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Abstract: This paper presents a comprehensive study on detecting AI-generated text us-
ing transformer models. Our research extends the existing RODICA dataset to create
the Enhanced RODICA for Human-Authored and AI-Generated Text (ERH) dataset. We
enriched RODICA by incorporating machine-generated texts from various large language
models (LLMs), ensuring a diverse and representative corpus. Methodologically, we fine-
tuned several transformer architectures, including BERT, RoBERTa, and DistilBERT, on this
dataset to distinguish between human-written and AI-generated text. Our experiments
examined both monolingual and multilingual settings, evaluating the model’s perfor-
mance across diverse datasets such as M4, AICrowd, Indonesian Hoax News Detection,
TURNBACKHOAX, and ERH. The results demonstrate that RoBERTa-large achieved su-
perior accuracy and F-scores of around 83%, particularly in monolingual contexts, while
DistilBERT-multilingual-cased excelled in multilingual scenarios, achieving accuracy and
F-scores of around 72%. This study contributes a refined dataset and provides insights into
model performance, highlighting the transformative potential of transformer models in
detecting AI-generated content.

Keywords: large language models; natural language processing; content creation; text
authenticity

1. Introduction
The proliferation of large language models (LLMs), particularly those developed

by OpenAI, has significantly blurred the lines between human and machine-generated
content, amplifying concerns about text authenticity [1–3]. In today’s landscape, where mis-
information spreads across various domains [4–6], distinguishing between human-written
and machine-generated text is critical to combating the risks associated with deceptive
content [7,8]. While prior research has often focused on detecting text generated by spe-
cific LLMs or domain-specific models (e.g., ChatGPT), our study addresses the broader
challenge of distinguishing between human and machine-generated text [9].

Transformer models, such as Bidirectional Encoder Representations from Transformers
(BERT) [10], have emerged as powerful tools in Natural Language Processing (NLP) [11,12],
demonstrating impressive capabilities across a variety of tasks, including text generation
(TG) [12]. The Generative Pretrained Transformer 3 (GPT-3), in particular, has excelled
across numerous NLP tasks due to its self-attention mechanism, which allows it to weigh
each word in the context of a sentence differently, capturing intricate relationships between
words and their meanings. As transformer models continue to advance, they have become
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foundational for large-scale self-supervised learning systems [13,14], revolutionizing other
AI and machine learning fields, including time series analysis [15].

However, the increasing fluency of these models raises challenges in effectively dis-
cerning between human and machine-generated text [16]. Our research centers on using
transformer models combined with Bidirectional Long Short-Term Memory (BiLSTM) to
predict the source of text and address the challenge of text authenticity detection. This work
not only advances text authenticity detection systems but also highlights the versatility and
effectiveness of transformer-based methodologies in NLP applications.

The main research question of this paper is as follows: How efficient are transform-
ers in building a classifier that can accurately detect human-written text from machine-
generated text? Through experimental analysis and methodology evaluation, we aim to
provide valuable insights into this question.

The structure of this paper is as follows: Section 2 positions this study in the context of
existing literature. Section 3 outlines the dataset and methodology based on transformers.
Section 4 presents the usability and efficiency of the proposed method through a series of
tests, followed by concluding remarks in the final section.

Current Survey Mission

This paper surveys existing techniques for classifying texts as human-written or
machine-generated, identifies their limitations, and proposes models leveraging contextual
understanding to improve the accuracy and reliability of classification systems.

The main contributions of our research are as follows:

• Refinement and Extension of the ERH Dataset: Originally published as RODICA in
2016 [17,18], the ERH dataset has been significantly expanded for this study. It now
includes additional machine-generated texts from multiple large language models
(LLMs) in English, Romanian, and Hungarian. This expanded dataset plays a crucial
role in our research, offering a comprehensive resource for detecting AI-generated text
across diverse languages.

• Implementation of Classification Models: We implemented state-of-the-art transformer-
based classification models, such as BERT-base, RoBERTa-base, RoBERTa-large, DistilBERT-
base-uncased, XLM-RoBERTa-base [19], BERT-base-multilingual-cased, and DistilBERT-
base-multilingual-cased, along with classic machine learning models. Our models are
specifically tailored to automatically classify human versus AI-generated texts in multiple
languages (English, Romanian, and Hungarian), offering a robust and novel multilingual
solution.

In addition, we release the extended dataset and codebase as open-source resources for the
community to support further research in this domain (available at Papers with Code (https:
//paperswithcode.com/datasets), AI Crowd (https://www.aicrowd.com/challenges/kiit-
ai-mini-blitz/problems/fake-news-detection), Mendeley Data (https://data.mendeley.com/
datasets/hps7rcbwm6/1), GitHub (https://github.com/jibranfawaid/turnbackhoax-dataset/
tree/main?tab=readme-ov-file#turnbackhoax-dataset), RELATE (racai.ro) (https://relate.racai.
ro/index.php?path=repository/resource&resource=rodica), and ERH, (https://github.com/
SilviuCovaci/AIContentDetector/tree/main/ERH), accessed on 22 July 2024), along with the
codebase (available at GitHub (https://github.com/SilviuCovaci/AIContentDetector), accessed
on 22 July 2024).

2. Background
The rapid advancement of AI technologies has significantly enhanced the capabilities

of text generation models, blurring the distinction between human and machine-generated
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content. This evolution marks a shift from traditional machine learning techniques to more
sophisticated models that excel in handling complex language tasks.

In the past, text processing and classification tasks relied on various machine learn-
ing techniques such as Convolutional Neural Networks (CNNs) [19], Long Short-Term
Memory (LSTM) networks [20], and hybrid models like CNN-LSTM [21–24]. While these
models, along with Support Vector Machines (SVMs) [25] and Decision Trees (DTs) [26],
provided notable performance improvements, they often struggled with capturing intricate
contextual relationships and generating coherent text.

However, recent years have seen a transformative shift with the advent of transformer-
based models in Natural Language Processing (NLP). Models like BERT [10], RoBERTa [27],
and DistilBERT [28] have set new benchmarks across various NLP tasks, including Machine
Translation (MT) [13,29], Question Answering (QA) [30,31], Text Summarization (TS) [32,33],
and Text Classification (TC) [34,35]. These advancements have significantly improved the
ability to discern between human-written and machine-generated text [36,37].

Transformers excel in capturing complex contextual relationships and generating
coherent text, surpassing the capabilities of traditional models like CNNs and Bi-LSTMs [38].
This capability is particularly crucial for detecting AI-generated content, where subtle
differences between human and machine-generated text pose significant challenges.

Recent studies highlight the effectiveness of transformer models in text detection
tasks, highlighting their superiority over traditional methods by leveraging their deep
understanding and representation of intricate language patterns [39]. Moreover, fine-tuned
transformer models have demonstrated substantial improvements in detection accuracy
compared to earlier machine learning techniques [40].

In the subsequent sections, we provide a detailed description of the methods and
materials used in our study, including the specific transformer models employed and their
application in detecting AI-generated text.

2.1. BERT

Bidirectional Encoder Representations from Transformers (BERT), introduced by
Google AI in 2018 [10], represents a groundbreaking development in Natural Language
Processing (NLP). Unlike unidirectional models, BERT captures context bidirectionally in a
text sequence, enhancing its performance across a broad spectrum of NLP tasks.

BERT’s architecture extends the original Transformer model, incorporating multiple
layers, extensive feed-forward networks, and numerous attention heads. Pre-trained using
Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) tasks (Figure 1),
BERT’s input embeddings comprise token embeddings, segmentation embeddings, and
position embeddings.
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BERT to discern relationships between sentence pairs, predicting whether they follow
consecutively within a document.

2.2. RoBERTa

RoBERTa [32], an optimized variant of BERT, incorporates several enhancements,
including dynamic masking and training on extensive datasets. These improvements
significantly bolster RoBERTa’s ability to generate and comprehend contextually rich text.
For instance, RoBERTa employs a larger batch size of 2000 and undergoes 500,000 training
steps, optimizing adaptation to dynamic masking compared to BERT’s 256 batch size and 1
million training steps [35,40].

RoBERTa utilizes Byte Pair Encoding (BPE) for tokenization, a method that breaks
down text into subwords using advanced statistical techniques based on bytes rather than
Unicode characters, thus enhancing encoding efficiency [41,42]. Its extended training on
diverse datasets such as Common Crawl and WebText contributes to superior performance
across a wide array of NLP applications [27,43].

2.3. DistilBERT

DistilBERT, developed by Hugging Face, offers a streamlined version of BERT
with maintained effectiveness, faster inference times, and reduced computational de-
mands [28,44]. Achieving this efficiency by reducing transformer layers and omitting
certain components, DistilBERT strikes a balance between performance and resource ef-
ficiency, making it suitable for scenarios with limited computational resources while still
delivering high-quality results.

3. Materials and Methods
In this section, we delve into the methodologies and tools employed to classify either

human-written or machine-generated texts. Our focus is on leveraging a range of AI text
classifiers developed to tackle this specific challenge.

We begin by outlining the existing corpus used for classification and then provide
an overview of the key AI text classifiers that have been developed to address the task of
differentiating between human and machine-generated content.

We explore how these classifiers have been designed and fine-tuned to improve their
performance in distinguishing between texts produced by humans and those generated by
advanced AI systems. By examining these methods, we aim to provide insights into their
effectiveness and the criteria that contribute to successful text classification. This section
will also compare the performance of these classifiers, offering a comprehensive view of
their capabilities and the practical implications of their use in real-world scenarios.

3.1. Dataset

The corpus for this study consists of multiple datasets with comparable text lengths,
including both machine-generated and human-written content. Experiments were con-
ducted iteratively across all datasets to provide a comprehensive overview. To ensure that
the detector generalizes well across various domains and writing styles, the human dataset
includes texts from the following diverse domains:

• M4 dataset (https://paperswithcode.com/datasets, accessed on 22 July 2024): This
dataset contains human-written text from sources such as Wikipedia, WikiHow [45],
Reddit (ELI5), arXiv, and PeerRead [46] for English, as well as news articles for Urdu,
RuATD [47] for Russian, and Indonesian news articles. Machine-generated text in this
dataset is sourced from several multilingual Large Language Models (LLMs), including:

https://paperswithcode.com/datasets
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- ChatGPT: A widely recognized conversational AI model developed by OpenAI,
based on the GPT-4 architecture.

- Text-Davinci-003: An earlier model from OpenAI’s GPT-3 family, known for its
text generation capabilities.

- LLaMa [48] (https://github.com/meta-llama/llama, accessed on 22 July 2024): A
smaller and more efficient model developed by Meta, fine-tuned for multilingual tasks.

- Flan-T5 [49]: A fine-tuned version of Google’s T5 model, optimized for natural
language understanding and generation tasks.

- Cohere: A text generation model from Cohere AI, fine-tuned for various NLP tasks.
- Dolly-v2: An open-source large language model developed by Databricks, trained

for text generation tasks.
- BLOOMZ [50]: A multilingual language model fine-tuned for zero-shot tasks,

part of the BLOOM family, designed for generating and understanding text in
multiple languages.

• AI Crowd FakeNews Dataset (https://www.aicrowd.com/challenges/kiit-ai-mini-
blitz/problems/fake-news-detection, accessed on 22 July 2024): This dataset contains
texts from various news articles and texts generated by OpenAI’s GPT-2. The dataset
was published by AI Crowd as part of the KIIT AI (mini)Blitz Challenge.

• Indonesian Hoax News Detection Dataset (INDONESIAN HOAX NEWS DETEC-
TION DATASET—Mendeley Data, accessed on 22 July 2024) [51]: This dataset contains
valid and hoax news articles in Indonesian. It is structured in CSV format, with two
columns: text and label.

• TURNBACKHOAX Dataset (https://github.com/jibranfawaid/turnbackhoax-dataset/
tree/main?tab=readme-ov-file#turnbackhoax-dataset, accessed on 22 July 2024): This
dataset includes valid and hoax news articles in Indonesian. It is structured in CSV
format, with three columns: label, headline, and body.

• ERH (https://relate.racai.ro/index.php?path=repository/resource&resource=rodica
and GitHub https://github.com/SilviuCovaci/AIContentDetector/commit/2839b5
0fe35f44e407dd7744828a657914cf4d4f, accessed on 22 July 2024): This dataset com-
prises news articles in English, Romanian, and Hungarian. It is structured in JSON
format with the extension JSON Lines (JSONL).

Tables 1 and 2 present the dataset collections.
Table 2 provides an overview of the dataset statistics used for training and testing

in our study, highlighting the differences in dataset sizes and their contribution to our
classification tasks. Note that the information for the M4 dataset, including the table format,
has been adapted from Wang et al. (2023) [52] to fit the context of our study. Additionally,
the symbol # in the table header refers to the number of records used for training and
testing. Specifically: # Training Records: Indicates the total number of data samples used
to train the model. # Testing Records: Indicates the total number of data samples used to
evaluate the model’s performance.

https://github.com/meta-llama/llama
https://www.aicrowd.com/challenges/kiit-ai-mini-blitz/problems/fake-news-detection
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Table 1. Data Sources in M4 Dataset.

Source Lang. 1 Only Human
Source-Generated Data

Human Davinci003 ChatGPT Cohere Dolly-v2 BLOOM Total

Wikipedia EN 6,458,670 3.000 3.000 2.995 2.336 2.702 3.000 17,033
Reddit ELIS EN 558,669 3.000 3.000 3.000 3.000 3.000 3.000 18,000

WikiHow EN 31,102 3.000 3.000 3.000 3.000 3.000 3.000 18,000
PeerRead EN 5.798 5.798 2.344 2.344 2.344 2.344 2.344 17,518

arXiv abstract EN 2,219,423 3.000 3.000 3.000 3.000 3.000 3.000 18,000
Baike/Web OA ZH 113,313 3.000 3.000 3.000 - - - 9.000

RuATD RU 75,291 3.000 3.000 3.000 - - - 9.000
Urdu-news UR 107,881 3.000 - 3.000 - - - 9.000

id_newspapers_2018 ID 499,164 3.000 - 3.000 - - - 6.000
Arabic-Wikipedia AR 1,209,042 3.000 - 3.000 - - - 6.000

True and Fake News BG 94,000 3.000 3.000 3.000 - - - 9.000
Total 35,798 23,344 32,339 13,680 14,046 14,344 133,551

1 Here are the abbreviations provided for the ISO 639-1 language codes: English, EN; Chinese, ZH; Russian, RU;
Urdu, UR; Indonesian, ID; Arabic, AR; Bulgarian, BG.

Table 2. Dataset statistics.

Language Approach # Training Records # Testing Records

M4—Monolingual 119.757 5.000
AICrowd—Monolingual 232.003 38.666

M4—Multilingual 172.417 4.000
Indonesian Hoax News Detection—Multilingual 600 250

TURNBACKHOAX Dataset—Multilingual 800 316
ERH Dataset—Multilingual 316 3.000

The difference in the number of training and testing records between the M4 and AI
Crowd datasets, particularly in the monolingual approach, reflects the inherent characteris-
tics and design of these datasets.

Reasoning:

• Dataset Availability and Scope: The AICrowd dataset was chosen because of its
larger and more diverse set of examples, which is crucial for training robust models.
Its comprehensive nature provides a broad representation of different text styles and
topics, helping improve the model’s generalization across varied input data. The
M4 dataset, while valuable, has a more focused scope, leading to fewer examples,
especially for testing.

• Balancing Model Evaluation: The larger volume of test records from AICrowd allows
for a more thorough assessment of the model’s performance across diverse examples.
This is critical for evaluating generalization, especially when the training process
uses a broad dataset. Meanwhile, the smaller test set from M4 is curated for quality,
allowing for a more targeted evaluation of the model’s capabilities.

• Strategic Test Set Size: The M4 test set focuses on quality over quantity, ensuring
targeted and insightful evaluation. The larger AICrowd test set evaluates robustness
across varied data.

In summary, the AICrowd test set is used to evaluate the model’s robustness, while
the M4 test set targets quality, ensuring comprehensive and nuanced evaluation. The ERH
corpus introduces additional challenges, including new languages, domains, and genera-
tors, simulating real-world scenarios. Notably, BLOOMZ outputs are used in monolingual
language tests, enhancing the model’s readiness for real-world applications.

The input data are organized as JavaScript Object Notation (JSON) records in files
with the extension JSON Lines (JSONL).
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The structure of each record is very straightforward and intuitive.
{

id -> identifier of the example,
label -> label (human text: 0, machine text: 1,),
text -> text generated by a machine or written by a human,
model -> model that generated the data,
source -> source (Wikipedia, Wikihow, Peerread, Reddit, Arxiv) on English

or language (Arabic, Russian, Chinese, Indonesian, Urdu, Bulgarian, German,
Bulgarian, Romanian, Hungarian)

}
Figures 2 and 3 illustrate the structure of the datasets used for training and testing in

our study, offering insights into the composition and organization of the data.
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Figure 2 shows how the training datasets are organized for both monolingual and
multilingual scenarios. It details the distribution of text samples, including the breakdown
by language and type (human-written vs. machine-generated). The figure provides insights
into the dataset’s design, highlighting key features such as sample size, language coverage,
and the balance between different classes.

Figure 3 presents the structure of the testing datasets used to evaluate the performance
of the classifiers. It outlines the composition of the test sets, similar to the training datasets,
but focuses on the evaluation phase. The figure includes information on the distribution of
test samples, the language diversity, and the proportion of human-written versus machine-
generated texts.

There are mainly three major differences if we compare the datasets used for training
the models and the dataset that will be used for final evaluation:

• The task formulation is different;
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• Human text was upsampled to balance the data;
• New and surprising domains, generators, and languages will appear in the test sets.

Real test sets will not include information about generators, domains, and languages.

Nevertheless, the test dataset includes BLOOMZ (BLOOMZ, a variant of BLOOM
model, supports 46 human languages. Hugging Face reports that the 7 billion-parameter
BLOOMZ runs three times faster on the Intel Habana Gaudi2 compared to the A100-80G)
outputs (for monolingual language) that are not included in the training set. Moreover, the
model is prepared for real-world application scenarios.

3.2. System Overview

The system’s architecture, shown in Figure 4, is based on BERT-based transform-
ers, including BERT, RoBERTa, and DistilBERT, using the HuggingFace library. These
models were pretrained on extensive generic datasets [10,45,47,53,54] and fine-tuned for
specific NLP tasks, including text classification, named entity recognition, and sentiment
analysis [48,55].
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Figure 4. Architecture.

The architecture combines Hugging Face’s Transformers library with PyTorch and
Scikit-Learn [56] for implementation. To enhance the pretrained models, we implemented
a custom classifier with two dense layers:

• First Dense Layer: Matches the output dimensions of the pretrained models—768 neurons
for “base” versions and 1024 neurons for “large” versions.

• Second Dense Layer: Contains 32 neurons for “base” versions and 8 neurons for
“large” versions.

• Output Layer: A single neuron with a sigmoid activation function to produce proba-
bilities between 0 and 1.

In our neural network:
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• Hidden Layers: Used the Rectified Linear Unit (ReLU) activation function.
• Output Layer: Used the sigmoid activation function.
• Optimizer: AdamW with a learning rate of 1 × 10−5.

For the monolingual experiments, we evaluated the following models:

• Monolingual Setups: BERT-base, RoBERTa-base, RoBERTa-large, and Distil-BERT-
base-uncased.

• Multilingual Setups: XLM-RoBERTa-base, BERT-base-multilingual-cased, and DistilBERT-
base-multilingual-cased.

To expedite training, GPUs were utilized for both model training and inference. All
experiments were conducted on a Mac Studio machine.

4. Results
Our experimental framework involved preprocessing, feature engineering, and mod-

eling using various transformer architectures.

• Preprocessing
We developed a custom PyTorch DataSet class to handle data loading and perform
essential preprocessing tasks:
(1) Text Cleanup: This step involved removing HTML tags, special characters (e.g., #,
@), punctuation, and multiple spaces to ensure the text was clean and consistent.
(2) Basic preprocessing: Tokenization. Initially, we implemented a basic tokenization
step as part of the preprocessing. However, after further consideration, we recognized
that all the transformer models used in our experiments come with their own special-
ized tokenizers, which are optimized for their respective architectures. Consequently,
we opted to rely on the model-specific tokenizers provided by the Hugging Face
Transformers library during the modeling stage. This approach ensures that the text
is tokenized in a way that is consistent with the model’s expectations, avoiding any
potential negative impact on the representations generated for the task.

• Feature Engineering
We integrated Bag of Words (BoW) and Word2Vec models into our feature engineering
process. BoW provided sparse representations by counting word occurrences, which
captured frequency-based features of the text. Word2Vec offered dense vector rep-
resentations that encapsulate semantic relationships between words. These features
were used alongside the outputs of the transformer models, adding an additional layer
of information that could enhance the model’s understanding of both the syntactic
and semantic aspects of the text. The inclusion of these features aimed to improve the
model’s overall performance by providing a more nuanced representation of the text.

• Modeling
We experimented with several pretrained transformer models, including BERT-base,
RoBERTa-base, RoBERTa-large, DistilBERT-base-uncased, XLM-RoBERTa-base, BERT-
base-multilingual-cased, and DistilBERT-base-multilingual-cased. Each model’s built-
in tokenizer was used to ensure consistency and optimize the text representation
according to the specific architecture. The models were combined with a custom
classifier consisting of three dense layers, each with a varying number of neurons, to
refine the predictions based on the features extracted from both the transformers and
the feature-engineering step.
As a baseline, we utilized the RoBERTa-base pretrained model, which was fine-tuned
with a sequence classification head. This model was trained and evaluated using
the same dataset mentioned earlier. Table 3 summarizes the hyperparameters used
for the baseline model. We employed Cross-Entropy loss as the loss function due
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to its effectiveness in binary classification tasks. The model’s final output layer uses
a Sigmoid function to produce probabilities between 0 (no AI-generated text) and
1 (AI-generated text). The Adaptive Moment Estimation (AdamW) optimizer [57],
an improved version of Adaptive Moment Estimation (Adam), was chosen to fine-
tune the learning rates across different parameters, ensuring efficient and effective
convergence during training. Here, with a learning rate set to 2 × 10−5.

Table 3. Baseline model: Hyperparameter Optimization.

Hyperparameter Values

Learning rate 2 × 10−5

Batch Size 16
Epochs 3

Weight decay 0.01

Table 4 outlines the hyperparameter optimization for the fine-tuned model.

Table 4. Fine-tuned model: Hyperparameter Optimization.

Hyperparameter Values

Learning rate 1 × 10−5

Batch Size 8
Epochs 5

Optimezer AdamW
Activation Function (hidden layers) ReLU
Activation Function (output layer) Sigmoid

• Prediction
The model outputs probabilities between 0 and 1, with a 50% threshold used for binary
classification. Predictions were generated on a test dataset, which included test IDs
and sample targets. The results were stored in a prediction file for further analysis.
For evaluation, we used sklearn.metrics to calculate Accuracy (Acc), Precision (P),
Recall (R), and F-score (also known as F1 score). This provided a comprehensive
assessment of the model’s performance across all relevant metrics.

For the multilingual subtask, we employed different pretrained models optimized for
multilingual tasks, recognizing the specific challenges associated with handling multiple
languages.

The experiments were conducted on a Mac Studio machine equipped with Apple’s
M1 Max Chip, which features a 10-core CPU, a 24-core GPU, and a maximum memory
bandwidth of 400 GB/s. This configuration provided a robust platform for evaluating the
performance of various models.

The number of epochs was set to three for all experiments conducted (refer to Tables 5 and 6).
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Table 5. Performance metrics for monolingual subtask.

Model Dataset Acc (%) P (%) R (%) F-Score (%) Model Runtime (min.)

Baseline - 74.00
RoBERTa-large M4 83.00 84.00 83.00 83.50 607

AICrowd 82.50 83.50 82.00 82.74
RoBERTa-base M4 81.00 83.00 81.00 81.99 166

AICrowd 79.50 80.00 78.00 78.99
BERT-base M4 71.00 74.00 71.00 72.47 162

AICrowd 68.00 70.00 67.00 68.47
DistilBERT-base-uncased M4 68.00 73.00 68.00 70.41 77

AICrowd 65.00 67.00 64.00 65.47

Table 6. Performance metrics for multilingual subtask.

Model Dataset Acc (%) P (%) R (%) F-Score (%) Model
Runtime (min.)

Baseline - 69.00

XLM-RoBERTa-base Indonesian Hoax
News Detection 68.00 70.00 68.00 68.99 522

TURNBACKHOAX
Dataset 67.50 69.00 67.00 67.99

BERT-base-multilingual-
cased

Indonesian Hoax
News Detection 63.00 68.00 64.00 65.94 415

DistilBERT-base-
multilingual-uncased

Indonesian Hoax
News Detection 70.00 71.00 71.00 71.00 203

TURNBACKHOAX
Dataset 69.00 70.00 68.00 68.99

DistilBERT-base-
multilingual ERH Corpus 72.00 73.00 72.00 72.50 400

Table 5 presents the performance metrics for the monolingual subtask, evaluated across
multiple datasets including M4 and AICrowd. The metrics include accuracy (Acc), precision
(P), recall (R), F-score (F-score), and model runtime (in minutes). These results highlight
important trade-offs between model complexity, performance, and computational efficiency.

RoBERTa-large stands out with the highest F-score and accuracy across both datasets,
achieving 83.00% accuracy and an impressive 83.50% F-score on the M4 dataset. This model’s
superior performance underscores its effectiveness in distinguishing between human-written
and AI-generated text. The higher accuracy and F-score are indicative of its robust capacity
to capture and represent nuanced textual features, making it a powerful tool for this task.
However, this performance comes with a trade-off in computational cost, as reflected in its
runtime of 607 min, which may be a consideration in resource-constrained environments.

RoBERTa-base presents a balanced alternative, offering a commendable performance
with 81.00% accuracy and an 81.99% F-score on the M4 dataset. Its computational efficiency
is also notable, with a significantly shorter runtime of 166 min compared to RoBERTa-
large. This makes RoBERTa-base a viable option when a balance between performance and
resource use is required.

BERT-base and DistilBERT-base-uncased show lower performance metrics relative
to RoBERTa models. BERT-base achieves 71.00% accuracy and a 72.47% F-score on the M4
dataset, while DistilBERT-base-uncased performs slightly worse with 68.00% accuracy
and a 68.47% F-score. Despite their lower performance, these models offer significant
advantages in terms of computational efficiency. DistilBERT-base-uncased in particular,
with a runtime of just 77 min, is highly resource-efficient, making it suitable for scenarios
where computational resources are limited.
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The performance variations between the datasets (M4 and AICrowd) highlight the im-
portance of dataset diversity in evaluating model robustness. Different datasets can present
varied linguistic characteristics and complexities, which can impact model performance.
The consistent trends observed across the datasets for each model reinforce their relative
strengths and limitations, providing valuable insights for selecting the most appropriate
model based on specific requirements and constraints.

In conclusion, while RoBERTa-large delivers the best performance in terms of accuracy
and F-score, the choice of model should consider the trade-off between performance and
computational resources. Models like RoBERTa-base and DistilBERT-base-uncased offer
practical alternatives depending on the computational budget and required performance level.

Table 6 outlines the performance metrics for the multilingual subtask, evaluated using
datasets such as the multilingual variants from M4 and AICrowd. The metrics include
accuracy (Acc), precision (P), recall (R), F-score (F-score), and model runtime (in minutes).
These results shed light on the efficiency and effectiveness of the tested models in managing
multilingual data.

DistilBERT-base-multilingual-cased demonstrates superior performance across both
datasets, achieving an accuracy of 70.00% and an F-score of 71.00% on the M4 dataset.
This model excels in handling diverse languages, reflecting its effectiveness in multilingual
scenarios. Its runtime of 203 min is relatively efficient, making it a compelling choice
when a balance of performance and computational resource utilization is needed. XLM-
RoBERTa-base delivers competitive results with an accuracy of 68.00% and an F-score
of 68.99%. However, it has a longer runtime of 522 min, which may be a drawback in
resource-constrained environments. Despite this, its performance demonstrates robust
capabilities in multilingual contexts, making it a strong contender for tasks requiring high
language diversity.
BERT-base-multilingual-cased exhibits lower performance than DistilBERT and XLM-
RoBERTa, achieving an accuracy of 63.00% and an F-score of 65.94%. Additionally, it has a
moderate runtime of 415 min. Although it delivers acceptable results, the findings indicate
that it is less effective than the other models tested in the multilingual subtask.

The performance variations across the multilingual datasets highlight the importance
of selecting models tailored to specific multilingual contexts. The results indicate that mod-
els such as DistilBERT-base-multilingual-cased and XLM-RoBERTa-base are more adept at
managing the complexities of multilingual text compared to BERT-base-multilingual-cased.

In summary, the multilingual task presents additional challenges compared to mono-
lingual tasks, with varying results based on the models’ ability to handle multiple languages.
The inclusion of the ERH corpus in both the training and testing datasets is expected to
enhance the model’s generalizability by expanding the multilingual coverage. However,
a clearer comparison of results with and without the ERH corpus in the training set is
necessary to substantiate this claim. While the addition of the ERH corpus in the test
dataset provides a broader range of languages and contexts for evaluation, its direct effect
on generalizability needs to be explicitly quantified. Future experiments should compare
performance metrics on training sets with and without the ERH corpus to provide a more
comprehensive understanding of its impact on model generalizability.

5. Discussion
The experiments in this study evaluated the performance of various pretrained models

from the BERT family, fine-tuned with a custom classifier, to detect AI-generated text.

• For monolingual models, the results from monolingual models offered significant
insights, particularly highlighting the performance of the RoBERTa-large model. When
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paired with a custom classification layer, RoBERTa-large outperformed all other mod-
els, achieving the highest accuracy and surpassing baseline results, such as those
from SemEval-2024 Task 8 [58]. While DistilBERT exhibited slightly lower accuracy, it
demonstrated exceptional resource efficiency, making it a practical choice for scenar-
ios requiring computational efficiency. The RoBERTa-base model presented a strong
balance between performance and training speed, delivering results comparable to
RoBERTa-large but with significantly faster training times. One noteworthy experi-
ment involved a hybrid model that combined a pretrained transformer with DistilBERT
alongside a custom classifier. Although this hybrid model achieved a lower overall ac-
curacy of 68%, it demonstrated commendable precision (73%) and exceptional resource
efficiency, highlighting its potential in resource-constrained environments.

• For multilingual models. The multilingual presented unique challenges, includ-
ing increased dataset complexity, which led to lower accuracy levels and longer
training times compared to monolingual models. Interestingly, the DistilBERT-base-
multilingual-cased model outperformed its teacher model, BERT-base-multilingual-
cased, achieving an accuracy of 70% compared to the baseline of 68%. This finding
underscores the potential of lighter models like DistilBERT in handling complex
multilingual tasks while delivering competitive performance.

The findings emphasize the inherent difficulties in distinguishing between human-
written and AI-generated text. While pretrained transformer models have demonstrated
significant potential, they also highlight areas that require further investigation to enhance
model robustness and real-world applicability.

Future research should focus on the following:

• Exploring alternative architectures, such as ALBERT (A Lite BERT for Self-supervised
Learning of Language Representations) [59], for increased efficiency and scalability.

• Refining feature engineering techniques to better capture nuanced distinctions in
generated text.

• Experimenting with hybrid machine learning methods to develop more sophisticated
systems for diverse applications.

6. Conclusions
This study offers valuable insights into the effectiveness of transformer models, specif-

ically BERT, RoBERTa, and DistilBERT, in detecting AI-generated text. While the results
are encouraging, they also reveal persistent challenges in distinguishing between machine-
generated and human-written content, particularly when handling unseen data during
training. Moving forward, research should explore alternative approaches, such as A
Lite BERT for Self-supervised Learning of Language Representations (ALBERT) [59], to
potentially enhance model efficiency and performance.

Additionally, integrating more sophisticated feature engineering techniques and hy-
brid modeling approaches holds promise for overcoming current limitations. By addressing
these challenges, future research can contribute to the development of more resilient AI-
generated text detection systems, capable of performing effectively across diverse and
challenging datasets. These advancements will be critical in ensuring the robustness and
reliability of such systems for real-world applications.
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BiLSTM Bidirectional Long-Short Term Memory
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DistilBERT Distilled BERT
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JSON JavaScript Object Notation
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LLMs Large Language Models
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ML Machine Learning
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P Precision
QA Question Answering
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