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Abstract: This paper deals with the optimization of the operational efficiency of a fleet of
mobile robots, assigned with delivery-like missions in complex outdoor scenarios. The
robots, due to limited onboard computation resources, need to offload some complex com-
puting tasks to an edge/cloud server, requiring artificial intelligence and high computation
loads. The mobile robots also need reliable and efficient radio communication with the
network hosting edge/cloud servers. The resource assignment aims at minimizing the
total latency and delay caused by the use of radio links and computation nodes. This mini-
mization is a nonlinear integer programming problem, with high complexity. In this paper,
we present reduced-complexity algorithms that allow to jointly optimize the available
radio and computation resources. The original problem is reformulated and simplified, so
that it can be solved by also selfish and greedy algorithms. For comparison purposes, a
genetic algorithm (GA) is used as the baseline for the proposed optimization techniques.
Simulation results in several scenarios show that the proposed sequential minimization
(SM) algorithm achieves an almost optimal solution with significantly reduced complexity
with respect to GA.

Keywords: mobile robots; radio resource assignment; task offloading; metaheuristic
optimization; latency minimization

1. Introduction
The introduction of autonomous mobile robots in the freight and food delivery chain of

smart cities has always been considered a practical application for exploiting the numerous
benefits of artificial intelligence (AI) in robotics [1]. Autonomous vehicles (AVs) provide
for a transformation of the classical mobility approach on transportation networks and
infrastructures by stripping the control and driving supervision from humans and letting
AI-enabled vehicles manage themselves with the help of powerful wireless connectivity [2].
Autonomous driving, without human intervention, requires high-performance onboard
computation capabilities, advanced sensor and actuator systems, and machine-to-machine
communication technologies to carry out geographic and semantic understanding of the
city infrastructure, with the consequent sensing, detection, classification, and reasoning
tasks [3]. The efficiency of delivery associated with autonomous vehicles implies that
their management should be coordinated or centralized so that system costs for the fleet
are reduced [4]. Moreover, considering that mobile robots may have limited battery and
processing capabilities, their decisions in complex environments can take a long time to
be accepted; cloud, edge, and fog computing resources may enhance the quality of these
decisions by offering off-board accelerated services to perform complex computation tasks
with a lower latency [5–10]. In all these systems, key performance indicators (KPIs) for
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efficient offloading in edge computing include latency, data rate, energy consumption,
seamless access, and network connectivity, which are typically traded off with throughput,
service blockage, handover, and computation accuracy [11].

Figure 1 depicts the general scenario we are considering. A fleet of AVs are connected
to a network of servers located in remote data centers (DCs), over which each AV offloads
an AI task that, due to its complex nature, is central processing unit (CPU)-intensive.
For instance, the AV might request object detection on the scene captured by its onboard
cameras: the detection results, coming back from the server, are used to make important
decisions for the safety of the AV and/or of persons that are close. In one case, the AV
could decide to move along a path that skips particular objects (e.g., obstacle avoidance),
while in another case, it could choose to follow a specific object (e.g., person tracking). Note
that, depending on the celerity at which responses are received from the servers, these
decisions could be more or less delayed, thus negatively impacting the global performance
of the task assigned to the AV fleet, which has to fulfill a delivery or exploratory mission
by visiting a number of waypoints [12]. This scenario includes obstacles, which have to be
recognized and avoided using onboard sensors and (possibly offloaded) object detection
services. Image streaming is quite data-intensive, especially if high-resolution or depth
cameras are used onboard, so the bit rate produced by the AVs needs high-speed wireless
links. For this purpose, a network of base stations (BS) located in the area of interest can
be used to access the Internet and, then, to reach the servers. Radio resources are limited,
so when multiple AVs try to access the servers using the same BS, the link is overloaded,
generating additional delays and an effective access bit rate reduction. Similarly, if multiple
AVs offload their tasks to the same DC, its computation resources can be overwhelmed,
and the operating system (OS) scheduler or threading model in the service would produce
an increased delay in the response. In summary, the typical latency that characterizes each
offloading service is incremented by such additional delays, which are encountered either
at the radio layer or at the service layer.

ith AV Total latency Li
Produced bit rate ρi

i′th AV

k′th BS k′′th BS

kth BS
Radio usage Uk

m′th DC m′′th DC

DC load Γm

mth DC

serv. latency lm
serv. load γm

×

Access bit rate ri,k

Link delay dk,m

Wired link
Wireless link

Figure 1. The scenario of interest, comprising a fleet of AVs, a network of BSs, and remote DCs
offering AI services.

The described scenario is an evolution of that in [10], which describes a testbed
composed of a single AV and up to three different BSs. Namely, the AV is a ground mobile
robot equipped with a camera and multiple radio access technologies (Wi-Fi, 5G, etc.),
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which moves in a complex indoor environment. Object detection is offloaded to external
edge/cloud computers for the purpose of identifying objects in the captured scene, and
tracking is employed to follow the object in the environment (person tracking). There, the
choice of the access radio UL and of the offloading computer was implemented by a very
simple algorithm, which did not take into account a global optimization strategy, which is
necessary when multiple AVs struggle to exploit the same radio and computation resources.

In this work, we propose some novel algorithms that can be used to assign the optimal
configuration of BSs and DCs that connects each AV to an offloading service so that
a selected KPI (e.g., the average latency, the handover rate, the access bit rate) can be
optimized. Each AV expects a response from the server after a certain delay or latency, and
we chose to minimize the average latency of all AVs. Differently from previous works in
the literature, such as [13,14], which use a queuing model, our simpler model accepts all the
requests in parallel, and proportionally delays all the responses to satisfy the constraints on
the limited radio and computation resources. The concurrent selection of access BS and
offloading DC, for all AVs, defines a network configuration that may increase or decrease
the average fleet latency, depending on the chosen links and on the possibility of resource
overloading. The configuration should be found quickly so that the fleet operation remains
functional and optimal also in rapidly changing scenarios. Since this problem falls in the
category of combinatorial optimization, we resort to well-known techniques for providing
an estimate of the solution, such as random search or metaheuristic algorithms. We also
propose a new iterative algorithm, based on sequential minimization, that can produce
near-optimal results with a reasonable complexity, with performance comparable to that
of exhaustive and metaheuristic methods. The problem of latency minimization has also
been investigated in [15], which proposed the minimum latency (MLAT) algorithm. MLAT
provides a low-complexity suboptimal solution to the latency minimization; however, we
show that, despite the name of the algorithm, the average latency of MLAT is significantly
larger than the latency obtained by the sequential minimization algorithm newly proposed
in this paper.

This paper is organized as follows: Section 2 discusses previous works on this subject
and highlights similarities and differences with our work. The mathematical model of the
system introduced here is detailed in Section 3, where we also provide an example, formu-
late the optimization problem with a mathematical notation, and discuss its complexity.
Section 4 is dedicated to the presentation of the proposed algorithms, which try to solve the
optimization problem. Simulations are described and their results discussed in Section 5,
while conclusions are drawn in Section 6.

2. Literature Review
The problem of jointly managing the radio and computational resources, and finding

an optimal assignment for multiple users, has already been coped with in recent works.
Thus, for the sake of brevity, only a selection of recent papers is reviewed in the following.

In [16], the authors propose an iterative algorithm to solve the nonconvex problem
of optimizing the radio and computation resource assignment among a group of users,
while considering bounds on latency and energy consumption. Their algorithm adopts
successive convex approximations to achieve the suboptimal solution. They also show
that, by leveraging the multiple-input multiple-output (MIMO) capabilities of the BSs, the
energy efficiency of the terminals is maximized and the handovers are carefully handled.
The same authors also propose another similar method in [17], which is suitable for a
distributed implementation in the radio cell controllers. Eriksson et al. [18] decide to assign
communication and computation resources to web cameras that provide a multi-view
scene to a fog computing system. The quadratic mixed-integer optimization problem is
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intractable and they propose an approximation using the Dyer–Zemel algorithm, which
is further simplified into an iterative algorithm. A branch-and-bound solution of the
mixed-integer nonlinear programming (MINLP) resource allocation problem is presented
in [19], which also introduces a solution based on the Gini coefficient, with a predictable
polynomial complexity, and may employ a local execution of the task. The authors of [20]
consider resource allocation as a game between users and cloud providers, constrained on
service delay, transmission quality, and power control. The MINLP problem is solved using
a student-project allocation matching game, which may also evolve into user-oriented
cooperation to find the optimal solution. Liu and Ansari [21] optimize uplink transmission
power, receive beamforming, computation task assignment, and computation resource
allocation by reformulating the MINLP into a dual problem solved with the coordinate
descent method. The authors of [13] employ a queuing model to describe a complex sce-
nario of thousands of users offloading video-based tasks through Wi-Fi to edge servers.
They model also the capacity bottlenecks and present a resource optimization solution
using Pareto-optimal edges. In [22], the authors propose EdgeFlow, a mobile edge/cloud
computing system, which minimizes the latency by considering two different states and
simple convex optimization. Chen et al. [23] transform the mixed-binary nonlinear pro-
gramming (MBNLP) problem into a geometric programming problem and try to solve
this using general bender decomposition. To reduce complexity, this solution is simplified
with a recursive algorithm that exploits also some randomness. The authors of [24] show
how to simultaneously meet the request of sensing, communication, and computation by
employing a carefully crafted wireless scheduling architecture. They rely on multi-attribute
decision-making theory to express the problem, reformulated as a two-sided matching
problem, and the solution is found in an iterative manner through a modified matching
technique. Zhou et al. [14] investigate an ultra-low-latency communication scheme that
involves packet request rates, computation latency and rates, communication power, data
length, and transmission information amounts. The nondeterministic polynomial (NP)-
hard problem is simplified and solved thanks to successive convex approximations, and the
efficiency is verified through monotonic optimization. More recently, in [25], the authors
propose to execute locally or to offload to neighboring robots some tasks generated by
a network of sensors, for jointly minimizing end-to-end delay and energy consumption.
They use a deep reinforcement learning approach to plan the best offloading pattern and
trajectory of each robot in a restricted scenario, after formulating the problem as a Markov
decision process. In [26], instead, the model considers offloading mobile robot tasks on
edge servers, and the multi-objective MINLP has to minimize travel times and computation
workload. Thanks to the weighted-sum method, Pareto-optimal solutions are found that
outperform multiple single-objective approaches based on vehicle routing problem-solving
methods. Integrated sensing, computing, and communication are optimized in [27], where
a fleet of robots exploits a reflective intelligent surface to extend the radio coverage area in
potential blockage conditions, and concurrently senses the environment by means of the
communication radio signal. The problem is decoupled by minimizing first the compu-
tation latency, and then by maximizing transmission rate and sensing accuracy. Thanks
to bisection search and alternating optimization algorithms, significant service quality
enhancement, latency reduction, and reliability improvement are obtained with respect
to other baseline solutions. Service placement is added as a further variable in [28], ex-
tending the classical task offloading, sensing, and communication optimization problem.
The authors initially focus on minimizing both the latency and the number of deployed
services, and then propose a method to optimize the placement of such services on specific
edge/cloud servers. The MINLP problem is solved using a sequential fixing algorithm,
with long-term and short-term solution strategies.
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A slightly different problem considered in the literature is the assignment of remote
radio units (next to antennas) to baseband signal processing units (in remote computers),
for the implementation of virtualized radios in cloud radio access networks (CRAN). In
this case, the radio access units are an active part of the optimization problem, since
they offload some radio data processing tasks to the remote services. In this sense, some
of the solutions devised for CRANs fit well with the problem considered in this paper.
For instance, in [29], the optimization of CRAN unit assignment is investigated. The
authors aim at energy efficiency improvement, and devise a mixed-integer nonconvex
programming problem. Then, they reformulate it as a nonlinear fractional problem and
solve it with an iterative algorithm based on the subgradient method. Luong et al. [30] rely
on a branch-and-bound solution to optimize the system and lower the complexity thanks
to a difference of convex algorithm (DCA) method. The authors of [31] use a queuing
model for their system and, thanks to auction theory, solve for the optimum with maximum
power, radio allocation, interference, and queuing stability constraints. In [32], the integer
linear programming formulation of the problem allows finding several algorithms based on
matroids, b-matching, and multiple knapsacks. These algorithms optimize the efficiency of
network resource utilization while keeping precise latency requirements. To this purpose,
the authors employ a cost function that considers both the front network communication
latency and the resources used in edge DCs. Shirzad and Gadheri [33] pose the problem
as nonconvex and combinatorial, then they propose an approximated solution based on
convexification, integer relaxation, and Lagrangian analysis.

In summary, many of the reviewed literature works adopt complex models that
account for specific issues of the communication aspect (link budget, blockage probability,
radio propagation, etc.), of the computation aspect (requests queue, CPU cycles, energy
consumption, etc.), and of the service aspect (neighbor or edge placement, server selection,
requests size, etc.). In our model, instead, all such aspects are simplified by considering
stationary conditions in short time windows. Moreover, our proposed solutions do not
exploit overly complicated algorithms or advanced machine learning techniques, but
rather simple greedy procedures following a straightforward minimization approach. We
also consider a computationally complex genetic algorithm, which is used to find the
MINLP optimal solution for comparison purposes; however, with nonstringent real-time
requirements, it could also constitute a viable approach to finding the problem solution.

3. System Model and Problem Formulation
With reference to Figure 1, we introduce the system model that will be used to math-

ematically formulate the optimization problem in Section 3.2 by adopting a three-level
graph structure, such as that shown in Figure 2.

The problem dimensions are given by the number of AVs NAV, the number of BSs NBS,
and the number of DCs NDC in the graph levels.

At the leftmost level, the AVs are indexed by i, i′, i′′, or ι = 1, . . . , NAV, they are
equipped with an internal service, which is characterized by a latency `i > 0, which can
perform the assigned task when there is no route configured, and produce an UL bit rate ρi.

In the intermediate level, the BSs are indexed by k, k′, or κ = 1, . . . , NBS and provide
a UL access bit rate ri,k to an AV, only when the radio connection is active and available,
expressed by Di,k ∈ {0, 1} (this corresponds to a presence or absence of the edge con-
necting the AV node with a BS node). Every AV that is connected to and is using the
kth BS contributes to a total radio link usage Uk ≥ 0, expressing the amount of occupied
radio resources.
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Figure 2. Three-level directed graph modeling the radio connections and the backhaul connections
available for assignment. Note that some edges could not be actually present, depending on Di,k
and Kk,m.

In the rightmost level, the DCs are indexed by m, m′, or µ = 1, . . . , NDC, with lm > 0
denoting the typical end-to-end latency offered by the service and dk,m > 0 representing
the latency between a BS and a DC; the connection availability between a BS and a DC is
expressed by Kk,m ∈ {0, 1} (an edge is present or absent in the graph). Note that in Figure 2,
we split the rightmost level into two separate sublevels but only for drawing clarity: we
consider that each DC hosts a single offloading service (SVC). Every service, when used by
an AV, contributes an amount γm to the normalized CPU load Γm ≥ 0.

The performance generated by a particular assignment of AVs to DCs passing through
BSs can be measured by different KPIs, such as the response delay or latency, the average
UL access rate, or the number of overloaded DCs, for example.

In order to identify a specific assignment, the vector f =
[

f1 . . . fNAV

]
, fi ∈ {0, 1}

marks the AVs that are using the internal service ( fi = 1) rather than the external
ones ( fi = 0). In addition, the partial selection matrix Si =

[
Si,k,m

]
of size NBS × NDC,

Si,k,m ∈ {0, 1} chooses the BS-DC pair (k, m) used to offload the task of the ith AV (to-
gether with the corresponding fi = 0); there is only a single 1 in the entries so that

∑NBS
k=1 ∑NDC

m=1 Si,k,m = 1. The full selection matrix S =
[
S1 . . . SNAV

]
of size NBS×NAVNDC

represents the complete assignment for all AVs.
Equivalently, the indexing vectors k =

[
k1 . . . kNAV

]
and m =

[
m1 . . . mNAV

]
denote the selected pairs of indexes for a specific route, with (ni, mi) = (0, 0) flagging the
internal service choice. For instance, ki = 3 and mi = 2 means that the ith AV is using
the 3rd BS and the 2nd DC. One can commute between the two representations with the
mapping function (f, S) = M(k, m), which converts from the index sets to the selection
sets, according to the rules

fi = δ[kimi], (1)

Si,k,m = δ[k− ki]δ[m−mi], (2)

where δ[·] is the Kronecker delta function. Conversely, the demapping function
(k, m) = M−1(f, S), does the opposite according to
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(ki, mi) =

arg maxk,m Si,k,m, fi = 0,

(0, 0), fi = 1.
(3)

With the help of the selection matrix, we define the radio usage of an AV-BS link as

Uk =
NAV

∑
i′=1

NDC

∑
m′=1

ρi′

ri′ ,k
Di′ ,kKk,m′Si′ ,k,m′ , (4)

and the CPU load of a DC as

Γm = γm

NAV

∑
i′′=1

NBS

∑
k′=1

Di′′ ,k′Kk′ ,mSi′′ ,k′ ,m. (5)

Let the experienced latency be considered here as the target KPI. Assume that the AV
produces Nreq service requests per time unit; for instance, in the case of video streaming,
Nreq = 30 frames per second should be processed by the remote service. In our model,
for every sent video frame, there should be a response from the service, upon which the
AV modifies its trajectory or speed. The latency expected by the application managing
the AV is thus lm = 1/Nreq. Now, we consider the effects of a finite amount of radio
and computation resources. The first bottleneck is represented by the radio access UL
channel: if multiple AVs are concurrently using the kth BS, which shares its radio resources
equally, we should take into account the normalized radio usage Uk. When Uk ≤ 1, the
UL requests (i.e., video frames) pass regularly and without any streaming interruption.
However, when Uk > 1, the BS controller proportionally reduces the number of requests
passing through so that it effectively forwards only NFW =

Nreq
Uk

requests per time unit
toward the DC [13]. Similarly, the DCs represent another bottleneck. If too many AVs are
using the same DC, its CPU can get overloaded so that Γm > 1. Then, if the OS scheduler is
fair, it will proportionally assign processes a lower CPU time to perform computations [34],
thus decreasing the effective number of requests served to NSRV = NFW

Γm
. For the AV, it is as

if the effective latency experienced by the application becomes Li =
1

NSRV
= lmUkΓm. Thus,

considering (4)–(5) and the network delay dk,m on the wired BS-DC connections, we can
write the latency experienced by the ith AV as

Li =


lmi max{1, Uki

}max{1, Γmi}+ dki ,mi
, fi = 0∧∑NBS

k=1 ∑NDC
m=1 Di,kKk,mSi,k,m = 1,

∞, fi = 0∧∑NBS
k=1 ∑NDC

m=1 Di,kKk,mSi,k,m = 0,

`i, fi = 1.

(6)

The value Li = ∞ in (6) represents the case when the selection does not entail a valid path
between the AV and the BS or between the BS and the DC.

3.1. Example

An example of configuration is shown in the graph of Figure 3, which shows all the
possible connections and, highlighted, a specific resource assignment. The dimensions of
this example are NAV = 4, NBS = 3, and NDC = 2, while the latencies dk,m, lm, and `i, the
loads γm, the bit rates ri,k and ρi, and the connection matrixes Di,k and Kk,m are printed in
Table 1 (a null value in dk,m corresponds to a missing link between the BS and the AV).
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Figure 3. Graph of assignment in Table 2 for the example in Table 1.

Table 1. Input parameters of the example in Figure 3.

Parameter Value

lm (ms) [33 33]
`i (ms) [100 100 100 100]

γm [1/4 1/4]
ρi (Mbit/s) [5 5 8 5]

ri,k (Mbit/s)


14 0 2
0 12 8
7 9 8
0 8 0


Di,k


1 0 1
0 1 1
1 1 1
0 1 0


dk,m (ms)

24 6
18 0
0 21


Kk,m

1 1
1 0
0 1


A possible assignment (f, S) is specified in Table 2, and it has been highlighted by

using different colors and thicker lines in Figure 3.

Table 2. A possible assignment for the example in Figure 3.

Parameter Value

f
[
0 1 0 0

]
S1

0 0
0 0
1 0


S2

0 0
0 0
0 0
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Table 2. Cont.

Parameter Value

S3

1 0
0 0
0 0


S4

0 0
1 0
0 0


The assignment results in the following radio usage ratios

U1 =
ρ3

r3,1
=

8
7
≈ 1.14, (7)

U2 =
ρ4

r4,2
=

5
8
= 0.625, (8)

U3 = 0, (9)

which shows that the radio link deployed at BS1 is overexploited. Similarly, the CPU loads
are calculated as

Γ1 = 2γ1 = 0.5, (10)

Γ2 = 0, (11)

so the two DCs are not overloaded. In terms of experienced latency, AV1 does not have a
route toward any service, so it is L1 = ∞. AV2, instead, uses its internal service, experienc-
ing a latency L2 = `2 = 100 ms. The third AV offloads its task to SVC1 on DC1, passing
through BS1, which is overloaded at 114% of the link capacity; the typical latency l1 is
thus multiplied by U1 ≈ 1.14 and increased by the wired connection latency d1,1 = 24 ms,
achieving L3 = l1U1 + d1,1 ≈ 61.62 ms. Finally, AV4 also has a link to the service SVC1 that
passes through a nonoverloaded BS; the experienced latency is L4 = l1 + d2,1 ≈ 51 ms.

3.2. Formulation of the Minimization Problem

The problem consists in finding a specific configuration (f, S) that optimizes a KPI P ,
such as, for instance, the latency, bit rate, or radio/CPU loads. In this work, we want to
minimize the average latency experienced by all AVs, written as

P(f, S) =
1

NAV

NAV

∑
i=1

Li(f, S), (12)

while choosing a unique configuration that connects the AV to a DC through a BS and a
finite amount of radio and computation resources. Thus, as described in Section 3 and
discussed in the example, every connection to a DC is unique, i.e., it cannot be split among
two or more BSs. Similarly, every AV can connect to a single DC only, but differently,
it must use its internal service. Due to finite radio and computation resources, latency
increases proportionally when either BSs or DCs are overloaded, as shown by (6). With
these conditions, the problem falls within the case of nonlinear integer (binary) constrained
optimization, and, since the number of AVs is fixed, can be mathematically formulated as a
minimization of the total sum latency, as expressed by
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min
f,S

NAV

∑
i=1

Li(f, S) (13)

subject to f ∈ {0, 1}NAV (14)

S ∈ {0, 1}NBS×NDC NAV (15)

fi +
NBS

∑
k=1

NDC

∑
m=1

Si,k,m = 1, i = 1, . . . , NAV. (16)

We rewrite Li in (6) as

Li(f, S) =`i fi

+
NBS

∑
k=1

NDC

∑
m=1

[(lm max{1, Uk}max{1, Γm}+ dk,m)Di,kKk,m + l∞(1− Di,kKk,m)]Si,k,m,

i = 1, . . . , NAV,

(17)

so as to make explicit its dependency on the assigned configuration (f, S) and to contain
the various cases into a single equation. To include the 2nd line in the right-hand side of (6),
we also introduce l∞ � lm, a latency value denoting connection absence (e.g., l∞ = 109).
Expression (17), then, represents the latency distribution among the AVs. The problem (13)
is integer nonlinear, and also nonconvex, where the constraints are as follows:

• (14) and (15) state that the selection vector and matrix have binary components;
• (16) states that when fi = 1, then Si = 0, and that when fi = 0, then there is only a 1

in Si (the other values being 0).

In the following, when referring to the complexity of the proposed algorithms, we
denote with “call” the calculation of the values Li(f, S) in (17) for i = 1, . . . , NAV.

4. Proposed Optimization Algorithms
The number of possible configurations allowed by a fully connected graph is

Nall = (NBSNDC + 1)NAV , (18)

while the number of valid configurations (for which there is a physical link from the AV to
the DC) is

Nval =
NAV

∏
i=1

NBS

∑
k=1

NDC

∑
m=1

Di,kKk,m. (19)

The number Nval of valid configurations in (19) can be large, and is bounded by Nall in
(18), which is exponential in the number of AVs. Therefore, an exhaustive search can
be intractable. Hence, in the following, to solve the minimization (3.2), we reformulate
the problem to obtain solutions with tractable complexity. Algorithm complexity can be
deduced from the number of calls to the latency distribution Formula (17), which has
complexity order O(NAVNBSNDC).

4.1. Brute Force Approach: VEX Algorithm

The brute force solution consists in exhaustively enumerating all possible valid con-
figurations, and finding the one that ensures the minimum value of the latency (17); we
denote this algorithm as a valid exhaustive (VEX) search. The complexity order of the
VEX is O

(
NAVNBSNDC(ÑBSÑDC)

NAV
)
, where ÑBS = maxi ∑NBS

k=1 Di,k ≤ NBS and ÑDC =

maxk ∑NDC
m=1 Kk,m ≤ NDC.
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4.2. Random Search: RSAM Algorithm

If the number of valid configurations is too high to be computed in a reasonable
amount of time, we can use some form of simple stochastic optimization, where we
randomly search the valid configurations space [35] to obtain the random sampling
(RSAM) algorithm. The complexity order of RSAM depends on the number of calls,
as O(NAVNBSNDCNcall).

4.3. Metaheuristic Optimization: GA Algorithm

Many metaheuristic algorithms are nature-inspired and have proven useful in solving
a vast set of optimization problems [36]. We use an evolutionary strategy like the genetic
algorithm (GA) [37]. In this algorithm, a population of potential solutions (chromosomes) is
let to evolve among successive generations. Each generation passes its genes to an offspring
thanks to operators such as crossover and mutation. The chromosome of the eth individual
in the GA population at the qth generation is specified as

g(q)
e = [g(q)i,e ] =

[
k1,e m1,e k2,e m2,e . . . kNAV,e mNAV,e

]
, (20)

and its fitness is directly calculated as ϕ
(q)
e = P(M(g(q)

e )). The initial population of NGA

individuals is generated with genes randomly distributed among the admissible values,
i.e., g(0)i,e ∼ U [0, giMAX ], with giMAX being NBS for the elements in the odd positions in (20)
and NDC for the elements in the even positions. Another possibility is to assign to the initial
population the internal service configuration, i.e., g(0)i,e = 0. To pass their genes among
generations, parent chromosomes are chosen with fitness-proportionate selection (roulette
wheel). The crossover operation generates offsprings by uniformly exchanging the parents’
alleles, (g(q+1)

e′ , g(q+1)
e′′ ) = XOV(g(q)

e′ , g(q)
e′′ ): a pair (g2i, g2i+1) is exchanged in the offsprings

with probability pX = 0.5. In addition, 80% of the population is chosen for crossover, while
the remaining 20% of the population does not withstand crossover. A graphical example of
the crossover operation is shown in Figure 4.

Figure 4. Graphical overview of the crossover operation in the GA algorithm.

The mutation operation, similarly to crossover, randomly changes a pair (g2i, g2i+1)

with probability pM = 0.01 to another admissible value, g(q+1)
e′ = MUT(g(q)

e′ ); a pair
(g2i, g2i+1) assumes random values chosen among the possible valid configurations for AV
i, as shown in Figure 5.
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Figure 5. Graphical overview of the mutation operation in the GA algorithm.

An elite subpopulation (top 5% of individuals with the highest fitness) remains un-
changed among the generations. The êth chromosome with the highest fitness,

ϕ̂(q) = ϕ
(q)
ê , ê = arg max

e
ϕ
(q)
e , (21)

represents a candidate solution. The GA search process stops either when the best fitness
value stalls for qSTL generations,

ϕ̂(q) = ϕ̂(q−1) = . . . = ϕ̂(q−qSTL), (22)

or when a maximum number qMAX of generations has occurred. The complexity depends
on the convergence speed of the GA population to the exact solution and on the number of
calls Ncall to the latency expression (17), so it is O(NAVNBSNDCNcall). (We do not consider
the complexity of selection, crossover, and mutation. Instead, in Section 5, the cost of these
operations is counted in the total running time.)

4.4. Selfish Reformulation: MLAT Algorithm

Upon neglecting the finite-resource constraints due to (4) and (5), the max{} operators
in (17) disappear, and the obtained latency may be rewritten as

L̃i( fi, Si) =`i fi +
NBS

∑
k=1

NDC

∑
m=1

[(lm + dk,m)Di,kKk,m + l∞(1− Di,kKk,m)]Si,k,m,

i = 1, . . . , NAV.

(23)

Additionally, we reformulate (3.2) as a multi-objective problem,

min
f,S

(
L̃1( f1, S1), . . . , L̃NAV( fNAV , SNAV)

)
subject to f ∈ {0, 1}NAV

S ∈ {0, 1}NBS×NDC NAV

fi +
NBS

∑
k=1

NDC

∑
m=1

Si,k,m = 1, i = 1, . . . , NAV,

(24)

which can be viewed as a selfish (noncooperative) reformulation by letting each AV choose
its own minimum-latency assignment. Separability of the objective function and of the
constraints min Li( fi, Si) leads to a simplified solution: since lm + dk,m � l∞ in (23), the
minimization requires Di,kKk,m = 1, yielding the solution
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f ∗i =

0, mink,m:Di,kKk,m=1(lm + dk,m) < `i,

1, else,
(25)

S∗i =

Ek∗i ,m∗i
, mink,m:Di,kKk,m=1(lm + dk,m) < `i,

0NBS×NDC , else,
(26)

where Ek′ ,m′ is a matrix whose element in position (k′, m′) is equal to 1 and zero elsewhere,
and

(k∗i , m∗i ) =

arg mink,m:Di,kKk,m=1(lm + dk,m), min(lm + dk,m) < `i,

(0, 0), else,
(27)

i = 1, . . . , NAV, k = 1, . . . , NBS, and m = 1, . . . , NDC. Note that this solution does not
consider overloading of the resources, because the minimization is performed over L̃i( fi, Si)

in (23); therefore, the true AV latency Li(f∗, S∗) in (17) may be higher than L̃i( f ∗i , S∗i ). The
algorithm complexity order is O(NAVNBSNDC).

4.5. Greedy Approximation: SM Algorithm

We approximate the problem (3.2) by using a greedy procedure, where each AV
optimizes its own configuration without modifying that of the others. We use the natural
ordering of the AVs. Since the minimizations are performed successively, we define this
approximation as a sequential minimization (SM). We reformulate the original problem
by considering an iterative minimization procedure to find partial solutions. By defining
q = 0, 1, 2, . . . as the iteration index, (f(q), S(q)) as the optimal configuration found at the qth
iteration, and f (0)i = 1 with S(0)

i,k,m = 0 as the initial configuration of the ith AV, we rewrite
the problem (3.2) as

min
f (q)
i′ ,S(q)

i′

NAV

∑
i=1

Li(f(q), S(q))

subject to f(q) ∈ {0, 1}NAV

S(q) ∈ {0, 1}NBS×NDC NAV

f (q)i +
NBS

∑
k=1

NDC

∑
m=1

S(q)
i,k,m = 1, i = 1, . . . , NAV,

f (q)i = f (q−1)
i , ∀i 6= i′, i = 1, . . . , NAV,

S(q)
i = S(q−1)

i , ∀i 6= i′, i = 1, . . . , NAV,

(28)

where i′ is the index of the AV to be optimized in the qth iteration, defined as

i′ =

1 + (q− 1) mod NAV, q ≤ ϑNAV,

arg maxi Li(f(q−1), S(q−1)), q > ϑNAV,
(29)

q > 0, and ϑ ≥ 1 defines the number of times all the AVs are sequentially processed. The
process stops after qSTOP iterations such that

Li(f(qSTOP), S(qSTOP)) = Li(f(qSTOP−1), S(qSTOP−1)) ∧ qSTOP > ϑNAV . (30)

Note that this minimization procedure is greedy: at each step, each AV tries to minimize
the average latency of all AVs, exploring only its own assignment subset, conditioned on



Future Internet 2025, 17, 39 14 of 27

the assignment at the previous iteration for the other AVs. The resulting procedure is listed
in Algorithm 1.

Algorithm 1 Sequential minimization (SM) of average latency.

Require: ϑ ≥ 1
(k∗, m∗)← (01×NAV , 01×NAV) . Solution holder
(k, m)← (01×NAV , 01×NAV) . Initial and current configuration
P∗ ← ∞ . Solution KPI
q← 0 . Flag variable
while true do . Infinite loop

q← q + 1 . Increment flag
if q ≤ ϑNAV then . Optimize AVs one by one

i← 1 + (q− 1) mod NAV . Enumerate all AVs
else . Optimize the slowest

i = arg maxi′ Li′(M(k, m)) . Find the highest latency
end if
(k, m)← arg minki ,mi

P(M(k, m)) . Improve KPI on a single AV
if P(M(k, m)) < P∗ then . There is some improvement in the KPI

(k∗, m∗)← (k, m) . Better configuration found
P∗ ← P(M(k∗, m∗)) . Better KPI found

else . There is no KPI improvement
if q > ϑNAV then . Did the first phase

break . Exit from infinite loop
end if

end if
end while

During an initial phase, the algorithm explores the solution subspace where every
AV is optimized sequentially, one by one, while keeping the other AVs’ configurations
unchanged. This means that for the specific AV, a configuration is found that produces the
lowest average latency among all AVs by enumerating all the valid configurations for that
AV. This sequential optimization is repeated ϑ times for every AV.

Then, in the final phase, the worst AV is chosen (the one with the highest latency), and
its configuration is potentially improved with an enumeration search, as in the initial phase.
This step is repeated (potentially with a different AV) as long as there is some improvement
in the average latency of all AVs. The final configuration is considered to be the solution to
the problem.

Since in each iteration the number of explored configurations is at maximum
ÑBSÑDC + 1 only, the solution of (28) can be found by exhaustive search. Considering
a number of iterations ϑNAV, the latency Formula (17) is called ϑNAV(ÑBSÑDC + 1) times.
The computation of (17) has complexity O(NAVNBSNDC); therefore, the complexity order
of SM is O

(
ϑN2

AVNBSNDCÑBSÑDC
)
.

5. Simulation Results and Discussion
We tested the algorithms of Section 4 in different scenarios, for which we consider

high-speed ULs implemented with IEEE 802.11ad [38] and 5G NR [39]. This scenario is
compatible with the testbed hardware (HW) in [10], where a mobile robot uses both IEEE
802.11ad and 5G connections to offload an object detection AI task. In that case, a tracking
application needs, hypothetically, to detect objects from a video stream at about 30 frames
per second to operate with good performance. This corresponds to a typical service latency
of 33 ms if the service is placed in powerful edge or cloud computers. This latency may
exceed 100 ms if the service runs in the AV CPU, which is less powerful. The network
delay experienced when connecting to an edge server using the IEEE 802.11ad link is of



Future Internet 2025, 17, 39 15 of 27

few ms, while it rises to dozens of ms if the service lies in the cloud and is accessed through
a 5G link. The access bit rates, correspondingly, may be as large as about 100 Mbit/s for
5G or about 2 Gbit/s for IEEE 802.11ad. More in general, the problem dimensions might
correspond to systems composed of few elements, such as in an industrial environment, or
to larger systems composed of several AVs and dozens of BSs and DCs, such as in a smart
city. We present the performance of our algorithms with a few typical scenarios (a detailed
description is given in Sections 5.1–5.3), which can be classified as follows:

• 6/7/4_fixed, 6/7/4_variable: These correspond to a small–medium industrial application
managing intelligent vehicles used for internal logistics [40]. For instance, a small fleet
of parts delivery robots moves both inside and about the enterprise location, which is
covered by cheap but fast access points and served by a powerful remote cloud data
center and a few in-premises edge computers. The robots could make use of computer
vision to match the moved goods and verify their integrity status.

• 10/25/13_fixed, 10/25/5_variable: These correspond to a medium–large deployment of
mobile robots in a medium city to be used for services such as food/meal delivery
[41]. In this case, the city wireless network can be used to offer computer vision and
lidar-related services to the robots or drones to extend their operational range by
offloading such tasks instead of consuming their internal energy.

• 40/60/20_variable: This scenario corresponds to a large-sized fleet of mobile robots,
which could be used for example as autonomous street sweepers in a big smart city
[42]. The complex scenario in which they move, characterized by varying obstacles
and constraints, requires centralized management, and task offloading accelerates
video-based litter detection, lidar-based map augmentation, and cooperative data
fusion to optimize the paths and times.

For the simulated scenarios, we present some of the resulting KPIs, notably the total
and average latency of the configuration, the average radio load, the number VBS of radio-
overloaded BSs, the average DC load, the number VDC of CPU-overloaded DCs, the number
Ncall of calls to (17), and the running time. (Simulations are performed with MATLAB
R2024a on an AMD Ryzen 9 4900H CPU running at 3.3 GHz.) Additionally, we show the
solution on the connection graph and report a summary of the optimal configurations.

In the fixed case, the parameters (connection matrices, bit rates, delays) are kept fixed
for the whole simulation. In the variable case, new randomly generated parameters are
used within the simulation, and the averaged results are shown.

As for the comparison between the algorithms, where feasible, since VEX achieves the
real optimum value, it is considered as a reference. When the problem is intractable, we
consider GA to approximate the real solution, and it will serve as a reference.

5.1. 6/7/4_Fixed Scenario

Scenario 6/7/4_fixed is simple, as it is characterized by NAV = 6, NBS = 7, and NDC = 4.
The service in each DC has typical latency lm = 33 ms and typical load γm = 1/4 CPU,
m = 1, 2, 4, and γ3 = 1/8 CPU. The internal service latency is `i = 111 ms, while the
bit rates produced by AVs are 32 Mbit/s, 22 Mbit/s, 35 Mbit/s, 24 Mbit/s, 31 Mbit/s and
17 Mbit/s. The connection matrix is seen in the graph of Figure 6, while access bit rates and
latency values are shown on the AV-BS and BS-DC edges, respectively. In this scenario,
BS7 is a 5G station connected to a cloud server (DC3) with a slow link, while all other
BS are IEEE 802.11ad connected to edge servers with fast links. The number of possible
configurations is Nall = 5.9× 108, of which Nval = 3.6× 103 are valid.
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Figure 6. Connection graph of the 6/7/4_fixed scenario.

For the RSAM algorithm, we chose Ncall = 5 × 104 � Nval; thus, it has a high
probability of finding the optimal solution. Indeed, RSAM may generate a configuration
that is already generated; hence, Ncall = Nval does not guarantee the optimal solution. VEX
is simulated since Nval is a tractable number of configurations, while for GA, we have set a
maximum of Ncall = 2× 106 calls. Finally, SM has ϑ = 2.

The KPIs for the found solutions are reported in Table 3. For all the KPIs, all algorithms
except MLAT attain the minimum value: 301.0 ms of total latency, 50.2 ms of average latency,
1% of average radio load without any radio overload, 31% of average CPU load, and no
DC overloads. As for the computation cost, GA is the most complex, with about 106 actual
function calls and a 17.8 s run time, followed by RSAM with a 0.4 s run time. Then, VEX and
SM have very low complexity, with 3600 and 65 calls, respectively, which are performed in
about 15 ms. Finally, MLAT is the fastest, with just 7 ms of run time (note that MLAT does
not make any call, but its complexity is roughly equivalent to that of 1 call).

Table 3. KPIs for the solutions to the 6/7/4_fixed scenario.

RSAM VEX MLAT GA SM

∑i Li (ms) 301.0 301.0 438.0 301.0 301.0
1

NAV
∑i Li (ms) 50.2 50.2 73.0 50.2 50.2

1
NBS

∑k Uk 0.01 0.01 0.87 0.01 0.01
VBS 0 0 1 0 0

1
NDC

∑m Γm 0.31 0.31 0.34 0.31 0.31
VDC 0 0 0 0 0
Ncall 50,000 3600 1 953,440 65

Run time (s) 0.418 0.013 0.007 17.830 0.015

The configurations obtained by the simulated algorithms produce the connection
graphs shown in Figure 7a–e. The optimal configurations indicate that AV4 has been
assigned to the internal service and that, generally, BS4 is preferred for the radio connection
and DC1 for the task offloading. Note that in this case VEX and SM produce the same
(optimal) solution.
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Figure 7. Paths in the graph corresponding to the found configurations for the 6/7/4_fixed scenario:
(a) RSAM solution. (b) VEX solution. (c) MLAT solution. (d) GA solution. (e) SM solution.

The configuration summaries printed in Figure 8a–e describe the plots of Figure 7a–e:
the first line reports the algorithm and the found optimal KPI value, while the remaining
lines detail each AV by reporting the connection BS and offloading DC, together with
their respective loads, closed by the obtained latency value for the single AV. The results
highlight that MLAT loads BS7 at 600%, thus resulting in a total latency of 438.0 ms, which
is 46% higher than the minimum obtainable value. Note that this underperformance is due
to MLAT minimizing each AV route to the DC independently from that of other AVs.
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RSAM KPI=301.0
AV1 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV2 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV3 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV4 : internal = 111.0
AV5 : BS1 (0.02) --> DC1 (1.00) = 38.0
AV6 : BS5 (0.01) --> DC4 (0.25) = 38.0

(a)

VEX KPI=301.0
AV1 : BS4 (0.01) --> DC1 (1.00) = 38.0
AV2 : BS2 (0.03) --> DC1 (1.00) = 38.0
AV3 : BS2 (0.03) --> DC1 (1.00) = 38.0
AV4 : internal = 111.0
AV5 : BS1 (0.02) --> DC1 (1.00) = 38.0
AV6 : BS5 (0.01) --> DC4 (0.25) = 38.0

(b)

MLAT KPI=438.0
AV1 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV2 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV3 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV4 : BS7 (6.00) --> DC3 (0.12) = 248.0
AV5 : BS6 (0.04) --> DC1 (1.00) = 38.0
AV6 : BS5 (0.01) --> DC4 (0.25) = 38.0

(c)

GA KPI=301.0
AV1 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV2 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV3 : BS4 (0.04) --> DC1 (1.00) = 38.0
AV4 : internal = 111.0
AV5 : BS6 (0.04) --> DC1 (1.00) = 38.0
AV6 : BS5 (0.01) --> DC4 (0.25) = 38.0

(d)

SM KPI=301.0
AV1 : BS4 (0.01) --> DC1 (1.00) = 38.0
AV2 : BS2 (0.03) --> DC1 (1.00) = 38.0
AV3 : BS2 (0.03) --> DC1 (1.00) = 38.0
AV4 : internal = 111.0
AV5 : BS1 (0.02) --> DC1 (1.00) = 38.0
AV6 : BS5 (0.01) --> DC4 (0.25) = 38.0

(e)
Figure 8. Configurations found for the 6/7/4_fixed scenario: (a) RSAM solution. (b) VEX solution.
(c) MLAT solution. (d) GA solution. (e) SM solution.

5.2. 10/25/13_Fixed Scenario

Scenario 10/25/13_fixed is more complex, as it has NAV = 10, NBS = 25, and NDC = 13
(Figure 9). Note that three BSs are deliberately not connected to any AV, as it may happen
in a real case; nonetheless, they matter in the optimal configuration search. The service
in each DC has typical latency lm = 33 ms and typical load γm = 1/8 CPU. The internal
service latency is still `i = 111 ms, while the bit rates produced by the AVs vary from
20 Mbit/s to 31 Mbit/s. In practice, each BS offloads to a single DC, and each DC serves
two BSs with low-latency wired links, emulating the case of IEEE 802.11ad access points
with edge computers. There is a single station (BS25) that is connected with high latency
to a single node (DC13), emulating the case of 5G radio access and a remote cloud server.
For this scenario, the number of possible configurations is Nall = 1.4× 1025, of which
Nval = 1.6× 108 are valid.

KPIs for the found solutions are reported in Table 4. This time, VEX cannot be used as
the real optimum due to its complexity. However, RSAM, MLAT, GA, and SM all agree and
find an optimal solution, achieving an average latency of 38 ms, a radio load of 1%, a DC
load of 10%, and no radio or CPU overloads. The four obtained solutions are different, but
all of them reach the minimum latency. The complexity and run time results show that GA
is the slowest and most complex, while MLAT is the quickest. RSAM and SM are quick too,
with times of 649 ms and 11 ms, respectively.
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Figure 9. Connection graph of the 10/25/13_fixed scenario.
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Table 4. KPIs for the solutions to the 10/25/13_fixed scenario.

RSAM MLAT GA SM

∑i Li (ms) 380.0 380.0 380.0 380.0
1

NAV
∑i Li (ms) 38.0 38.0 38.0 38.0

1
NBS

∑k Uk 0.01 0.01 0.01 0.01
VBS 0 0 0 0

1
NDC

∑m Γm 0.10 0.10 0.10 0.10
VDC 0 0 0 0
Ncall 50,000 1 953,440 161

Run time (s) 0.649 0.005 21.469 0.011

The algorithms produce the graphs shown in Figure 10a–d, from which we see that all
algorithms tend to not overload the DCS by spreading the AVs through many computa-
tion nodes.

(a) (b)

(c) (d)
Figure 10. Paths in the graph corresponding to the found configurations for the 10/25/13_fixed
scenario: (a) RSAM solution. (b) MLAT solution. (c) GA solution. (d) SM solution.

The configuration summaries corresponding to Figure 10a–d are printed in Figure 11a–d.
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RSAM KPI=380.0
AV1 : BS11 (0.03) --> DC6 (0.38) = 38.0
AV2 : BS5 (0.01) --> DC3 (0.38) = 38.0
AV3 : BS6 (0.02) --> DC3 (0.38) = 38.0
AV4 : BS14 (0.01) --> DC7 (0.12) = 38.0
AV5 : BS4 (0.03) --> DC2 (0.12) = 38.0
AV6 : BS6 (0.02) --> DC3 (0.38) = 38.0
AV7 : BS11 (0.03) --> DC6 (0.38) = 38.0
AV8 : BS15 (0.02) --> DC8 (0.12) = 38.0
AV9 : BS17 (0.02) --> DC9 (0.12) = 38.0
AV10: BS12 (0.01) --> DC6 (0.38) = 38.0

(a)

MLAT KPI=380.0
AV1 : BS24 (0.05) --> DC12 (0.12) = 38.0
AV2 : BS13 (0.01) --> DC7 (0.12) = 38.0
AV3 : BS17 (0.07) --> DC9 (0.38) = 38.0
AV4 : BS21 (0.08) --> DC11 (0.25) = 38.0
AV5 : BS15 (0.08) --> DC8 (0.12) = 38.0
AV6 : BS21 (0.08) --> DC11 (0.25) = 38.0
AV7 : BS20 (0.04) --> DC10 (0.25) = 38.0
AV8 : BS19 (0.02) --> DC10 (0.25) = 38.0
AV9 : BS17 (0.07) --> DC9 (0.38) = 38.0
AV10: BS17 (0.07) --> DC9 (0.38) = 38.0

(b)

GA KPI=380.0
AV1 : BS12 (0.01) --> DC6 (0.38) = 38.0
AV2 : BS6 (0.02) --> DC3 (0.12) = 38.0
AV3 : BS13 (0.01) --> DC7 (0.25) = 38.0
AV4 : BS10 (0.01) --> DC5 (0.12) = 38.0
AV5 : BS11 (0.04) --> DC6 (0.38) = 38.0
AV6 : BS17 (0.02) --> DC9 (0.12) = 38.0
AV7 : BS7 (0.01) --> DC4 (0.12) = 38.0
AV8 : BS15 (0.02) --> DC8 (0.12) = 38.0
AV9 : BS11 (0.04) --> DC6 (0.38) = 38.0
AV10: BS14 (0.03) --> DC7 (0.25) = 38.0

(c)

SM KPI=380.0
AV1 : BS8 (0.02) --> DC4 (0.25) = 38.0
AV2 : BS5 (0.02) --> DC3 (0.38) = 38.0
AV3 : BS5 (0.02) --> DC3 (0.38) = 38.0
AV4 : BS10 (0.07) --> DC5 (0.25) = 38.0
AV5 : BS4 (0.06) --> DC2 (0.25) = 38.0
AV6 : BS6 (0.01) --> DC3 (0.38) = 38.0
AV7 : BS4 (0.06) --> DC2 (0.25) = 38.0
AV8 : BS8 (0.02) --> DC4 (0.25) = 38.0
AV9 : BS11 (0.01) --> DC6 (0.12) = 38.0
AV10: BS10 (0.07) --> DC5 (0.25) = 38.0

(d)
Figure 11. Configurations found for the 10/25/13_fixed scenario: (a) RSAM solution. (b) MLAT
solution. (c) GA solution. (d) SM solution.

5.3. Variable Scenarios

Scenario 6/7/4_variable has the same complexity of 6/7/4_fixed, but UL access rates are
generated randomly with uniform distribution between 0 Mbit/s and 20 Mbit/s and wired
link delays randomly with uniform distribution between 5 ms and 150 ms. The connection
matrices are created in this way: UL access rates lower than 9 Mbit/s are considered to not
provide connection, and link delays higher than 60 ms correspond to an unavailable link.
As for the other parameters, ρi = 5 Mbit/s, γm = 1/4 CPU, lm = 33 ms, and `i = 100 ms.
Differently from the fixed case, every simulation consists of 100 randomly generated
configurations, for which the performance of all algorithms is averaged for comparison. For
this scenario, on average, there are Nval = 2.1× 105 valid configurations, so we consider
VEX as the optimum, reference solution.

Figure 12a shows the percentage of times an algorithm achieves the best KPI among
the four algorithms (ties are counted as wins), and its KPI equals that of the VEX solution.
GA wins in 92% of cases, whereas SM does so in 73 % of cases and RSAM in 71% of cases.
MLAT is the last, winning only in 28% of cases. However, while GA, SM, and RSAM do
not guarantee to obtain the optimum value in all victory situations, MLAT does. Although
there is a 19% difference between GA and SM, the loss in terms of average total latency is
minimal (Figure 12b): GA achieves a value of 295.7 ms, SM obtains 299.1 ms, and RSAM
is slightly better, at 296.7 ms, while MLAT underperforms at 366.3 ms. VEX provides the
optimal value of 295.0 ms.

The moderate KPI loss of SM with respect to GA, however, is compensated by a
significant running time reduction, shown in Figure 13a. While SM runs in 2 ms, GA takes
20.9 s, and both RSAM and VEX employ 0.4 s. Figure 13b shows the number of calls, which
is fixed for RSAM and MLAT, about 100 for SM, and more than 2× 105 for VEX; GA instead
peaks at about 106 calls.

Another scenario, 10/25/5_variable, has nearly the same dimensions of 10/25/13_fixed,
except for the DCs, which are decreased to NDC = 5 to simulate the effects of scarce
computation resources; UL rates, link delays, connection matrixes, and AV bit rates are
generated randomly as in scenario 6/7/4_variable. Simulation results are averaged over
100 randomly generated configurations.
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Figure 12. Scenario 6/7/4_variable. (a) Percentage of winning and achieving optimum. (b) Average KPI.
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Figure 13. Scenario 6/7/4_variable: (a) Average running time. (b) Average number of calls.

From Figure 14a, the percentage of winning is 71% and 41% for GA and SM, respec-
tively, while RSAM and MLAT never win. Additionally, the difference in average total
latency between GA and SM is small (410.4 ms for GA and 412.9 ms for SM), and RSAM
average latency is sensibly the worst, while MLAT average latency is more than doubled
with respect to GA (Figure 14b).
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Figure 14. Scenario 10/25/5_variable: (a) Probability of win. (b) Average of the KPI.

As concerns the number of calls (Figure 15a) and the running times (Figure 15b), GA
is still the slowest and most complex, with a 26.8 s run time, while RSAM takes 0.6 s, SM
5 ms, and MLAT less than 1 ms.
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Figure 15. Scenario 10/25/5_variable: (a) Average number of calls. (b) Running time.

Finally, we introduce another variable scenario to compare the convergence perfor-
mance of the best algorithm, GA, with that of the proposed SM, which is faster and only
slightly less optimal. For this comparison, we consider the scenario 40/60/20_variable
with dimensions NAV = 40, NBS = 60, and NDC = 20. The fixed parameter values are
lm = 33 ms, γm = 1/2 CPU, `i = 111 ms, while the bit rates produced by the AVs are
random samples from a Gaussian distribution with mean 25 Mbit/s, standard deviation
7 Mbit/s, and bounded in the [15, 35] Mbit/s interval (samples outside the interval are
assigned the value of the nearest limit). The UL access rates are uniformly distributed in
[0, 120] Mbit/s, and the wired delays are uniformly distributed in [5, 150] ms. BS connec-
tions are considered absent if the UL bit rate is lower than 25 Mbit/s, and DC connections
are not kept if the delay is higher than 60 ms. Even in this case, 100 random configurations
are generated, and the results are averaged. With these parameters, we obtain, on average,
ÑBS = 53.9 and ÑDC = 12.8. Figure 16 shows the variation in the average total latency as
the number of calls increases up to Ncall = 106 for the GA and SM algorithms. Initially, SM
underperforms with respect to GA, up until 104 calls; after this point, SM improves the KPI
and achieves its minimum before 2× 104 calls. GA, on the other hand, achieves a slightly
lower KPI after this point, but it needs almost two orders of magnitude more calls.
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Figure 16. Scenario 40/60/20_variable: achieved KPI as the number of calls varies.
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5.4. Scalability

The capability to withstand the increase in problem dimensions is directly related to
the algorithms computational cost, which is summarized in Table 5.

Table 5. Computational cost of the algorithms, ordered with decreasing complexity.

Algorithm Complexity Time for 40/60/20_Variable (s)

VEX O
(

NAVNBSNDC · (ÑBSÑDC)
NAV

)
2× 10100 (estimated)

GA O(NAVNBSNDC · Ncall) 109.4
RSAM O(NAVNBSNDC · Ncall) 4.5
SM O

(
NAVNBSNDC · ϑNAVÑBSÑDC

)
0.0356

MLAT O(NAVNBSNDC) 0.0028

Due to its exponential complexity, VEX is the least scalable approach, as it may become
intractable even for moderately sized systems.

GA and RSAM have a complexity that is linear in the system size, but their cost greatly
depends on the number of calls Ncall. In our simulations, we considered Ncall = 106 for GA
and Ncall = 50, 000 for RSAM, since GA is used as a reference to find the optimal value,
while RSAM could be adopted in a practical case. Vertical scalability can be guaranteed
by keeping Ncall limited and fixed as the problem dimensions increase so as to quickly
find a solution; at the same time, this also causes a loss of the solution quality, since a
progressively lower percentage of configurations are tested.

Instead, a nearly quadratic complexity results for SM, while practically less than linear
complexity is assigned to MLAT, which is the least-costing one. Thus, both SM and MLAT
are the most scalable.

Table 5 lists the obtained or estimated running times for the scenario 40/60/20_variable;
VEX is estimated to employ 2× 10100 s, while all the other algorithms have reasonable
running times. Specifically, GA takes 109.4 s, RSAM needs 4.5 s, and SM only 0.0356 s.
MLAT is the fastest, with 0.0028 s.

In summary, the proposed algorithm SM has running times of a few ms for all the
considered problem dimensions, achieves solutions with only slight loss from the optimal
ones, and the KPIs are better than that of RSAM and MLAT.

6. Conclusions
This work has presented some novel algorithms to deal with the unique assignment of

radio and CPU resources to a fleet of mobile robots needing task offloading. The assignment
is performed to optimize an indicator of the operational efficiency of the robot fleet, such
as the average response delay from the offloading servers. Mobile robots can exploit the
assigned resources and perform their task in the quickest way possible. We have compared
brute force, evolutionary, and reduced complexity search algorithms to find the optimal
assignment. After defining a number of scenarios, we have simulated and compared
the algorithms’ performance in terms of complexity and optimality. Our results show
that the proposed simplified algorithm (SM) outperforms the other methods in terms of
reduced complexity, with only a slight average latency penalty with respect to the best
algorithm (GA).
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
AV Autonomous vehicle
BS Base station
CPU Central processing unit
CRAN Cloud radio access network
DC Data center
DCA Difference of convex algorithm
GA Genetic algorithm
HW Hardware
KPI Key performance indicator
MIMO Multiple-input multiple-output
MBNLP Mixed-binary nonlinear programming
MINLP Mixed-integer nonlinear programming
MLAT Minimum latency
NP Nondeterministic polynomial
OS Operating system
RSAM Random sampling
SM Sequential minimization
SVC Service
UL Uplink
VEX Valid exhaustive
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