and the QBFT algorithms exhibited similar behaviors in terms of throughput, as indicated
by the corresponding measurement plots. However, a steady increase in latency was
observed for IBFT 2.0 as the network size grew, reaching its peak at the maximum size of
the network. In fact, the latency recorded by the IBFT 2.0 algorithm consistently remained
lower than that of the QBFT, establishing a lower bound for its latency in comparison.

The narrow latency gap between these two consensus protocols necessitates further
analysis in the subsequent sections to determine the most suitable protocol for the specific
security requirements of our system’s environment. To clarify the obtained benchmark
results and designate a suitable consensus algorithm for our system’s purposes, we con-
ducted an additional test on these two protocols based on varying transaction send rate
configurations. The test highlighted the measurements obtained in a simulated utilization
of the real system described in Section 5 through its canonical use.

Moreover, we tested the capabilities of the network to serve in both sending and receiv-
ing hash modalities. The objective of these tests was to evaluate the system’s performance
under high transaction loads. Specifically, assuming a transaction rate of 60 transactions per
second from the different instances of the sender devices, the analysis determined whether
the system could support up to N occurrences in the real environment.

Analyzing the performance of the QBFT and the IBFT 2.0 algorithms, as presented in
Figure 8, it was observed that both algorithms exhibited similar latency and throughput
characteristics. However, QBFT demonstrated greater resilience to increasing transactions
per second compared to IBFT 2.0. These benchmarks illustrated the number of transactions
successfully validated (represented by solid lines) in relation to the number of transactions
sent per second (represented by dashed lines). Through these tests, the architecture of our
blockchain network could be effectively defined.

Summarizing the results, the series of tests conducted in this paragraph on the under-
lying blockchain framework and the associated consensus protocols led to the selection
of the QBFT algorithm as the underlying algorithm for our solution. Although the Clique
protocol initially appeared promising for the offered transaction speed, it demonstrated
instability early in the scaling and stress tests. In contrast, both QBFT and IBFT 2.0 main-
tained comparable performance across the benchmark suite. However, under conditions of
increased network load, subtle but significant performance distinctions emerged between
the two protocols, ultimately favoring QBFT.

Additionally, the network architecture proposed was configured to operate with
six nodes. This specific number of validators was chosen based on observed optimal
performance outcomes of the QBFT protocol, guaranteeing enhanced fault tolerance and
network resilience. The provided benchmarking results demonstrated the suitability of
the QBFT consensus protocol compared with the proposed requirements for the real-time
digital twin updates, maintaining a constant transaction throughput even during peak
loads while minimizing the overall latency. These metrics directly correlated with the
system’s objective to provide a secure yet responsive digital twin framework, ensuring its
scalability for high-demand industrial scenarios like supply-chain monitoring and other
IoT-enabled solutions.

Future Internet 2025, 17, 31 21 of 29

100 200 300 400 500 600 700
0

250

500

750

1000

Av
g

Th
ro

ug
hp

ut
 (T

PS
)

100 200 300 400 500 600 700
Transaction Send rate(req/s)

0
1
2
3
4
5
6
7
8
9

Av
g

La
te

nc
y

(S
)

tx rate store perf store

(a)

100 200 300 400 500 600 700
0

250

500

750

1000

Av
g

Th
ro

ug
hp

ut
 (T

PS
)

100 200 300 400 500 600 700
Transaction Send rate(req/s)

0
1
2
3
4
5
6
7
8
9

Av
g

La
te

nc
y

(S
)

tx rate store perf store

(b)

Figure 8. Average throughput and average latency of the two consensus protocols compared to the
effective number of transactions sent to the system. The storing functionality was tested for both
QBFT (a) and IBFT2 (b) consensus protocols. (a) QBFT protocol plots. (b) IBFT protocol plots.

It should be noted that other DLT models with different degrees of security and
performance could be evaluated for implementing the proposed approach. With regard to
DAG (Direct Acyclic Graph)-based models, although performance in terms of throughput
and scalability is on average better than blockchain models [40], they have a lower degree of
decentralization which results in a lower degree of availability. In addition, the consensus
mechanism is generally entrusted to fewer nodes, which reduces data integrity. Iota and
Nano (which, however, does not support smart-contract execution) fall into this category.
As for blockchain-based models, one possible alternative is Hyperledger Fabric, which
performs on average better than Ethereum (of which Besu is a client) [41]. However, Besu

Future Internet 2025, 17, 31 22 of 29

has two strengths that made us prefer it: better performance in terms of transaction rate
and the possibility of integration with the public Ethereum blockchain.

5. Working Example
This section presents a practical application of the proposed framework, illustrated

through the case study of the AiWatch system [42]. The primary objective of this modular
project is to develop a machine learning-powered system for the protection of physical
environments (e.g., rooms, hallways) in real-time scenarios. By integrating the proposed
architecture into a practical implementation, this study aimed to validate the obtained
results while verifying the feasibility of the proposed design and highlighting its potential
application in real-world systems.

In the context of this application, each physical space is represented by its correspond-
ing digital twin, while cameras serve as data-gathering agents for the virtual model by
capturing and transmitting information on detected entities. The produced data are sub-
sequently forwarded to an elaborating device, which is responsible for processing and
analyzing the received information to enable effective system operation. As a last step of
this procedure, the elaborated data are then retransmitted from different cameras into a final
destination server employed for the update of the environmental digital twin represented.

To facilitate efficient and reliable communication among devices within the system, the
integration of Apache Kafka serves as the primary communication channel. By managing
the system’s data queues through Kafka’s topic-based infrastructure, the architecture
enables the security system to concentrate on validation tasks at the component level.
The system adopts the JSON format as the communication standard, and with each data
transmission within Kafka topics, the message is formatted, ensuring consistent data
exchange standards across the system’s components.

The AiWatch system leverages real-time surveillance data to update digital twins,
serving as a proper test case for validating the proposed blockchain-based security frame-
work. By capturing and processing continuous streams of data from surveillance cameras,
AiWatch updates the digital twin models with actionable insights in real time. This dy-
namic and complex data flow highlights several critical challenges, including ensuring the
integrity and authenticity of transmitted data, maintaining system reliability under high
transaction loads, and providing scalability to accommodate increasing data volumes or
system expansions. The application of the blockchain-based proposed solution addresses
these challenges by offering a decentralized and tamper-proof layer of data validation
while providing a local autonomy for the actors involved resulting in enhancing both the
security and transparency of the system.

Within the AiWatch application, each component involved is assigned a specific
identifier that is used consistently throughout this discussion. Specifically, the term Tracker
refers to the camera modules responsible for the initial processing of image frames, while
the final destination server, tasked with managing digital twin information, is designated
as Ditto. The latter is chosen as a direct reference to the Eclipse Ditto 1.1.0 software, which
empowers the module’s functionality.

The focus of this discussion lies in integrating the proposed security system into the
pre-existing AiWatch architecture. To achieve this objective, the development of specialized
sub-modules for both Tracker and Ditto was required, while the specified smart contracts
and the underlying blockchain infrastructure were provided to support the system’s func-
tionality. A visual schematic description of the system is provided in Figure 9, where the
proposed integration is included.

Future Internet 2025, 17, 31 23 of 29

Apache
Kafka

Topic 1

Topic 2

Topic 3

Ditto Module

Ditto Blockchain
stub

Tracker
Module

Tracker stub

Tracker
Module

Tracker stub

Tracker
Module

Tracker stub

Apache
Kafka

Ditto topic

Anomaly detection
module

Backbone
Blockchain

Smart contracts

Figure 9. Diagram of the AiWatch system architecture, emphasizing the integration points for
blockchain-based security features. Black arrows indicate data flow, while the blockchain serves as a
tamper-proof layer for communication validation.

For the purposes of this analysis, further exploration of the general functionalities
provided by the AiWatch system was postponed in order to focus on the implementation
of the security system for managing the digital twin’s information. The objective was
to achieve a secure and reusable interface for interacting with the digital twin, thereby
ensuring consistent and reliable use of the collected data. In particular, the interaction with
the digital twin’s information with respect to the Anomaly Detection module was ignored
for it minimal or no risks in those communications. With this foundational definition of
the proposed integration points in place, the focus then shifted to the development of the
individual sub-modules.

Stubs’ Development

The legacy code written in C++ and provided by the developers of Tracker presents
a complex structure originated from the necessity of extracting key information from the
captured frames corresponding to the junctions of the recorded entities in the scene. A
critical function of that module is the transformation of extracted data into structured
JSON files, followed by their transmission to a designated Apache Kafka topic via an
appropriate wrapper. The proposed hash validation architecture integrates with this
process at the precise moment prior to data transmission through the Kafka topic. At this
stage, the connection to the blockchain is initialized, and the data are stored within the
smart contracts. However, due to compatibility issues with the C++ implementation of the
Web3 library—used as a standard framework for the stub modules—a Python- wrapped
solution was introduced. This solution, executed within the C++ code, was incorporated
to enable communication with the system’s unified blockchain infrastructure and allow
access to the validation system’s functionalities.

As illustrated in Figure 10 the introduction of the blockchain communicating sub-
module through the Python-integrated portion of the code (on the right) allowed the

Future Internet 2025, 17, 31 24 of 29

Tracker component to seamlessly communicate with the validating network while keeping
its autonomy in its standard functionalities.

Version January 7, 2025 submitted to Future Internet 23 of 31

5.1. Stubs development 787

The legacy code written in C++ and provided by the developers of Tracker presents 788

a complex structure originated from the necessity of extracting key information from the 789

captured frames corresponding to the junctions of the recorded entities in the scene. A 790

critical function of this module is the transformation of extracted data into structured JSON 791

files, followed by their transmission to a designated Apache Kafka topic via an appropriate 792

wrapper. The proposed hash validation architecture integrates with this process at the 793

precise moment prior to data transmission through the Kafka topic. At this stage, the 794

connection to the blockchain is initialized, and the data is stored within the smart contracts. 795

However, due to compatibility issues with the C++ implementation of the Web3 library 796

—used as a standard framework for the stub modules—a Python- wrapped solution was 797

introduced. This solution, executed within the C++ code, was incorporated to enable 798

communication with the system’s unified blockchain infrastructure and allow the access to 799

the validation’s system functionalities. 800

Figure 10. Portion of the class diagram extracted from the Tracker’s code. The highlighted subsection provides a
clarification over the mounting point selected for the introduction of the blockchain related functionalities by leveraging
the introduction of a Python section for the integration of the sub-module.

Figure 10. Portion of the class diagram extracted from the Tracker’s code. The highlighted subsection
provides a clarification over the mounting point selected for the introduction of the blockchain-
related functionalities by leveraging the introduction of a Python section for the integration of the
sub-module.

Instead, the proposed integration of the Ditto sub-module involved the extension of its
connectivity capabilities through the development of a dedicated Java software component
for filtering incoming messages. This integration methodology was chosen to enable more
advanced functionalities required for interaction with blockchain technologies. In fact, at
the time of this work, the module included a component responsible for receiving messages
via the transmission medium and subsequently converting the corresponding messages
into the Ditto Protocol format. This transformation process was achieved through the
use of a JavaScript mapping function. However, the original implementation exhibited
significant limitations, particularly in terms of extensibility and the ability to incorporate
external libraries. To address the encountered issues, the integration of the sub-module
involved the elaboration of a newly introduced mapping component. This was achieved

Future Internet 2025, 17, 31 25 of 29

by incorporating the functionalities of the sub-module into a custom mapper implemented
in Java, which retained the original core functionality while extending its capabilities. The
redesigned component built upon the original mapper and is visually represented through
the scheme in Figure 11.

Apache Kafka
Module

Topic 1

Topic 2

Topic 3

Apache Kafka
Module

Ditto topic

Ditto architecture

Blockchain
Mapper

Create connection
Source

Digital twin
System

Create connection
Target

Backbone
Blockchain

Smart contracts

Figure 11. Schematic path followed by data in the AiWatch system with particular emphasis over the
Ditto sub-components and the integrated mapper.

To further underline the symbiotic and transparent integration of blockchain communi-
cation, the proposed implementation ensured that all blockchain-related interactions were
natively embedded within the Ditto sub-module. By avoiding reliance on external or third-
party software, the design guaranteed seamless integration of blockchain functionalities
directly into the core operational workflows. This tight coupling enhanced the transparency
of data flow and reduced potential points of failure, enabling robust and secure communi-
cation. The approach capitalized on the inherent strengths of Ditto’s modular architecture
while preserving the autonomy and integrity of the blockchain connection mechanism.

The final result was developed following the standard procedures outlined in the
Eclipse Ditto documentation. This approach allowed for the integration of the newly intro-
duced functionalities and enabled the implementation of the Web3 connection channel. The
provided class model in Figure 12 outlines the primary components of the sub-module code,
offering critical insights into the structural organization and functionality. Furthermore, it
highlights the modular division of responsibilities within the validation system, ensuring
clarity for the various tasks performed by the component.

Future Internet 2025, 17, 31 26 of 29

Hashing functionalities

<<Interface>>
AbstactMessageMapper

+ getAlias(): String
+ isConfigurationMandatory():boolean
+ createMapperInstance():MessageMapper
+ getAdditionalInboundHeaders(ExternalMessage: externalMessage): DittoHeaders
+ doConfigure(Connection:connection,MappingConfig:mappingConfig,MessageMapperConfiguration:configuration)
+ map(externalMessage:extenalMessage): List<Adaptable>
+ map(Adaptable:adaptable): List<ExtenalMessage>

Text

Text

Text

MessageMapper
- MAPPER_ALIAS: String
- BlockchainModule: IBlockchainModule
+ BlockchainMapper(ActorSystem:actorSystem,Config:config)
- BlockchainMapper(AbstractMessageMapper:copyFromMapper)
- buildAdaptableInterface(ExternalMessage:externalMessage,JsonParser:parser): Adaptable
- buildAdaptable(ExternalMessage:externalMessage,TopicPatchBuilder:TopicPathBuild,JsonObject:json): Adaptable
+ StoreHashInterface(String Hash)
+ RetriveHashInterface(String _from_pk): String [Optional]

<<Interface>>
HashingModule

+ HashContent(String:json): String
+ CompareHash(String:firstHash,String:secondHash):boolean

<<Interface>>
AbstractMessageMapper

- DEFAULT_SLEEP_DURATION:long
- GAS_LIMIT: BigInteger
+ RetriveHash(String:_from_pk): String [Optional]
+ StoreHash(String:hash)

HashingModule

Blockchain functionalities

MessageMapper
- Client: web3j
- dotenv: Dotenv
- Pri_key: String
- Pub_key: String
- ChainId: long
+ BlockchainMapper() [constructor]
- getCredentialFromPrivateKey(): Credentials
- getSignedTransaction(String:encodedFunction.BigInteger:nonce,BigInteger:gasPrice)
- getGasPrice(): BigInteger
- getNonce(): BigInteger

Ditto Integrations

Figure 12. Complete class diagram of the developed Ditto sub-module.

Future Internet 2025, 17, 31 27 of 29

6. Discussion
The results provided by this study demonstrated the viability of integrating blockchain

technology with digital twins to enhance security, transparency, and performance in in-
dustrial applications. The implemented framework leveraged blockchain’s tamper-proof
nature to address critical vulnerabilities in digital twin systems, such as data integrity
and unauthorized access. Security tests validated the robustness of the architecture pro-
posed, effectively preventing unauthorized communication and ensuring data consistency.
Moreover, the proposed case study illustrated the practical applications of this framework,
showcasing how it could be deployed in real-world scenarios. For instance, fraudulent data
transmissions were effectively intercepted, ensuring the reliability of the information used
for decision-making in real time. Performance benchmarks also highlighted the scalability
and adaptability of the system, particularly with the utilization of the QBFT consensus
protocol, which demonstrated superior throughput and resilience under high transaction
loads. Despite these advantages, challenges such as interoperability with existing digital
twin solutions and the computational overhead of blockchain integration remain areas for
further exploration. Future research could investigate lightweight blockchain models or
Layer 2 scaling solutions to optimize system performance.

Author Contributions: Conceptualization, A.F. and S.V.; methodology, A.F. and S.V.; software, A.F.
and S.V.; validation, A.F. and S.V.; formal analysis, A.F. and S.V.; writing—original draft preparation,
A.F. and S.V.; writing—review and editing, A.F. and S.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Source code is available at the following link: https://github.com/
StefanoVerrilli/Blockchain_Integration_AiWatch, accessed on 9 January 2025.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y. Enabling technologies and tools for digital twin. J. Manuf.

Syst. 2021, 58, 3–21. [CrossRef]
2. Sasikumar, A.; Vairavasundaram, S.; Kotecha, K.; Indragandhi, V.; Ravi, L.; Selvachandran, G.; Abraham, A. Blockchain-based

trust mechanism for digital twin empowered Industrial Internet of Things. Future Gener. Comput. Syst. 2023, 141, 16–27.
3. Gehrmann, C.; Gunnarsson, M. A Digital Twin Based Industrial Automation and Control System Security Architecture. IEEE

Trans. Ind. Inform. 2020, 16, 669–680. [CrossRef]
4. Karaarslan, E.; Babiker, M. Digital twin security threats and countermeasures: An introduction. In Proceedings of the 2021

International Conference on Information Security and Cryptology (ISCTURKEY), Ankara, Turkey, 2–3 December 2021; pp. 7–11.
5. Suhail, S.; Hussain, R.; Jurdak, R.; Oracevic, A.; Salah, K.; Hong, C.S.; Matulevičius, R. Blockchain-based digital twins: Research

trends, issues, and future challenges. ACM Comput. Surv. CSUR 2022, 54, 1–34. [CrossRef]
6. Sadri, H.; Yitmen, I.; Tagliabue, L.C.; Westphal, F.; Tezel, A.; Taheri, A.; Sibenik, G. Integration of blockchain and digital twins in

the smart built environment adopting disruptive technologies—A systematic review. Sustainability 2023, 15, 3713. [CrossRef]
7. Thakur, G.; Kumar, P.; Deepika; Jangirala, S.; Das, A.K.; Park, Y. An Effective Privacy-Preserving Blockchain-Assisted Security

Protocol for Cloud-Based Digital Twin Environment. IEEE Access 2023, 11, 26877–26892. [CrossRef]
8. Putz, B.; Dietz, M.; Empl, P.; Pernul, G. Ethertwin: Blockchain-based secure digital twin information management. Inf. Process.

Manag. 2021, 58, 102425. [CrossRef]
9. Salim, M.M.; Comivi, A.K.; Nurbek, T.; Park, H.; Park, J.H. A blockchain-enabled secure digital twin framework for early botnet

detection in IIoT environment. Sensors 2022, 22, 6133. [CrossRef]
10. Fan, C. Blockchain-Based Design for Performant Peer-to-Peer Energy Trading Systems. Ph.D. Thesis, University of Alberta,

Edmonton, AB, Canada, 2023.

https://github.com/StefanoVerrilli/Blockchain_Integration_AiWatch
https://github.com/StefanoVerrilli/Blockchain_Integration_AiWatch
http://doi.org/10.1016/j.jmsy.2019.10.001
http://dx.doi.org/10.1109/TII.2019.2938885
http://dx.doi.org/10.1145/3517189
http://dx.doi.org/10.3390/su15043713
http://dx.doi.org/10.1109/ACCESS.2023.3249116
http://dx.doi.org/10.1016/j.ipm.2020.102425
http://dx.doi.org/10.3390/s22166133

Future Internet 2025, 17, 31 28 of 29

11. Berdik, D.; Otoum, S.; Schmidt, N.; Porter, D.; Jararweh, Y. A survey on blockchain for information systems management and
security. Inf. Process. Manag. 2021, 58, 102397. [CrossRef]

12. Ferone, A.; Della Porta, A. A blockchain-based infection tracing and notification system by non-fungible tokens. Comput. Commun.
2022, 192, 66–74. [CrossRef]

13. Dutta, P.; Choi, T.M.; Somani, S.; Butala, R. Blockchain technology in supply chain operations: Applications, challenges and
research opportunities. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102067. [CrossRef] [PubMed]

14. Minoli, D.; Occhiogrosso, B. Blockchain mechanisms for IoT security. Internet Things 2018, 1, 1–13. [CrossRef]
15. Al-Jaroodi, J.; Mohamed, N. Blockchain in industries: A survey. IEEE Access 2019, 7, 36500–36515. [CrossRef]
16. Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.; Li, V.C. Integrated digital twin and blockchain framework to support accountable

information sharing in construction projects. Autom. Constr. 2021, 127, 103688. [CrossRef]
17. Hao, Y.; Li, Y.; Dong, X.; Fang, L.; Chen, P. Performance analysis of consensus algorithm in private blockchain. In Proceedings of

the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 280–285.
18. Pahlajani, S.; Kshirsagar, A.; Pachghare, V. Survey on private blockchain consensus algorithms. In Proceedings of the 2019 1st

International Conference on Innovations in Information and Communication Technology (ICIICT), Chennai, India, 25–26 April
2019; pp. 1–6.

19. Lin, S.Y.; Zhang, L.; Li, J.; Ji, L.L.; Sun, Y. A survey of application research based on blockchain smart contract. Wirel. Netw. 2022,
28, 635–690. [CrossRef]

20. Terzi, S.; Zacharaki, A.; Nizamis, A.; Votis, K.; Ioannidis, D.; Tzovaras, D.; Stamelos, I. Transforming the supply-chain management
and industry logistics with blockchain smart contracts. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics,
Nicosia, Cyprus, 28–30 November 2019; pp. 9–14.

21. Sultana, T.; Almogren, A.; Akbar, M.; Al-Zuair, M.; Ullah, I.; Javaid, N. Data sharing system integrating access control mechanism
using blockchain-based smart contracts for IoT devices. Appl. Sci. 2020, 10, 488. [CrossRef]

22. Nielsen, C.P.; Da Silva, E.R.; Yu, F. Digital twins and blockchain–proof of concept. Procedia CIRP 2020, 93, 251–255. [CrossRef]
23. ERC-1967. ERC-1967: Proxy Storage Slots. 2019. Available online: https://eips.ethereum.org/EIPS/eip-1967 (accessed on

29 December 2024).
24. ERC-2535. ERC-2535: Diamonds, Multi-Facet Proxy. 2020. Available online: https://eips.ethereum.org/EIPS/eip-2535 (accessed

on 29 December 2024).
25. Bui, V.C.; Wen, S.; Yu, J.; Xia, X.; Haghighi, M.S.; Xiang, Y. Evaluating upgradable smart contract. In Proceedings of the 2021 IEEE

International Conference on Blockchain (Blockchain), Melbourne, Australia, 6–8 December 2021; pp. 252–256.
26. ERC-1822. ERC-1822: Universal Upgradeable Proxy Standard (UUPS). 2019. Available online: https://eips.ethereum.org/EIPS/

eip-1822 (accessed on 29 December 2024).
27. Salehi, M.; Clark, J.; Mannan, M. Not so immutable: Upgradeability of smart contracts on ethereum. In Proceedings of the

International Conference on Financial Cryptography and Data Security, Brač, Croatia, 1–5 May 2022; Springer: Berlin/Heidelberg,
Germany; pp. 539–554.

28. Malik, S.; Bandara, H.D.; van Beest, N.R.; Xu, X. Smart contracts’ upgradability for flexible business processes. In Proceedings
of the International Conference on Business Process Management, Utrecht, The Netherlands, 11–15 September 2024; Springer:
Berlin/Heidelberg, Germany; pp. 55–70.

29. Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital twin: Enabling technologies, challenges and open research. IEEE Access 2020,
8, 108952–108971. [CrossRef]

30. Botín-Sanabria, D.M.; Mihaita, A.S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J.
Digital twin technology challenges and applications: A comprehensive review. Remote Sens. 2022, 14, 1335. [CrossRef]

31. Celik, Y.; Petri, I.; Rezgui, Y. Leveraging BIM and blockchain for digital twins. In Proceedings of the 2021 IEEE International
Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 21–23 June 2021; pp. 1–10.

32. Götz, C.S.; Karlsson, P.; Yitmen, I. Exploring applicability, interoperability and integrability of Blockchain-based digital twins for
asset life cycle management. Smart Sustain. Built Environ. 2020, 11, 532–558. [CrossRef]

33. Koppu, S.; Somayaji, S.R.K.; Meenakshisundaram, I.; Wang, W.; Su, C. Fusion of blockchain, IoT and artificial intelligence—A
survey. IEICE Trans. Inf. Syst. 2022, 105, 300–308. [CrossRef]

34. Godager, B.; Onstein, E.; Huang, L. The concept of enterprise BIM: Current research practice and future trends. IEEE Access 2021,
9, 42265–42290. [CrossRef]

35. Hyperledger Besu. Hyperledger Besu. 2024. Available online: https://besu.hyperledger.org (accessed on 29 December 2024).
36. Docker, I. Docker: The Open Platform for Distributed Applications. 2023. Available online: https://www.docker.com (accessed

on 26 November 2023).
37. Foundation, E. Solidity: Smart Contract Programming Language. 2023. Available online: https://soliditylang.org (accessed on

26 November 2023).

http://dx.doi.org/10.1016/j.ipm.2020.102397
http://dx.doi.org/10.1016/j.comcom.2022.05.027
http://dx.doi.org/10.1016/j.tre.2020.102067
http://www.ncbi.nlm.nih.gov/pubmed/33013183
http://dx.doi.org/10.1016/j.iot.2018.05.002
http://dx.doi.org/10.1109/ACCESS.2019.2903554
http://dx.doi.org/10.1016/j.autcon.2021.103688
http://dx.doi.org/10.1007/s11276-021-02874-x
http://dx.doi.org/10.3390/app10020488
http://dx.doi.org/10.1016/j.procir.2020.04.104
https://eips.ethereum.org/EIPS/eip-1967
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-1822
https://eips.ethereum.org/EIPS/eip-1822
http://dx.doi.org/10.1109/ACCESS.2020.2998358
http://dx.doi.org/10.3390/rs14061335
http://dx.doi.org/10.1108/SASBE-08-2020-0115
http://dx.doi.org/10.1587/transinf.2021BCR0001
http://dx.doi.org/10.1109/ACCESS.2021.3065116
https://besu.hyperledger.org
https://www.docker.com
https://soliditylang.org

Future Internet 2025, 17, 31 29 of 29

38. Hyperledger Besu. Clique Proof of Authority Consensus. 2024. Available online: https://besu.hyperledger.org/private-
networks/concepts/poa (accessed on 29 December 2024).

39. Saltini, R.; Hyland-Wood, D. IBFT 2.0: A safe and live variation of the IBFT blockchain consensus protocol for eventually
synchronous networks. arXiv 2019, arXiv:1909.10194.

40. Kahmann, F.; Honecker, F.; Dreyer, J.; Fischer, M.; Tönjes, R. erformance Comparison of Directed Acyclic Graph-Based Distributed
Ledgers and Blockchain Platforms. Computers 2023, 12, 257. [CrossRef]

41. Ucbas, Y.; Eleyan, A.; Hammoudeh, M.; Alohaly, M. Performance and Scalability Analysis of Ethereum and Hyperledger Fabric.
IEEE Access 2023, 11, 67156–67167. [CrossRef]

42. Spoleto, A. J.; Staiano, A.; Hauber, G.; Lettiero, M.; Barra, P.; Camastra, F. Deep learning-based robust head pose estimation.
In Proceedings of the 32nd Italian Workshop on Neural Networks—WIRN2024, Vietri Sul Mare, Italy, 5–7 June 2024.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://besu.hyperledger.org/private-networks/concepts/poa
https://besu.hyperledger.org/private-networks/concepts/poa
http://dx.doi.org/10.3390/computers12120257
http://dx.doi.org/10.1109/ACCESS.2023.3291618

	Introduction
	Related Works
	Consensus Algorithm
	Smart Contracts
	Digital Twins

	Proposed Approach
	Implementation
	Blockchain Creation
	Virtualization
	Smart Contracts
	Stub Components

	Experimental Results
	Security Analysis
	Stub Testing
	Performance Benchmarks
	Performance Metrics
	Benchmarks on Throughput

	Working Example
	Discussion
	References

