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Abstract: 5G technology and IoT devices are improving efficiency and quality of life
across many sectors. IoT devices are often used in open environments where they handle
sensitive data. This makes them vulnerable to side-channel attacks (SCAs), where attackers
can intercept and analyze the electromagnetic signals emitted by microcontroller units
(MCUs) to expose encryption keys and compromise sensitive data. To address this critical
vulnerability, this study proposes a novel dynamic key replacement mechanism specifically
designed for lightweight IoT microcontrollers. The mechanism integrates Moving Target
Defense (MTD) with a lightweight Diffie–Hellman (D-H) key exchange protocol and AES-
128 encryption to provide robust protection against SCAs. Unlike traditional approaches,
the proposed mechanism dynamically updates encryption keys during each cryptographic
cycle, effectively mitigating the risk of key reuse—a primary vulnerability exploited in SCAs.
The lightweight D-H key exchange ensures that even resource-constrained IoT devices can
securely perform key exchanges without significant computational overhead. Experimental
results demonstrate the practicality and security of the proposed mechanism, achieving key
updates with minimal time overhead, ranging from 12 to 50 milliseconds per encryption
transmission. Moreover, the approach shows strong resilience against template attacks,
with only two out of sixteen AES-128 subkeys compromised after 20,000 attack attempts—a
notable improvement over existing countermeasures. The key innovation of this study lies
in the seamless integration of MTD with lightweight cryptographic protocols, striking a
balance between security and performance. This dynamic key replacement mechanism
offers an effective, scalable, and resource-efficient solution for IoT applications, particularly
in scenarios that demand robust protection against SCAs and low-latency performance.

Keywords: 5G; Internet of Things (IoT); side-channel attack (SCA); microcontroller unit
(MCU); Diffie–Hellman (D-H); moving target defense (MTD); AES-128

1. Introduction
As the Internet of Things (IoT) and wireless communication continue to grow, they

transform people’s lives through progressive technologies, creating new opportunities
for development and enhancing both quality of life and productivity. IoT has also made
modern infrastructures more interconnected and optimized. Statista [1] noted there will
be 4 billion connected IoT devices by the end of 2024. This growth shows that more and
more people are using IoT to make their lives and work easier. Some devices use Wi-Fi
to connect and send data, allowing users to control IoT devices by only one smartphone.
However, as IoT devices become more common, cybersecurity becomes a serious issue.
Many devices send sensitive data over public networks, making them easy to steal. Insecure
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data transmission not only compromises personal privacy but also exposes vulnerabilities
in essential systems that rely on IoT infrastructure. Strong cryptographic algorithms need
to be used when transmitting data.

Common encryption methods like the Advanced Encryption Standard (AES) and RSA
are keeping data safe. They make it hard for attackers to break encrypted data easily. The
cryptographic strength of AES and RSA imposes resource-intensive demands on attackers
attempting to break the encryption. However, SCAs pose a significant threat by bypassing
the mathematical security of these algorithms. SCAs exploit the physical characteristics
emitted by encryption devices, such as power consumption [2], electromagnetic radia-
tion [3], and thermal emissions [4], to infer encryption keys. These physical leakages often
exhibit statistical correlations with the keys, allowing attackers to deduce them through
sophisticated analysis.

Current SCA defense strategies primarily focus on microcontrollers, utilizing tech-
niques such as masking [5] and hiding [6] to minimize the observability of physical signals,
thereby improving resistance to SCAs. Yet, as SCA techniques continue to evolve in com-
plexity, traditional defenses have proven insufficient [7]. Furthermore, the rapid progress
in quantum computing has introduced additional threats to existing security mechanisms.
Consequently, the development of more robust defense strategies has become imperative.

Recently, researchers have proposed an SCA method targeting Wi-Fi environments,
which enables attackers to decrypt transmitted data without the need for access to the
device’s password [8]. This study highlights the significant threat that SCAs pose to mod-
ern information security. To address this challenge, the present research introduces a
lightweight AES-128-based encryption key protection mechanism specifically designed
for securing IoT communications. This mechanism effectively defends against SCAs with-
out compromising system performance. In IoT devices, AES-128 has become the best
encryption algorithm candidate due to its low computational overhead and power con-
sumption [9]. Compared to other encryption methods, AES-128 not only provides sufficient
encryption strength [10], but also operates with high efficiency. However, just relying on
the encryption algorithm itself is not enough to ensure robust security. Especially in public
network environments, IoT devices performing encryption operations may leak physical
signals, which attackers can exploit to compromise encryption keys, thus threatening the
overall security of the system. If smart home devices, such as access control or surveil-
lance systems, fall victim to SCAs, personal privacy and sensitive data could be severely
compromised [11]. Therefore, improving encryption key protection mechanisms for IoT
devices is both a critical and urgent task. Furthermore, Zeng et al. [12] have proposed an
enhanced Message Authentication Encryption (MAE) scheme based on the Physical Layer
Key Generation (PKG), which improves encryption efficiency by 80.5% while consuming
fewer computational resources. This advancement offers a more efficient security solution
for resource-constrained IoT devices.

This paper proposes a dynamic AES key replacement mechanism based on the concept
of MTD, coupled with the D-H key exchange protocol. This combined approach enables the
dynamic replacement of AES encryption keys during transmission, significantly reducing
the risk of key compromise. To evaluate the effectiveness of this approach, we constructed
an IoT transmission system using an Arduino UNO and the ESP8266 Wi-Fi module [13].
During testing, attackers used probes to capture the physical traces emitted by the encryp-
tion devices and conducted statistical analysis on the GPU computing platform. Results
showed that after analyzing a sufficient number of traces, the attackers were able to extract
the AES encryption key. This finding highlights that static AES keys were insufficient for
ensuring the security of IoT devices in public environments. Dynamic key replacement is
necessary to mitigate the risk of key leakage.
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To address these vulnerabilities, this study proposes a high-efficiency dynamic key
replacement mechanism based on the Diffie–Hellman (D-H) protocol. Building on the
Moving Target Defense (MTD) approach introduced by Vuppala et al. [14], the proposed
mechanism dynamically updates encryption keys after each transmission, effectively miti-
gating vulnerabilities related to side-channel attacks (SCAs). Designed as a lightweight
solution, this mechanism is tailored to the computational limitations of resource-constrained
IoT microcontrollers, ensuring low power consumption and real-time performance. By
enhancing resilience against SCAs, the proposed approach significantly reduces the risk of
data leakage in IoT devices deployed in open and unsecured environments. Experimental
analysis validates the mechanism’s feasibility and effectiveness, demonstrating minimal
time overhead (12 to 50 milliseconds) and strong resistance to key extraction attacks, even
after 20,000 attempts.

The remainder of this paper is organized as follows: Section 2 (Preliminaries) provides
an overview of foundational concepts, including SCA vulnerabilities and the cryptographic
mechanisms that underpin this study. Section 3 (Related Work) reviews existing research
on SCA countermeasures and lightweight cryptographic protocols in IoT environments,
identifying key gaps that this study addresses. Section 4 (Research Methodology) details
the proposed dynamic key replacement mechanism, focusing on its integration with the
D-H protocol and its lightweight implementation for IoT devices. Section 5 (Experimen-
tal Results) presents the experimental setup and findings, evaluating the mechanism’s
performance and security under realistic IoT scenarios. Finally, Section 6 (Conclusions)
summarizes the key contributions of this study and highlights its practical implications.

2. Preliminaries
2.1. Advanced Encryption Standard (AES)

AES was first introduced in 1998 [15,16] and officially adopted as the standard for
symmetric encryption algorithms in 2001, replacing the legacy Data Encryption Standard
(DES), which supported only 56-bit keys. Due to its high computational efficiency and
strong security features, AES has become one of the most widely used encryption algo-
rithms, particularly within the IoT domain. AES encryption process consists of four main
stages. First, the plaintext is arranged into a 4 × 4 matrix, where each element represents
1 byte. Then, the key matrix is XORed with the plaintext matrix during AddRoundKey().
Next, SubBytes() replace each byte using the S-Box lookup table to introduce nonlinear
transformation to enhance security. Next, the ShiftRows() operation shifts the rows of
the state matrix to increase data diffusion. Except in the last round, the MixColumns()
operation is performed, which combines the four bytes in each column to obscure the
relationship between plaintext and ciphertext through matrix multiplication in the Galois
Field (GF(28)).

The main difference between AES-128, AES-192, and AES-256 is the length of the
encryption key, which impacts the number of encryption rounds; N of 10, 12 or 14 offers
a flexible balance between security and performance. Given the resource limitations in
IoT devices, AES-128 is widely adopted due to its low computational overhead and power
consumption while still offering strong security. In AES-128, the 128-bit key is divided
into 16 individual bytes, each ranging from hexadecimal 00 to FF. The encryption process,
as illustrated in Figure 1, ensures that even with the shortest key length, AES provides a
high level of security and performance, making it particularly well-suited for lightweight
IoT systems.
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In 2023, NIST chose ASCON [17] as the next-generation lightweight cryptographic
standard for IoT encryption. ASCON was not the fastest, but it was chosen due to its
security, good operation on low-power platforms, and inability to be attacked in other
ways. ASCON is well-suited for resource-constrained environments. It is based on AEAD
and SHA-256, providing efficient protection for short-lived, time-sensitive data commonly
found in IoT ecosystems by low-power overheads. However, ASCON is not necessarily
more secure than AES-128 in all cases. ASCON is best for short-lived data in low-power
environments. AES-128 is still the best choice for securing persistent and sensitive data in
many IoT applications. Most microcontrollers have already used well-known cryptographic
algorithms like AES, RSA, ECDSA, and SHA-256. This makes AES-128 a better choice than
ASCON. This study improves the AES-128 encryption algorithm for use in real-world IoT
applications. Because it is compatible with many devices and provides security, improving
AES-128 can benefit IoT devices that need to be secure and perform well. By refining the
algorithm, we aimed to provide a solution that ensure robust protection without using too
many resources.

2.2. SCAs

SCAs are a non-invasive technique aimed at exploiting the physical characteristics
leaked by cryptographic implementations, specifically targeting the hardware behavior of
microcontrollers in IoT devices. Since encryption algorithms are ultimately executed on
microcontroller chips, attackers can analyze physical signals, such as power consumption or
electromagnetic emissions, to infer the encryption keys. Common SCA techniques consist
of Simple Power Analysis (SPA) [18], Differential Power Analysis (DPA), and Correlation
Power Analysis (CPA) [19]. In this study, CPA is employed as the primary attack method
because it effectively analyzes the correlation between the power consumption of the
encryption device and the encryption key.

During the AES encryption process, attackers typically focus on the output of the
S-Box in the first round as the Point of Interest (PoI), since at this stage, the signal has only
passed through the AddRoundKey() and SubBytes() operations. Attackers record the power
consumption or electromagnetic emissions during the encryption process, converting these
signals into traces, which are binary representations of the recorded data. These traces are
then subjected to statistical analysis.

CPA works by correlating hypothetical key guesses with the actual recorded traces,
using correlation analysis to infer the correct key. Since there is a relationship between
the electromagnetic emissions and power consumption, CPA groups the traces based
on power consumption patterns. The power model used for grouping is the Hamming
Weight (HW) [20], which categorizes each trace based on the number of ‘1s’ in the binary
representation. For AES-128, HW values range from 0 to 8, creating a total of nine groups,
as shown in Figure 2 [21]. By this method, the intermediate value x (the output of the
first round S-Box) is obtained for a set of random plaintexts and hypothetical keys. The
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traces y, recorded during the encryption process, are then used in correlation coefficient
calculations to predict the correct key for the Device under Test (DUT) based on the results
of the correlation analysis, as shown in Equation (1).

rj,k,t =
∑n

i=1

(
xj,k,i − xj,k

)
(yt,i − yt)√

∑n
i=1

(
xj,k,i − xj,k

)2
∑n

i=1(yt,i − yt)
2

(1)
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2.3. D-H Key Exchange Mechanism

The D-H key exchange mechanism was introduced in 1976 [22] and has become a
fundamental milestone in modern cryptography. D-H is one of the pioneering protocols
in public key cryptography, enabling two parties to securely establish a shared symmetric
key without sharing a prior key over an insecure channel. Many communication protocols
utilize D-H to establish a secure channel by exchanging information over a public network.
There are several variations of D-H, including the Elliptic Curve D-H Key Exchange (ECDH).
Given the hardware limitations in IoT environments, the D-H implementation in this study
was chosen for its minimal power consumption, ensuring compatibility with power-limited
IoT devices.

The lightweight version of D-H employed in this study is based on the discrete
logarithm problem, mathematically expressed as f (x) = Gx mod P, where G is the base
and P is a prime modulus.

• Private Key Generation: The IoT device and the server independently select their
private keys, denoted as a and b, respectively. These private keys are large random
integers chosen securely to ensure robustness against attacks.

• Public Key Calculation: Using the private keys, the respective public keys are com-
puted as follows:

For the IoT device: PKA = Ga mod P
For the server: PKB = Gb mod P
These public keys are derived from the exponential function over a finite field and are

securely exchanged over an insecure channel.

• Shared Key Derivation: Upon receiving the other party’s public key, the IoT device
and the server calculate the shared symmetric key SK as follows:

For the IoT device: SK = PKa
B mod P

For the server: SK = PKb
A mod P
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Due to the commutative property of modular exponentiation, both calculations yield
the same shared secret key SK, which forms the basis of secure communication.

As illustrated in Figure 3, in order to derive the final shared key SK from the
public values, an attacker would need to solve for the private keys PKA or PKB, which
is computationally infeasible without access to those private keys. D-H ensures strong
security by relying on the exchange of public keys and the difficulty of solving the discrete
logarithm problem, even over an insecure channel. This mechanism is leveraged in our
study to implement dynamic key replacement, providing protection against SCAs.
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2.4. Threat Model

This study adopts a well-defined threat model specifically tailored to the resource-
constrained nature of IoT environments and the physical characteristics of cryptographic
implementations:

• Attacker Capabilities: The attacker is assumed to have access to non-invasive tools
capable of capturing physical leakages, such as electromagnetic emissions or power
consumption traces, generated during the AES encryption process. The primary
attack technique considered is Correlation Power Analysis (CPA), which statistically
correlates these traces with hypothetical encryption keys to deduce the correct key.

• Attacker Limitations: The attacker is restricted to non-invasive methods and cannot
physically tamper with the microcontroller or IoT device. Additionally, the attacker has
no access to the device’s internal state and relies solely on external observations of emitted
signals. The attack is further constrained by real-time requirements, limiting the feasibility
of collecting an excessive number of traces in practical operational environments.

• Assumptions: The initial key exchange between the IoT device and the server is
conducted securely, ensuring the integrity of the shared key.

The devices operate in environments where physical access is limited but not entirely
restricted, and the cryptographic hardware remains uncompromised during operation. This
threat model serves as the foundation for assessing the proposed mechanism’s resilience
against SCAs. By dynamically updating encryption keys after each cryptographic cycle,
the proposed solution effectively reduces the risk of key recovery through CPA or similar
statistical attacks.
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2.5. Common Wireless Communication Protocols in the IoT

There are many types of wireless communication protocol for IoT devices. The most
common are Wi-Fi, Bluetooth, Zigbee, and LoRa [23–26]. Each has different features and
benefits. Table 1 compares each of the protocol’s property and advantages.

Table 1. Comparison of specifications of common wireless communication protocols.

Protocol Frequency
(GHz)

Data
Transmission
Speed (Max)

Communication
Distance

Power
Consumption Advantages

Wi-Fi 2.4/5 1 Gbps 50–100 m High High-frequency bandwidth, high speed,
supported by extensive infrastructure

Bluetooth 2.4 3 Mbps 10–100 m Low Low power consumption, suitable for
small devices with long-term operation

Zigbee 2.4 250 kbps 10–100 m Low Low power consumption, supports
multi-node mesh networks

LoRa Sub-GHz 50 kbps 2–15 km Ultra-low Long-range coverage, ultra-low
power consumption

Wi-Fi is the most pervasive and reliable protocol mentioned above, offering high
data transmission rates, so it is the best candidate for smart home environments. Due
to its widespread used, Wi-Fi has become the most common wireless communication
protocol. Furthermore, many existing devices and infrastructures have been optimized
and integrated to support it. In smart home scenarios, large amounts of real-time data
transmission and many multimedia applications use communication protocols with high
bandwidth and reliability. Despite the vulnerability of Wi-Fi to network attacks, particularly
when handling sensitive personal data in open environments, this is one of the main
focuses of this research. The aim of this study is to enhance the security of data transmitted
over Wi-Fi and mitigate the risks posed by SCA by improving encryption key protection
mechanisms.

2.6. Glossary of Acronyms

To ensure clarity and consistency, this paper adopts several commonly used technical
acronyms. These acronyms are listed and defined in Table 2 below. Throughout the
remainder of this paper, the abbreviations provided in the table will replace their full
forms for brevity. This ensures efficient communication while maintaining readability for a
technical audience.

Table 2. Glossary of acronyms.

Acronym Full Form

5G Fifth-Generation Mobile Network
AES Advanced Encryption Standard
CPA Correlation Power Analysis
D-H Diffie–Hellman
IoT Internet of Things

MAC Message Authentication Code
MITM Man-in-the-Middle
MTD Moving Target Defense
RSA Rivest–Shamir–Adleman Encryption
SCA Side-Channel Attack
Wi-Fi Wireless Fidelity
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3. Related Work
SCAs represent a significant threat to the security of IoT devices, leveraging physical

leakages such as power consumption, electromagnetic emissions, and timing information
to extract sensitive cryptographic keys. Addressing these vulnerabilities has been a major
focus in both academic and industrial research, leading to the development of hardware-
and software-based countermeasures.

3.1. Hardware-Based Countermeasures

Hardware-based countermeasures aim to reduce physical leakage or obscure the
correlation between cryptographic operations and observable signals. Techniques such as
masking and hiding are widely employed:

• Masking: Introduces random noise to intermediate computations, breaking the sta-
tistical dependency between leaked signals and secret keys, as demonstrated by
Mangard et al. [27].

• Hiding: Utilizes techniques such as dynamic voltage and frequency scaling (DVFS) to
reduce the signal-to-noise ratio of the leakage, effectively obscuring attack vectors [18].

Recent advancements, such as those proposed by Zhao et al. [28], focus on integrat-
ing multiple defense layers into chip-level designs. Their On-Chip Monitoring (OCM)
circuits enable real-time detection of attack attempts, while Backside Buried Metal (BBM)
structures provide enhanced electromagnetic shielding to reduce leakage. While these
approaches significantly improve resistance to SCAs and fault injection attacks, they
also increase fabrication complexity and costs, limiting their practicality for low-cost
IoT devices.

3.2. Software-Based Countermeasures

Software-based solutions focus on enhancing cryptographic algorithms and protocols
to improve resistance against SCAs without extensive hardware requirements:

• Dynamic Key Replacement: Mechanisms such as those proposed by Vuppala et al. [14]
use MTD to periodically update cryptographic keys, reducing the risk of key reuse
and subsequent SCAs.

• Lightweight Cryptographic Algorithms: Algorithms like PRESENT and SPECK are
designed to minimize computational overhead, making them suitable for IoT applica-
tions [29]. However, their security against advanced SCAs, such as template attacks,
remains a topic of ongoing research.

These solutions provide flexibility and scalability but often involve trade-offs be-
tween performance and security, particularly in real-time applications with stringent
resource constraints.

3.3. Comparison with Prior Research

The proposed mechanism in this study builds on prior research by integrating Moving
Target Defense (MTD) with a lightweight Diffie–Hellman (D-H) protocol and AES-128 en-
cryption. This combination enables dynamic key updates after each transmission, providing
robust resistance against side-channel attacks (SCAs) while maintaining low computational
overhead. Unlike hardware-intensive approaches or static software solutions, the proposed
method strikes a balance between security and resource efficiency, making it particularly
well-suited for IoT environments.
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Table 3 offers a comprehensive comparison between the proposed mechanism and
selected prior works, highlighting key differences in methodologies, features, and perfor-
mance. The table demonstrates how the proposed solution surpasses traditional masking
and hardware-based approaches by delivering strong SCA resistance with minimal resource
consumption. Additionally, compared to existing dynamic key replacement mechanisms,
the proposed method introduces a more granular, per-transmission key update process,
further enhancing security without compromising low-latency performance. This compari-
son underscores the novelty and practicality of the proposed approach in addressing the
security challenges faced by resource-constrained IoT devices.

Table 3. Comparison of the proposed mechanism with selected prior works.

Ref. Method Key Feature Overhead SCA Resistance

[3] Backside Buried
Metal

Real-time attack
detection

High
(fabrication cost)

Strong for EM and
fault attacks

[4] Dynamic Key
Replacement

Periodic key updates
using MTD Moderate Limited by update

frequency

[27] Masking Adds random noise to
computations

High (hardware
mods)

Strong for
power analysis

[30] Key Simplification +
D-Box Updates

Reduced encryption
cycles and dynamic

key updates
Low Resilient to

replay attacks

4. Research Methodology
4.1. Experimental Framework

In network environments, sensitive information must be encrypted before transmis-
sion to prevent unauthorized access. In resource-constrained IoT systems, AES encryption
has been widely used. While AES provides robust security, the encryption operations are
executed by microcontrollers within the devices, which may leak physical signals during
the encryption process. These signals could be exploited by attackers to extract the encryp-
tion keys, thus compromising the encrypted messages. To counter SCA on IoT devices, we
proposed a dynamic key replacement AES encryption algorithm based on the MTD [14]
concept. This approach changes the initial encryption key before an SCA can succeed.

To validate the effectiveness of this defense mechanism, we implemented a wireless
communication platform for a smart access control system, which included an RFID-based
access control system (Arduino UNO), a Wi-Fi module (ESP8266), and access control soft-
ware. A laptop executed access control software as client and server in the IoT environment,
handling communication between the devices. The smart application system was set up
using actual RFID tags, with an RFID reader connected to Arduino UNO. When the RFID
tags were read, the data were encrypted by AES and transmitted via the Wi-Fi module to
the access control software for decryption.

Once the encryption and decryption process of the access control data was validated,
we conducted an SCA on the system. Using an oscilloscope, we captured electromagnetic
radiation emitted during the execution of encryption operations on Arduino UNO, specif-
ically targeting the power consumption data. The oscilloscope used an electromagnetic
probe to capture the traces, which were sent to the control computer. These traces were
processed by a GPU computing platform using CPA to determine the success of the key
extraction by analyzing the number of successfully attacked subkeys. The experimental
setup is illustrated in Figure 4.
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Once we confirmed the IoT transmission scenario and SCA setup, we modified the
AES encryption algorithm to enable dynamic key replacement. To evaluate the efficiency
and effectiveness of the key replacement, we performed the key replacement after capturing
different amounts of traces and observed the frequency limitations of the key replacement.
The configuration of the client, server, and the dynamic key replacement AES design will
be discussed detail in the following sections.

4.2. Client-Side Setup

The communication scenario is built around the wireless transmission of access control
card data using Wi-Fi. We developed a simple IoT access control system using the Arduino
UNO NodeMCU v3, the ESP8266 Wi-Fi module, and the MFRC552 RFID sensor module.
The client-side setup and operation are as follows:

First, we include the header files ESP8266WiFi.h, MFRC522.h, and config.h. The first
two libraries correspond to the Wi-Fi Module and the RFID Reader, while config.h defines
the Wi-Fi SSID, password, default AES-128 encryption key, server IP, port, and the base
and modulus values for the D-H key exchange.

Next, the setup() function is used to initialize the MFRC522 module, connect to the
specified Wi-Fi network, and establish communication with the server. The loop() function
continuously monitors the MFRC522 sensor for access card UID readings, records the
number of data packets transmitted, and encrypts the UID string using a custom AES-128
function aes128(). Then the encrypted data are sent to the server for processing.

To ensure transmission accuracy, the number of packets recorded by the client are
compared with the number received by the server. After a certain number of transmissions,
the client initiates a key negotiation with the server using the D-H protocol to generate the
next AES encryption key. The actual client-side setup is illustrated in Figure 5.
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encryption key rather than the key length itself. Although longer keys, such as AES-256, 

Figure 5. Actual client-side setup.

4.3. Server-Side Setup

The server-side program for the smart access control system was developed in Java,
as illustrated in Figure 6. The program utilizes the following libraries: info.picocli:picocli,
javax.crypto, and java.net. After starting the server through the command line with the
specified port parameter, the java.net.ServerSocket is used to listen on the designated port.
Once a communication channel is established, the server connects to the client and begins
exchanging data. During the connection, the D-H key exchange is used to generate the next
key from the initial key. The messages received from the client (Arduino) are decrypted
using Cipher.getInstance(“AES/ECB/NoPadding”). If the message is in RFID format, the
system searches for the corresponding UID and triggers specific actions, such as sending
HTTP requests or logging the access time into a database. After receiving a certain number
of messages, the server re-initiates the D-H key exchange with the client to generate the
next AES-128 decryption key.
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4.4. Dynamic AES Key Replacement Mechanism

The proposed mechanism addresses the critical vulnerability of key reuse in AES
encryption, which can result in power consumption or electromagnetic signal leakage
that can be exploited by SCAs. This vulnerability stems from the repeated use of the
same encryption key rather than the key length itself. Although longer keys, such as AES-
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256, could theoretically reduce these risks, their higher computational overhead renders
them impractical for resource-constrained IoT devices. Therefore, this study focuses on
implementing a dynamic key replacement mechanism that enhances security without
imposing additional computational burdens.

• Initial Key Configuration and Key Replacement

As shown in Figure 7, the mechanism begins with a pre-configured initial key, Key[0],
used solely during the initial connection negotiation. The D-H key exchange protocol then
generates the first 32-bit hopping operator, d[0], which is combined with Key[0], using a
hash function to derive the next encryption key:

Key[1] = hash(Key[0], d[0]).
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This dynamic key replacement ensures that Key[0] is never reused for encryption,
thereby mitigating potential leakage of AES characteristics and reducing SCA risks.

The hash function, implemented in the HashAESKey method, dynamically updates
the AES key to ensure enhanced security while maintaining computational efficiency for
IoT devices. The process works as follows: The hash function takes d[0] (the 32-bit hopping
operator) as the salt and processes it to modify Key[0]. The AES key is represented as a
16-byte array, and the hashing process iterates over these 16 bytes in four 4-byte blocks. For
each byte, a bitwise XOR operation is performed between the byte and the least significant
8 bits of the salt. After each XOR operation, the salt is right-shifted by 4 bits to ensure all
bits contribute to the transformation. This operation produces Key[1], which is used for
subsequent encryption cycles.

The algorithm can be summarized as follows:

� Step 1: initialize the salt with d[0].
� Step 2: iterate over the 16 bytes of Key[0] in four 4-byte blocks.
� Step 3: for each byte, apply a bitwise XOR with the least significant 8 bits of the salt.
� Step 4: right-shift the salt by 4 bits after processing each byte.
� Step 5: update the corresponding byte in Key[0] to produce Key[1].

This lightweight hashing process ensures that the updated key incorporates sufficient
randomness and unpredictability derived from d[0], while keeping computational over-
head minimal. By leveraging this approach, the dynamic key replacement mechanism
prevents key reuse and enhances resilience against SCAs, ensuring secure communication
in resource-constrained IoT environments.

• Dynamic Key Replacement Process

The key replacement process, illustrated in Figure 8, is triggered after every M data
transmission. A new hopping operator is generated using the D-H key exchange, which
derives a fresh encryption key to prevent key reuse. For enhanced randomness, the private
keys in the D-H exchange are generated from high-quality random numbers or, in offline
scenarios, through analog value readings from the microcontroller’s pins, such as using the
Arduino analogRead() function.
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This mechanism significantly strengthens IoT system security by ensuring that each
transmission uses a unique encryption key, effectively thwarting SCAs that exploit pre-
dictable electromagnetic signals.

• D-H Key Exchange Implementation

The lightweight implementation of the D-H key exchange is specifically tailored for
resource-constrained microcontrollers, such as the Arduino Uno. This implementation
utilizes carefully chosen parameters to strike an optimal balance between security and
computational efficiency: a generator (G = 37) and a prime modulus (P = 2, 147, 483, 647).

The rationale behind choosing these parameters is rooted in their ability to meet the
security and efficiency requirements of IoT devices. The prime modulus P = 2, 147, 483, 647
is a 31-bit prime number that provides a robust foundation for the discrete logarithm prob-
lem, which is the basis of the D-H protocol. While traditional implementations often use
larger primes to achieve higher security levels, the 31-bit prime is more suitable for IoT ap-
plications where computational efficiency is critical. This size of P ensures that brute-force
attacks remain computationally infeasible, even when attempted on adversarial hardware.

Similarly, the generator G = 37 was selected as a small, fixed integer to optimize the
modular exponentiation process. Using a smaller generator reduces the computational
burden on microcontrollers, allowing for faster key calculations while maintaining adequate
randomness and security. Additionally, this choice ensures a uniform distribution of the
generated keys across the finite field defined by the modulus P, which is essential for
preserving cryptographic strength.

The combination of G = 37 and P = 2, 147, 483, 647 provides an effective trade-off
between security and performance, making it particularly well-suited for lightweight
microcontrollers. In IoT scenarios, the time and energy constraints of adversaries, coupled
with the real-time operational demands of IoT devices, further mitigate the risks of brute-
force and similar attacks. These parameters are not only computationally efficient but also
sufficiently secure for practical deployment in real-world IoT applications, such as access
control systems and sensor networks.

To implement this lightweight D-H key exchange, the public keys are computed
by each party, using their private keys as PKA = Ga mod P for the IoT device and
PKB = Gb mod P for the server. Once the public keys are exchanged, the shared sym-
metric key is derived as SK = PKB

a mod P = PKA
b mod P. This ensures that both parties

compute the same shared key due to the commutative property of modular exponentia-
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tion. The detailed step-by-step process of this key exchange is outlined in Table 4, which
illustrates the sequence of operations required to establish the shared symmetric key.

Table 4. Lightweight D-H key exchange process for IoT devices.

IoT Device (A) Public Information Server (B)

Private Key Selection Private Key Selection
a = 777 G = 37 b = 888

P = 2, 147, 483, 647
Public Key Calculation Public Key Calculation

PKA = Ga mod P PKB = Gb mod P
= 37777mod 2, 147, 483, 647 = 37888 mod 2, 147, 483, 647

= “1, 348, 037, 377” = “37, 387, 895”
Public Key Exchange Public Key Exchange

PKA = “1, 348, 037, 377”
PKB = “37, 387, 895”

Shared Secret Calculation Shared Secret Calculation
SK = PKB

amod P SK = PKA
b mod P

= 37, 387, 895777 mod 2, 147, 483, 647 = 1, 348, 037, 377888 mod 2, 147, 483, 647
= “1, 142, 936, 476” = “1, 142, 936, 476”

This lightweight implementation of the D-H key exchange ensures secure key dis-
tribution, even for devices with limited processing power, by balancing computational
efficiency and cryptographic strength. Through the careful selection of parameters and
optimization of the microcontroller’s workload, this approach provides a highly efficient
solution for IoT environments, where resource constraints are a critical consideration. It
enables secure cryptographic key exchanges without compromising the performance of
resource-constrained devices, such as the Arduino Uno.

The proposed method not only meets the security demands of modern IoT applications
but also demonstrates excellent adaptability to the constraints of real-world deployments,
where both energy consumption and processing capabilities are limited. This lightweight
D-H mechanism is ideal for scalable IoT networks that require robust security without
sacrificing performance.

5. Experimental Results
This chapter presents a detailed analysis of the experimental results for the proposed

“Efficient Key place Mechanism for Lightweight IoT Microcontrollers”. The experiment
aimed to verify the correctness of the AES encryption and decryption processes, evaluate
the time efficiency of the dynamic key replacement mechanism, and assess the effectiveness
of different key replacement frequencies in defending against SCAs. Through the analysis
of experimental data, we demonstrate the mechanism’s actual performance in enhancing
the security and operational efficiency of IoT devices. The following sections detail the
experimental design and results.

5.1. Experimental Setup

The experimental setup, as shown in Figure 9a, establishes a testing platform for
lightweight IoT devices to simulate and evaluate the encryption key protection mechanism
and its ability to resist SCAs. In this experiment, an Arduino UNO was used as the
client device for data transmission and was set as the target for SCAs. The server side
was implemented by Java, responsible for receiving and verifying data from the client
to ensure the integrity and correctness of the transmission. The attack platform was
configured based on the methods proposed in [31], with both hardware and software set
up accordingly. During the attack, the H-Field probe used in this study was the CW505
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Planar H-Field Probe, manufactured by NewAE Technology Inc. This probe is specifically
designed for side-channel analysis and is capable of capturing electromagnetic radiation
emitted by the target device during operations such as AES encryption. The CW505 probe
was positioned near the client device to monitor and collect the electromagnetic signals
generated during the encryption process, providing critical data for analyzing potential
side-channel vulnerabilities. These signals were recorded as trace data for further analysis.
Figure 9b provides a physical image of the electromagnetic signals being captured via a loop
antenna, which were processed in real time using the PicoScope 5244B oscilloscope. The
captured traces were transmitted to the control computer for formatting and preprocessing,
and subsequently sent to the computing server for further analysis. The server ran a
CPA program, following the configuration by Peng et al. [32], to conduct attack analysis
and return results. This setup effectively simulates real-world SCA scenarios in an IoT
environment and validates the feasibility and effectiveness of the proposed experimental
methodology. Specifically, the CPA uses Pearson’s correlation coefficient to determine the
linear relationship between the hypothetical power consumption values (e.g., Hamming
Weight or Hamming Distance models) and the recorded side-channel traces. The correlation
coefficient is calculated using Equation (1). Here rj,k,t represents the correlation coefficient
for the j − th subkey, the kth key guess, and the t − th sample point of the trace. x refers
to the hypothetical power values, y refers to the recorded side-channel signal, and x, y are
their respective averages. By analyzing the resulting correlation matrix Rj, the element
with the highest correlation value identifies the correct subkey.
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5.2. Verification of AES Encryption and Decryption

Before conducting SCAs, we first verified the correctness of data encryption and
decryption between the client side and server side. By the lightweight D-H protocol,
an AES-encrypted channel was established between the Arduino UNO and the control
computer by Key[0]; this channel ensured the confidentiality and integrity of transmitted
data. After successfully establishing the secure channel, encrypted test messages were
transmitted to the server. During the transmission process, Wireshark was employed
to monitor and analyze the encrypted message packets. Figures 10 and 11 illustrate the
captured network traffic, confirming the successful delivery of encrypted packets from
the IoT device to the server. The analysis verified key indicators such as packet size,
transmission sequence number, and destination address, ensuring that packets were neither
altered nor dropped during transit.

Figure 11 highlights the numbering of each transmitted data packet. For instance, the
packet labeled “2100” represents the 2100th AES-128 encrypted message. A comparison
of packets 2098, 2099, and 2100 reveals that the encryption key for the 2100th packet was
dynamically replaced with a new key: “AC D1 A2 97 DA B1 83 D5 EF D2 FA C5 D9
80 D9”. This validates the functionality of the dynamic AES key replacement mechanism,
demonstrating its role in enhancing transmission security by using a unique encryption
key for each subsequent packet.
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The figure further confirms that the dynamically replaced key was successfully used
by the server to decrypt the encrypted packets. For example, the decrypted content of
Message Number 2100 matches the expected plaintext message, verifying the accuracy of
the encryption and decryption processes on both the client and server sides. This successful
decryption not only confirms the correctness of the encrypted packets but also demonstrates
the mechanism’s reliability and integrity throughout the transmission process.

Additionally, Figure 11 demonstrates that the dynamic AES key replacement mecha-
nism maintains the correct sequence and integrity of the transmitted packets. The proper
order of packets (e.g., 2098, 2099, and 2100) and their successful decryption validate that no
data were lost or corrupted during transit. The server consistently verifies and processes
the packets, ensuring reliable and secure communication.

In summary, the analysis presented in Figures 10 and 11 underscores the effectiveness
of the proposed dynamic AES key replacement mechanism. The accurate decryption of



Future Internet 2025, 17, 43 18 of 24

Message Number 2100 serves as strong evidence of the mechanism’s capability to ensure
data integrity, reliability, and security across the entire communication process.

5.3. Time Efficiency Analysis of Dynamic Key Replacement

Given the computational limitations of microcontrollers in IoT devices, evaluating
the time efficiency of the proposed key replacement mechanism is essential to ensure it
operates effectively in resource-constrained environments. To this end, experiments were
conducted on an Arduino UNO development board to assess the performance of the key
replacement mechanism at various frequencies. During the tests, plaintext messages were
encrypted using AES-128, with the encryption key replaced at different intervals. For each
scenario, a total of 3000 encrypted packets were transmitted, and the time required for each
transmission was recorded to measure the time overhead associated with different key
replacement frequencies.

Table 5 presents a detailed breakdown of the average transmission time per packet
when the key was replaced after every 1, 10, 30, and 50 packets. The results indicate that
replacing the key for every transmission increases the average time per packet from 12 ms
(with infrequent replacements) to 50 ms. Although this represents a measurable increase, it
remains well within acceptable limits for real-world applications. To provide context, we
compared these results to typical access control systems, where the average time for a card
swipe operation ranges between 0.5 and 1 s. Even with the most frequent key replacement
scenario, the computational overhead remains negligible compared to the user interaction
time in such systems.

Table 5. Time efficiency comparison of different key replacement frequencies.

D-H Key Exchange Frequency Every 1
Message

Every 10
Messages

Every 30
Messages

Every 50
Messages

Total time for transmitting 3000 encrypted messages (ms) 150,995 69,011 45,415 36,969
Average time per message (ms) 50 23 15 12

The experimental results confirm that the proposed key replacement mechanism effec-
tively enhances security by preventing key reuse while maintaining computational feasibil-
ity. The mechanism’s average transmission time across all tested frequencies demonstrates
its adaptability to resource-constrained environments. Additionally, the low transmission
times validate that frequent key replacements do not degrade IoT device performance,
making this mechanism highly suitable for practical applications in smart access control
systems and other low-latency IoT environments.

5.4. SCA Results with Different Key Replacement Frequencies

In this study, a wireless loop antenna was employed to receive characteristic signals,
SCAs were executed on an Arduino UNO microcontroller, and electromagnetic signals
were captured under the experimental conditions depicted in Figure 9. Correlation analysis
was utilized to assess the efficacy of the attack in compromising the cryptographic keys.
Figure 12a presents the results of an SCA executed on the microcontroller during AES
encryption, without any protective countermeasures in place. The x-axis represents the
number of data traces required to carry out the attack, while the y-axis indicates the
number of successfully recovered key bytes. Our findings reveal that, without protection,
an attacker can fully recover all 16 subkeys of the AES-128 encryption algorithm with just
approximately 55 traces.



Future Internet 2025, 17, 43 19 of 24

Future Internet 2025, 17, x FOR PEER REVIEW 19 of 24 
 

 

• Figure 12a: without any protection. 
• Figure 12b: when the key was replaced every 50 encryption operations, the attacker 

was able to successfully retrieve 12 subkeys. 
• Figure 12c: at a replacement interval of 30 encryption operations, only eight subkeys 

were compromised. 
• Figure 12d: reducing the key replacement interval to 10 encryption operations re-

sulted in only two compromised subkeys. 
• Figure 12e: Replacing the key after every single encryption cycle limited the attacker’s 

success to just two subkeys. 

Table 6. Results of SCAs with different key replacement frequencies. 

Key Replacement 
Frequency 

Without Key 
Replacement 

1 10 30 50 

Number of traces required 55 >20,000 >20,000 >20,000 >20,000 
Number of subkeys compromised 16 2 2 8 12 

These results clearly demonstrate the inverse relationship between key replacement 
frequency and the success rate of SCAs. The more frequently the encryption key is re-
placed, the more difficult it becomes for the attacker to successfully compromise the cryp-
tographic keys. Notably, the strategies of replacing the key after every one and ten en-
cryption operations proved particularly effective in thwarting template attacks, which are 
often capable of breaching encryption with minimal traces. 

As reported by Wu et al. [33], deep learning and template attack techniques can allow 
attackers to recover encryption keys using only a small number of traces. However, the 
high-frequency key replacement mechanism proposed in this study has substantially re-
duced the number of subkeys that could be successfully retrieved by such attacks. The 
results provide compelling evidence that the dynamic key replacement mechanism sig-
nificantly enhances the security of IoT devices, bolstering their resistance to SCAs and 
ensuring robust protection of sensitive data. 

 
 

(a) Unprotected (b) Every 50 AES encryptions 

  
(c) Every 30 AES encryptions (d) Every 10 AES encryptions 

Future Internet 2025, 17, x FOR PEER REVIEW 20 of 24 
 

 

 

 

(e) Every AES encryption  

Figure 12. SCA results of AES encryption with different key replacements. 

5.5. Scalability of the Proposed Mechanism in IoT Environments 

The proposed mechanism demonstrates strong scalability, as each IoT device inde-
pendently derives encryption keys using the lightweight D-H protocol. In high-density 
IoT environments, the computational overhead on microcontrollers remains minimal, en-
suring the feasibility of large-scale deployments. 

To further validate the mechanism’s scalability, additional experiments were con-
ducted by simulating the connection of five additional devices in a test environment. Each 
device established a secure communication channel with the server using the proposed 
mechanism. The results showed that the average latency per device increased by only 3 
milliseconds during key negotiation, even with the added device density. This negligible 
increase in latency highlights the mechanism’s practicality for real-world implementa-
tions, ensuring secure and efficient communication as the number of connected devices 
grows. 

5.6. Security Analysis 

The proposed lightweight Diffie–Hellman (D-H) protocol is specifically designed to 
address the unique security challenges of resource-constrained IoT environments. This 
section presents a comprehensive analysis of the protocol’s security properties, with a fo-
cus on ensuring confidentiality, authentication, integrity, and resistance to known attacks. 

5.6.1. Cryptographic Strength of Parameters 

As detailed in Section 4.4, the proposed protocol employs carefully selected parame-
ters: the prime modulus  𝑝  = 2,147,483,647 and the generator  𝐺  = 37. These choices 
achieve an optimal balance between computational efficiency and cryptographic strength, 
making the protocol well-suited for resource-constrained IoT devices. The selected pa-
rameters provide a robust cryptographic foundation, ensuring security without compro-
mising performance. 

5.6.2. Confidentiality 

The protocol guarantees the confidentiality of shared symmetric keys derived 
through the D-H key exchange mechanism. Even if attackers intercept the public keys 
( 𝑃𝐾  and  𝑃𝐾 ), the difficulty of solving the discrete logarithm problem (DLP) ensures 
that the private keys (a and b) and the derived shared key remain secure. This ensures the 
confidentiality of key exchange communications, protecting them from unauthorized ac-
cess. 

5.6.3. Authentication 

Although the protocol does not inherently provide an explicit authentication mecha-
nism, it assumes either a secure initial key exchange or the involvement of a trusted third 
party for public key verification. Without such measures, the protocol remains vulnerable 

Figure 12. SCA results of AES encryption with different key replacements.

To further evaluate the efficacy of the proposed dynamic key replacement mechanism,
we executed SCAs at various intervals of encryption operations, modifying the encryption
key at different frequencies. The results as shown in Figure 12b–e illustrate a significant
reduction in the effectiveness of the SCAs as the frequency of key replacement increases.
Table 6 summarizes these findings, underscoring the impact that key replacement frequency
has on an attacker’s ability to compromise the encryption keys.

Table 6. Results of SCAs with different key replacement frequencies.

Key Replacement
Frequency

Without Key
Replacement 1 10 30 50

Number of traces required 55 >20,000 >20,000 >20,000 >20,000
Number of subkeys compromised 16 2 2 8 12

• Figure 12a: without any protection.
• Figure 12b: when the key was replaced every 50 encryption operations, the attacker

was able to successfully retrieve 12 subkeys.
• Figure 12c: at a replacement interval of 30 encryption operations, only eight subkeys

were compromised.
• Figure 12d: reducing the key replacement interval to 10 encryption operations resulted

in only two compromised subkeys.
• Figure 12e: Replacing the key after every single encryption cycle limited the attacker’s

success to just two subkeys.
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These results clearly demonstrate the inverse relationship between key replacement
frequency and the success rate of SCAs. The more frequently the encryption key is replaced,
the more difficult it becomes for the attacker to successfully compromise the cryptographic
keys. Notably, the strategies of replacing the key after every one and ten encryption
operations proved particularly effective in thwarting template attacks, which are often
capable of breaching encryption with minimal traces.

As reported by Wu et al. [33], deep learning and template attack techniques can allow
attackers to recover encryption keys using only a small number of traces. However, the high-
frequency key replacement mechanism proposed in this study has substantially reduced
the number of subkeys that could be successfully retrieved by such attacks. The results
provide compelling evidence that the dynamic key replacement mechanism significantly
enhances the security of IoT devices, bolstering their resistance to SCAs and ensuring
robust protection of sensitive data.

5.5. Scalability of the Proposed Mechanism in IoT Environments

The proposed mechanism demonstrates strong scalability, as each IoT device indepen-
dently derives encryption keys using the lightweight D-H protocol. In high-density IoT
environments, the computational overhead on microcontrollers remains minimal, ensuring
the feasibility of large-scale deployments.

To further validate the mechanism’s scalability, additional experiments were con-
ducted by simulating the connection of five additional devices in a test environment. Each
device established a secure communication channel with the server using the proposed
mechanism. The results showed that the average latency per device increased by only
3 milliseconds during key negotiation, even with the added device density. This negligible
increase in latency highlights the mechanism’s practicality for real-world implementations,
ensuring secure and efficient communication as the number of connected devices grows.

5.6. Security Analysis

The proposed lightweight Diffie–Hellman (D-H) protocol is specifically designed to
address the unique security challenges of resource-constrained IoT environments. This
section presents a comprehensive analysis of the protocol’s security properties, with a focus
on ensuring confidentiality, authentication, integrity, and resistance to known attacks.

5.6.1. Cryptographic Strength of Parameters

As detailed in Section 4.4, the proposed protocol employs carefully selected parameters:
the prime modulus p = 2,147,483,647 and the generator G = 37. These choices achieve an
optimal balance between computational efficiency and cryptographic strength, making the
protocol well-suited for resource-constrained IoT devices. The selected parameters provide
a robust cryptographic foundation, ensuring security without compromising performance.

5.6.2. Confidentiality

The protocol guarantees the confidentiality of shared symmetric keys derived through
the D-H key exchange mechanism. Even if attackers intercept the public keys ( PKA and
PKB ), the difficulty of solving the discrete logarithm problem (DLP) ensures that the private
keys (a and b) and the derived shared key remain secure. This ensures the confidentiality of
key exchange communications, protecting them from unauthorized access.

5.6.3. Authentication

Although the protocol does not inherently provide an explicit authentication mecha-
nism, it assumes either a secure initial key exchange or the involvement of a trusted third
party for public key verification. Without such measures, the protocol remains vulnerable
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to man-in-the-middle (MITM) attacks. To mitigate this risk, integrating a digital signature
or certificate-based authentication mechanism is recommended. This would ensure the
authenticity of public keys ( PKA and PKB ), preventing impersonation by malicious actors
and safeguarding the key exchange process.

5.6.4. Integrity

The protocol maintains the integrity of the derived shared key through consistent
modular exponentiation. However, to safeguard the integrity of transmitted data, it is
recommended to incorporate an MAC derived from the shared key (SK). This additional
layer of protection ensures that any tampering with encrypted messages can be detected
and mitigated, enhancing overall communication security.

5.6.5. Resistance to Known Attacks

• MITM attacks: Without an explicit authentication mechanism, the protocol may be
vulnerable to MITM attacks. To mitigate this risk, enhancements such as pre-shared
keys or certificate-based validation can be incorporated, ensuring that attackers cannot
intercept or alter public keys during transmission. These measures strengthen the
protocol’s ability to verify the authenticity of communicating parties.

• Replay attacks: Incorporating time-sensitive parameters or nonces into the key ex-
change process effectively prevents replay attacks, where attackers attempt to reuse
old keys to impersonate legitimate parties. These additions enhance the protocol’s
robustness in real-world deployments by ensuring that each key exchange session
remains unique and resistant to duplication.

• SCAs: While the protocol’s mathematical foundation ensures robust cryptographic
security, its implementation on resource-constrained IoT devices may leave it vulner-
able to SCAs, such as power analysis or electromagnetic leakage. To address this,
the proposed dynamic key replacement mechanism mitigates the risk of SCAs by dy-
namically updating encryption keys after each cryptographic operation. This process
ensures that even if partial information is leaked through physical signals, it becomes
obsolete before it can be exploited. As a result, the mechanism significantly enhances
the protocol’s resilience against SCAs, providing stronger protection for IoT devices in
practical deployments.

5.6.6. Scalability and Real-World Deployment

The D-H protocol demonstrates excellent scalability in IoT environments. Each device
independently computes its session key using efficient modular exponentiation, minimizing
computational overhead. As presented in Section 5.5, experimental results show that even
in high-density IoT networks, the average communication delay per device increases
by only 3 milliseconds. This minimal overhead underscores the protocol’s practicality
and suitability for large-scale deployments, ensuring both efficiency and performance in
resource-constrained settings.

5.6.7. Comparative Analysis

Compared to traditional D-H implementations that rely on larger prime numbers
for enhanced security, the proposed mechanism achieves an optimal balance between
security and performance. As highlighted in Table 3, the proposed approach effectively
mitigates SCAs while significantly reducing computational complexity. This dual capability
makes it particularly well-suited for resource-constrained environments. By addressing
key challenges identified in prior research, the proposed mechanism not only strengthens
security against SCAs but also ensures practical applicability in IoT deployments, where
efficiency and resource optimization are essential.
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6. Conclusions
In the IoT scenario, encryption is important for keeping data safe and defending

against attacks. If SCAs are not stopped, encryption keys can be stolen, which means
sensitive information can be accessed and the whole system could be at risk. Traditional
hardware-level defense mechanisms are not suitable for IoT devices because of the unaf-
fordable cost like power overhead or circuit area overhead. Consequently, it is imperative
to implement software-based defense strategies to guarantee system security without
impairing computational performance.

In this study, we proposed a dynamic key replacement mechanism for AES encryption,
which effectively enhances the system’s resilience against SCAs by modifying the encryp-
tion keys before an attack can successfully recover them. A lightweight key replacement
mechanism was designed based on D-H key exchange protocol, which is straightforward
to implement and particularly well-suited for resource-constrained microcontroller envi-
ronments. This mechanism is not limited to AES encryption but can also be applied to
other encryption systems requiring key negotiation.

The experimental results demonstrate that as the frequency of key replacement in-
creases, the system’s ability to withstand SCAs is significantly enhanced. Specifically, when
the key was replaced after every one or ten encryptions, the success rate of SCA dropped
substantially. These findings confirm the effectiveness of the dynamic key replacement
mechanism in enhancing the security of IoT devices against SCAs.
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