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Abstract: Electronic health records (EHRs) are widely used in healthcare institutions
worldwide, containing vast amounts of unstructured textual data. However, the sensitive
nature of Protected Health Information (PHI) embedded within these records presents
significant privacy challenges, necessitating robust de-identification techniques. This paper
introduces a novel approach, leveraging a Bi-LSTM-CRF model to achieve accurate and
reliable PHI de-identification, using the i2b2 dataset sourced from Harvard University.
Unlike prior studies that often unify Bi-LSTM and CRF layers, our approach focuses on
the individual design, optimization, and hyperparameter tuning of both the Bi-LSTM and
CRF components, allowing for precise model performance improvements. This rigorous
approach to architectural design and hyperparameter tuning, often underexplored in
the existing literature, significantly enhances the model’s capacity for accurate PHI tag
detection while preserving the essential clinical context. Comprehensive evaluations are
conducted across 23 PHI categories, as defined by HIPAA, ensuring thorough security
across critical domains. The optimized model achieves exceptional performance metrics,
with a precision of 99%, recall of 98%, and F1-score of 98%, underscoring its effectiveness
in balancing recall and precision. By enabling the de-identification of medical records, this
research strengthens patient confidentiality, promotes compliance with privacy regulations,
and facilitates safe data sharing for research and analysis.

Keywords: protected health information; electronic health record; deep learning;
de-identification; Bi-LSTM-CRF

1. Introduction
The data revolution has experienced a significant transformation of the global envi-

ronment, a phenomenon particularly underscored by the introduction of electronic chips in
the late 1960s. This technological milestone caused a paradigm shift in data management
techniques and laid the foundations for the ultimate transition in several industries, in-
cluding healthcare, from analog documentation to digital records [1]. EHRs have emerged
as a vast compendium of health-related data, compiled from many sources, including
clinics, hospitals, labs, and other healthcare facilities. This development improved clinical
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workflows and patient care delivery by radically changing how medical information is
stored and retrieved [2].

The Internet and information technology advancements have allowed health records
to integrate and become more easily accessible to authorized users, beyond traditional
boundaries [3]. This fluid sharing of information facilitates a comprehensive understand-
ing of a patient’s medical history, treatment plans, and results, encouraging cooperation
amongst medical providers and improving the standard of patient care. In addition, the
integration of health records into healthcare systems promotes evidence-based decision-
making and improves administrative effectiveness, which in turn raises the standard and
effectiveness of medical care [4]. Additionally, this integrated approach to health data has
the potential to advance medical research, make customized treatment options possible,
and stimulate innovations that could have a significant impact on the efficacy and outcomes
of healthcare.

The adoption of EHRs in place of traditional paper-based health records has completely
changed the way data are accessed, integrated, and shared among healthcare providers,
where it offers many advantages, such as better clinical decision-making, increased care
coordination, and reduced administrative responsibilities [5]. These electronic databases
include patient demographics, medical histories, the results of diagnostic tests, treatment
plans, and progress notes, providing an in-depth understanding of a patient’s status [6].
This extensive and interconnected data ecosystem empowers healthcare providers to make
informed decisions and deliver tailored, effective care. The ongoing progress of EHR
technology and data interoperability provides substantial opportunities for improving
research, public health initiatives, and healthcare delivery and enhancement of global
healthcare [7].

Health-related data are sensitive and critical; therefore, protecting them is essential.
The legal framework, represented by the Health Insurance Portability and Accountability
Act (HIPAA), requires the safeguarding of patient privacy to avoid harm and uphold
patients’ rights [8]. Unauthorized access to or disclosure of health information may have
serious repercussions, such as discrimination, identity theft, and reduced access to health-
care services. Securing patient data and maintaining patient–provider confidence requires
strong security measures such as encryption, access controls, and regular audits [9]. Pa-
tient notes stored in electronic health records may contain vital information for medical
investigations. Most medical investigators can only access de-identified notes to protect
patients’ confidentiality. The Health Insurance Portability and Accountability Act of 1996 in
the United States defines 18 types of Protected Health Information that must be removed to
de-identify patient notes [10]. De-identification can be performed using automated or man-
ual procedures. Experts must identify and label PHI to perform manual de-identification;
however, this approach is restricted by the number of people who are allowed access to
identified patient notes and the possibility of human error. Automated de-identification
systems, on the other hand, make use of rule-based or machine-learning techniques. Typ-
ically, rule-based systems depend on human-defined patterns expressed as lexicons and
regular expressions [11].

Our research highlights the importance of sophisticated natural language processing
(NLP) techniques in safeguarding health information and offers an effective approach for
de-identifying EHR that comply with privacy laws.

The primary aim of this research paper is to provide a strong framework for de-
identifying sensitive data in EHRs by utilizing deep learning and machine learning tech-
niques. This research employs various algorithms to guarantee the secure extraction
of personal patient data while concurrently upholding the integrity of essential clinical
information. The dataset utilized for this research is sourced from Harvard University,
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specifically designated for academic users, by the Data Use and Confidentiality Agreement
established with Partners HealthCare System, Inc. This agreement confers access to de-
identified patient discharge summaries for research purposes, with a particular focus on
the enhancement of natural language processing (NLP) techniques within the healthcare
domain. This research investigates the following pivotal inquiries:

• How much have machine learning and deep learning algorithms contributed to the
security of EHR?

• Is the proposed algorithm capable of effectively removing sensitive patient data from
a large dataset?

• What is the significance of the Conditional Random Field (CRF) model in safeguarding
patient information, particularly concerning the 23 critical categories of Protected
Health Information (PHI) present in EHRs?

• How effective is the Bidirectional Long Short-Term Memory (Bi-LSTM) deep learning
algorithm at improving de-identification in medical records?

The remainder of this paper is organized as follows: Section 2 encompasses a comprehen-
sive review of related works in E-health records privacy. It critically discusses and analyzes
various approaches and experimental findings from these works, while Section 3 outlines the
research methodology, Section 4 presents the results and discussion, and Section 5 contains
the conclusion.

2. Related Work
This section presents relevant literature on the protection of health records using

machine learning and deep learning techniques.
A survey titled “Use of Electronic Health Records in Hospitals in the United States”

presented comprehensive research of all American hospitals provided to count the number
of records in hospitals, where they studied a proportion of the responses obtained with
an average of 63.1 percent [12]. Only 1.5% of hospitals in the United States have a com-
prehensive electronic records system (i.e., one that is present in all clinical units), whereas
7.6% have a basic system (i.e., one that is present in at least one clinical unit). Only 17% of
hospitals have automated provider–order input for drugs in place. Larger hospitals are
more likely to have EHRs [13]. Leevy et al. [14] employed CRF and Bi-LSTM layers, where
the work was defining the text on the RNN neural network, the Conditional Random Field,
and employing RNN-based techniques such as the LSTM algorithm. The study contains
vital information that helps in the safe and secure preservation of patient privacy. Qin
and Zeng [15] researched clinical named entity recognition using Bi- LSTM-CRF. The goal
of their study was to use neural networks to extract clinical concepts, where a two-way
Bi-LSTM model was used in conjunction with the CRF model to detect three named medical
entities, as they were entered into a training process in CBOW in both the field and non-
field. They used the i2b2 dataset on NER and compared to other research. They achieved
an F1-score of 0.85307, and they revealed certain specific concerns with clinical concepts to
clarify more profound studies.

Tang et al. [16] de-identified clinical text using Bi-LSTM-CRF and neural language
models. They focused on identifying the entity named NER, as it was applied to the
latest deep learning models Bi-LSTM-CRF to remove the de-identification. They used two
datasets: i2b2-2014 and CEGS N GRID-2016. The goal of [17]’s work was to relieve the
necessity of manual labeling or feature preparation. However, they proceeded with an
automated procedure, and this time it was performed through desensitization and sequence
labeling. The data were then fed into the Bi-LSTM model, which applied word embeddings
to each word to capture contextual information from both forward and backward directions.
An attention layer processed semantic labels from the surrounding text so that the model
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could pay more attention to those words. A Conditional Random Field (CRF) model was
then used to extract entities in the end. The results show the high performance of Bi-LSTM-
CRF for entity extraction on Chinese EMRs. Hong et al. [18] proposed a powerful tool
called BBC-Radical that combines three of the most important models BERT (Bidirectional
Encoder Representations from Transformers), Bi-LSTM, and CRF. The tool is implemented
by incorporating features based on Chinese character symbols in the word, and radical root
features to show how this approach improves the model performance for the representation
of common meanings.

Chinese EMRs were applied to process a large amount of medical data in [19]; the
study proposed a BERT-IDCNN-CRF model. In the methodology, the EMRs were first
loaded into BERT, trained, and finally, the model had to be manually annotated for relevant
parameters. The experimental stage shows a very high accuracy of 94.1%, recall of 93.8%,
and F1-score of 94.5% using the BIOES (Begin, Inside, Outside, End, Single) tagging
scheme supervised learning approaches. Ming et al. [20] addressed the drawbacks of the
LSTM model, which found it difficult to take full advantage of the GPU parallelism while
processing substantial amounts of medical data. Furthermore, it was observed that the
word order and semantic information were ignored by ID-CNNs. The authors suggested
an ID-CNNs-CRF model with attention methods to address these problems. With F1-scores
of 0.9455 and 0.9117, this model was able to effectively capture word order, attentiveness,
and local contextual variables.

Using a Bi-LSTM-CRF model, Liu et al. [21] concentrated on detecting named items in
biomedical data, using one layer of CRF and two layers of LSTM. The model achieved an
F1-score of 0.872. This study used the TASS-2018 dataset and achieved first place in its sub-
task. Liu et al. [22] focused on identifying clinical quantitative data and connecting them to
relevant entities. For this study, 1359 documents from a nearby general hospital’s petroleum
department were examined. The results indicated the efficacy of the strategy with an F1-
score of 0.9477 for recognizing quantitative information, and an accuracy of 0.9460 for
associating entities with quantities. Shunli et al. [23] sought to tackle the issue of modern
systems lacking the ability to effectively capture low-frequency terms through manual
features. The suggested approach involved utilizing a Bi-LSTM-CRF neural network on
electronic medical records. The procedure started with using CCNs (Convolutional Neural
Networks) for encryption, then proceeded to the Bi-LSTM layer, and concluded with the
CRF layer for entity extraction. The research utilized two clinical datasets that are openly
accessible: the THYME corpus and the 2012 i2b2 dataset.

The key distinction between our research and previous studies lies in our dedicated
approach to the design, optimization, and hyperparameter tuning of both the Bi-LSTM
and CRF models. Unlike prior work, which typically combines Bi-LSTM and CRF into a
single unified model, our research takes a more granular approach by treating each model
individually. This allows for the more precise optimization of each model at every stage of
development. We carefully designed the architecture of both deep learning models, placing
particular emphasis on fine-tuning their hyperparameters to achieve optimal accuracy. This
focused process of hyperparameter optimization, a critical yet under-explored aspect in the
literature, plays a pivotal role in enhancing model performance.

Additionally, by conducting comprehensive evaluations across 23 distinct categories,
we provide a detailed and independent analysis of each model’s performance. This thor-
ough approach not only offers a more nuanced understanding of the models’ behaviors
but also ensures that the achieved accuracy surpasses that of existing studies. Our rigorous
and systematic optimization process, coupled with independent testing across diverse cate-
gories, addresses a significant gap in prior research where such meticulous architectural
and performance comparisons are frequently overlooked.
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3. Methodology
Electronic health records have completely revolutionized how medical data are

recorded, accessed, and shared in the modern digital health environment. They enable more
efficient data management, which enhances the information that healthcare professionals
have access to and supports the integration of patient care in different healthcare settings.
However, there are significant concerns regarding patient data security and privacy as
EHRs expand. Deep learning, a field of artificial intelligence, has emerged as a effective
technique for strengthening the security of sensitive EHRs. Bi-LSTM is a novel deep
learning paradigm that builds upon the traditional LSTM architecture to make it highly
effective in sequence modeling tasks. Bi-LSTM analyzes sequences bidirectionally, which
allows it to identify contextual dependencies from the past and future more efficiently than
regular LSTM, which processes information in a single direction [24]. This bidirectional
feature leverages the complete context that is included in the data to enable the creation of
more accurate predictions. The structure consists of interconnected layers of neurons, or
cells, with the ability to store, change, and reset internal states [25]. The network acquires
knowledge sequence patterns and correlations as data flow through these cells, making
Bi-LSTM especially appropriate for time-series data, such EHRs. The advantages of this
technology include enhanced contextual sensitivity, real-time monitoring, and adaptability
to changing patterns, among other attributes that raise its significance in enhancing security
standards in healthcare systems [26]. Healthcare institutions can effectively protect patient
data from new threats by incorporating Bi-LSTM into security frameworks. This ensures
patient privacy and preserves confidentiality in digital healthcare infrastructures.

Our proposed methodology integrates CRF and Bi-LSTM, as illustrated in Figure 1, to
accurately identify categories of Protected Health Information (PHI). CRF, a statistical model
renowned for its ability to predict label sequences, is leveraged to enhance the performance
of PHI identification. Central to our contribution is the careful design, optimization, and
hyperparameter tuning of both models, which forms the backbone of our deep learning
approach. Unlike conventional methods, we optimize each model individually, fine-tuning
the hyperparameters to achieve the best possible performance. By combining these models
and emphasizing rigorous model design and hyperparameter optimization, our approach
aims to surpass traditional methods in accuracy, recall, precision, and overall effectiveness,
offering a more robust solution for PHI categorization.

3.1. Data Extraction

In this research, we utilize the i2b2 (Informatics for Integrating Biology and the Bed-
side) dataset, obtained from the Department of Biomedical Informatics at Harvard Medical
School [27–29]. The dataset is publicly accessible at https://n2c2.dbmi.hms.harvard.edu/
data-sets (accessed on 10 December 2024), subject to a Data Use Agreement (DUA). The i2b2
dataset is a valuable resource for healthcare researchers. It is a collection of de-identified
clinical records that include a variety of medical data, such as clinical notes, discharge
summaries, and radiology results. The dataset is well known for its diversity and breadth,
making it an excellent candidate for training NLP models, particularly in the context of
clinical text processing and information extraction. The i2b2 dataset includes PHI cate-
gories, enabling researchers to address the difficulty of PHI identification while respecting
patient privacy through data anonymization. The Data Usage Agreement (DUA) is used to
access and retrieve the dataset, and registration was required. The i2b2 dataset consists of
21 compressed files, and all medical records are stored in the (XML) file format.

https://n2c2.dbmi.hms.harvard.edu/data-sets
https://n2c2.dbmi.hms.harvard.edu/data-sets
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3.2. Data Preprocessing

The data preprocessing phase includes three key phases to prepare the dataset for
feature extraction.

Figure 1. The proposed methodology.

3.2.1. Data Parsing

The first step in data preprocessing focuses on transforming the incomprehensible,
unreadable, and unstructured text into a more coherent and interpretable format. This
critical step facilitated the extraction of relevant information without the time-consuming
and manual preparation that is typically required. Advanced NLP techniques are used
in the process, which effectively transformed raw data into more understandable texts,
allowing for efficient information retrieval and analysis.

3.2.2. Bag-of-Word (BOW)

The data are tokenized, in which all the words within each record are segmented
using a delimiter (,). This tokenization method converts the text into an arbitrary “bag of
words” (BOW) model, which is defined by fixed and specific length vectors. Each vector
represents the frequency with which individual words appear in the text [30]. In the context
of BOW models, this method is commonly referred to as a “directed” approach. The BOW
model is based primarily on the identification of a vocabulary, which includes a set of
words found in the record. Individual words are isolated and distinguished using the
delimiter (,) to form the vocabulary. The number of times each word appears in the record
is then counted and recorded. This process produces a numerical representation of the
text’s content, effectively capturing word frequencies for further analysis and modeling.

3.2.3. Data Tagging and POS Analysis

In this phase, the text is segmented into eight main parts of speech, collectively
known as Part of Speech (POS) categories. These categories comprise nouns, pronouns,
verbs, adjectives, adverbs, prepositions, and interjections. Data tagging facilitates data
annotation for subsequent data tagging tasks. It is carried out using a three-letter notation
consisting of “B”, “I”, and “O”. Each letter corresponds to a specific meaning; “B” indicates
the “Beginning” of a tagged entity, and “I” refers to the “Intermediate” entity, while
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“O” refers “Other”, indicating that the word does not belong to any tagged entity [31].
Within the electronic medical records, a total of 23 basic categories are identified for
data tagging, including Date, Patient, Age, Profession, Medical Record, Hospital, Doctor,
Street, City, State, ZIP, Phone, Id_Num, Username, Organization, FAX, Country, BIOID,
Location, Device, Email, Health Plan, And URL. These categories help in organizing specific
information within medical records, laying the groundwork for future analysis and model
development. Each tag in the record is associated with the corresponding text above it
during this process. To denote their positions and roles, the existing tags are modified with
additional letters. The letter “B” is appended to the first word in a category, while the letter
“I” is appended to subsequent words in the same category. The letter “O” on the other
hand, denotes unimportant words that do not fall into any of the required 23 categories
specified in the tags. The tags are associated with several entity types, including Person
(PER), Location (LOC), Organization (ORG), and Miscellaneous (MISC). For example, the
sentence “EU rejects German call to boycott British lamb”, is tagged as (B-ORG O B-MISC
O O O B-MISC O O), where we have the following:

• B-ORG: “EU” is identified as the beginning of an organization.
• O: “rejects” does not fit within any recognized category.
• B-MISC: “German” is tagged as the beginning of a miscellaneous entity.
• The sequence continues with more O tags that are not part of any recognized category.
• B-MISC: “British” is tagged as the beginning of a miscellaneous entity.

The number of occurrences for each of the 23 main PHI categories is summarized in Table 1.
The number of occurrences for the “Other” (O) category after data reprocessing is 775,812.

Table 1. Number of B-labels and I-labels for PHI categories.

# PHI Categories Number of B-Label Number of I-Label

1 Date 12,437 1362
2 Patient 2184 1184
3 Age 1993 10
4 Profession 411 346
5 Medical Record 1028 47
6 Hospital 2305 1819
7 Doctor 4782 3466
8 Street 350 713
9 City 651 170

10 State 502 18
11 ZIP 350 0
12 Phone 523 100
13 Id_Num 455 30
14 Username 356 0
15 Organization 205 173
16 FAX 10 2
17 Country 183 21
18 BIOID 1 0
19 Location-Other 17 15
20 Device 15 2
21 EMAIL 5 0
22 Health Plan 1 1
23 URL 2 4

3.3. Bi-LSTM-CRF Model

The idea behind the sequence labeling challenge is to convert an input sequence into
a corresponding, identically sized output sequence. As a result, constructing a Recurrent
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Neural Network with a sufficient number of hidden layers has produced outstanding
outcomes for sequence-to-sequence conversions. Here, recurrent connections serve as a
kind of memory that allows the network’s internal state to hold on to insights from the
previous inputs. The label applied to the input data is represented by the final output,
which is established by taking previous inputs into account as well. There have been several
versions of Recurrent Neural Nets developed, but the LSTM architecture stands out since
it solves the problem of disappearing gradients effectively. Therefore, the LSTM network
is frequently preferred for labeling words inside possibly long sentences. However, since
the whole phrase is known ahead of time, the label assignment of a given word can be
carried out more precisely if it takes into account the words that come before and after it. It
is more efficient to represent these dependencies by using the Bidirectional LSTM [32]. To
analyze data from both directions of the input sequence, the model’s network design (as
illustrated in Figure 2) includes forward and backward LSTM units. The model is more
capable of capturing word dependencies, regardless of where they are in the sentence, due
to this bidirectional arrangement. The model is able to comprehend each word’s meaning
and grammatical structure better as a result of the concatenation of the PoS vectors and
the embedding layer output. As each word’s label can be predicted individually by the
Bi-LSTM, the relationships between labels in the output sequence cannot be captured by
the model. One word that is labeled as the beginning of an entity (B) in PoS tagging, for
instance, increases the possibility that the following word will be marked as the inner (I)
of the same entity. CRF comes in. To guarantee that the predicted labels adhere to correct
sequential patterns, the CRF layer is layered on top of the Bi-LSTM. The possibility of label
transitions (e.g., from B to I, or from I to O) is taken into consideration to effectively model
the relations between the expected labels.

Figure 2. Bi-LSTM model.

3.4. Bi-LSTM-CRF Model Architecture, Hyperparameter Tuning, and Optimization

Model Architecture
The Bi-LSTM-CRF model developed for this research integrates a Bi-LSTM network

with a Conditional Random Field (CRF) layer to enhance sequential tagging tasks by
capturing both contextual dependencies and transition constraints between output tags.
The model’s key components are as follows:

• Embedding Layer: The input words are transformed into dense vector representations
using an embedding layer with a dimensionality range of 50 to 300.
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• Bi-LSTM Layer: A multi-layer bidirectional LSTM network is employed with a hidden
dimension ranging from 50 to 512, to capture both forward and backward contexts for
each token.

• CRF Layer: A transition matrix, initialized randomly, scores transitions between tags,
including constraints to prevent invalid transitions to and from designated start and
stop tags.

Hyperparameter Tuning
Key hyperparameters were fine-tuned to balance performance and computational efficiency:

• Learning Rate: Ranges from 0.001 to 0.05, optimizing model convergence while
maintaining stability.

• Weight Decay: Regularization is applied with a weight decay parameter ranging from
1 ×10−4 to 1 ×10−2, effectively controlling overfitting.

• Batch Size: The model processes samples in batches, with a batch size ranging from 8
to 64, enhancing computational efficiency and convergence.

• Epochs: Training is performed over 300 epochs to ensure sufficient learning while
monitoring for convergence.

Optimization
The model training utilizes Stochastic Gradient Descent (SGD), selected for its straight-

forward implementation and effective balance of convergence speed and stability. The
design allows for the potential inclusion of gradient clipping to manage exploding gradi-
ents, a common consideration in Bi-LSTM models.

The Stochastic Gradient Descent (SGD) optimizer in this model is configured with the
following key parameters:

• Learning Rate: This is set within the range of 0.001 to 0.05 to balance the learning speed
with convergence stability. This range is selected based on empirical observations,
providing consistent convergence without overshooting.

• Weight Decay: This is set within the range of 1 × 10−5 to 1 × 10−2 as a regularization
term, which helps control overfitting by penalizing large weights during training.

This Bi-LSTM-CRF architecture thus provides a robust framework for sequence label-
ing, leveraging the ability of Bi-LSTM to model contextual dependencies and the structured
output layer of the CRF to enforce tag transition rules as summarized in Table 2.

Model Training and Evaluation Metrics

The dataset consists of 1304 records, which are split into 790 training records and
514 testing records, equivalent to a 60% to 40% split, as presented in Table 3. Each record rep-
resents specific medical information about individual patients. In total, there are 269 unique
patients, and each patient’s data are represented by 3 to 5 files of XML type. The file naming
convention follows a pattern, denoted as (XXX-YY.xml), where XXX indicates the patient
number and YY represents the record number within that patient’s dataset. The dataset
structure is designed to efficiently manage and differentiate the medical records associated
with each patient, coherently facilitating comprehensive analysis and research.



Future Internet 2025, 17, 47 10 of 24

Table 2. Summary of the Bi-LSTM-CRF model architecture.

Component Details

Input Representation Concatenation of word embeddings and PoS vectors

Embedding Layer Embedding dimensionality ranges from 50 to 300

Bi-LSTM Layers Multi-layer bidirectional LSTM with hidden dimensions
ranging from 50 to 512

CRF Layer Transition matrix with constraints for valid tag transitions

Hyperparameters
Learning rate: 0.001 to 0.05
Weight decay: 1 ×10−4 to 1 ×10−2

Batch size: 8 to 64

Epochs 300

Optimizer Stochastic Gradient Descent (SGD) with gradient clipping

Learning Rate Tuned between 0.001 to 0.05 for stability and convergence

Regularization Weight decay: 1 × 10−5 to 1 × 10−2 to control overfitting

Sequence Constraints CRF ensures valid tag transitions between output labels

Objective Enhances sequential tagging by capturing contextual
dependencies and transition constraints

Table 3. Dataset split into training and testing records.

Dataset Train Test

Records 790 514

Total 1304

The Bi-LSTM-CRF model is trained using the i2b2 dataset over iterative cycles, referred
to as epochs. Each epoch represents a full pass through the training dataset, during
which the model’s parameters, including weights, are updated based on the input data.
After one epoch, the model processes each sample in the training set once, allowing for
gradual improvement in its performance through repeated evaluations. This iterative
training process enables the model to enhance its data processing capabilities with each
cycle, progressively refining its ability to handle complex inputs. To ensure optimal
performance, key hyperparameters, such as the learning rate, batch size, and number
of epochs, were tuned based on empirical testing. A learning rate of 0.001 is selected to
ensure stable convergence, while a batch size of 32 allowed for efficient processing without
overloading the system’s memory. The number of epochs is set to 50, providing sufficient
training time for the model to learn complex patterns in the data without overfitting. By
executing the model over multiple epochs with carefully chosen hyperparameters, sufficient
computational resources are allocated to improve its predictive accuracy, thereby enhancing
its capacity to identify patterns and generate more reliable predictions.

To better understand the dataset, the model improves its “knowledge base” after each
cycle. The iterative approach helps the model to get to know the subtleties of the dataset
and make more accurate predictions based on the knowledge it has gained. The model
performance is evaluated through three critical metrics: accuracy, recall, and the F1-score.
However, relying only on accuracy is insufficient in evaluating an imbalanced dataset
(where certain kinds of data may be disproportionately represented). As a result, we also
include recall, which assesses the model’s ability to recognize important data, and the
F1-score, which combines recall and accuracy to produce a more complex evaluation of the
model’s performance.
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4. Results and Discussion
In this research, we use the Bi-LSTM-CRF and CRF models, where the CRF model is an

easier-to-understand architecture and helps in reducing overfitting, especially on smaller
datasets. However, the Bi-LSTM-CRF model makes use of deep learning’s advantages
for sequential data processing by combining a Bi-LSTM network with a CRF layer. The
Bi-LSTM component is potentially appropriate for detecting hidden trends and contextual
relations since it can capture intricate correlations within sequences. Bi-LSTM and other
deep learning models demonstrate high accuracy on larger and more complex datasets, but
their performance is highly sensitive to dataset size and requires careful hyperparameter
tuning. These models are particularly advantageous for identifying intricate patterns
that may be overlooked by simpler models, making them well suited for complex data
analysis tasks.

4.1. Optimized Parameter Settings and Model Configuration for Bi-LSTM-CRF

As outlined in Section 3.4, this section presents the optimized parameter settings for
the Bi-LSTM-CRF model, tailored for effective PHI tag detections. The optimization of the
Bi-LSTM-CRF model is crucial, as it enhances its ability to accurately capture sequential
dependencies and improve tagging performance, especially in complex datasets. Table 4
provides a detailed summary of the optimal configuration achieved for the model’s archi-
tecture, hyperparameter tuning, and optimization strategies. As the experimental results
show, the architecture leverages an embedding layer with a dimensionality of 60 to convert
input words into dense vector representations, which enhances the model’s ability to learn
meaningful relationships between words. A single-layer Bi-LSTM network with a hidden
dimension of 80 is employed to capture the bidirectional context for each token, ensuring
that both past and future contexts contribute to the model’s understanding of sequential
dependencies. A CRF layer, initialized with a transition matrix, scores transitions between
output tags and enforces constraints to prevent invalid tag transitions, contributing to
improved tagging accuracy. Hyperparameter tuning is performed to achieve an optimal
balance between model performance and computational efficiency. The learning rate is
set to 0.01, which provides a stable convergence. A weight decay parameter of 1 × 10−4

is used to regularize the model, helping control overfitting by penalizing large weights.
Additionally, a batch size of 32 is selected, which allows the model to process data efficiently
while benefiting from gradient updates. The model is trained over 300 epochs, with the
best performance observed at epoch 31, indicating the need for early stopping to prevent
overfitting. Finally, the optimization is conducted using the SGD algorithm, chosen for its
straightforward implementation and effectiveness in balancing learning speed and stability.
The table summarizes these configurations, highlighting the model’s robust framework for
sequence labeling tasks.

Table 4. Best parameter settings for Bi-LSTM-CRF model architecture, hyperparameter tuning,
and optimization.

Component Parameter Setting

Model Architecture
Embedding Dimension 60

Bi-LSTM Hidden Dimension 80

CRF Transition Matrix Randomly initialized
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Table 4. Cont.

Component Parameter Setting

Hyperparameter Tuning

Learning Rate 0.01

Weight Decay 1 ×10−4

Batch Size 32

Epochs 300 (best: 31)

Optimization
Optimizer Stochastic Gradient Descent (SGD)

Learning Rate 0.01

Weight Decay 1 ×10−4

4.2. CRF Model

The CRF model works with conditional distributions instead of joint distributions,
where the conditional distribution does not enforce independent labels, making it easier
to interpret natural language. Moreover, it defines the phrase’s order by integrating the
probabilistic evaluation of the unique symbols contained in a sentence [33]. The CRF
model is independently applied as part of the initial evaluation phase. Table 5 presents the
outcomes of these evaluations in an organized manner. This table provides a comprehensive
overview of the model’s effectiveness, covering a variety of assessment criteria such as
accuracy, precision, recall, and F1-score.

Table 5. Conditional Random Fields (CRFs) results.

Evaluation Method Results

Precision 98%
Recall 99%
F1-score 98%
Accuracy 99%

The CRF performs exceptionally well in terms of accuracy metrics, with an accuracy
rate of 99%, an F1-score of 98%, and a recall of 99% as shown in Table 5. These analyses
provide additional knowledge about the CRF model’s performance on the i2b2 dataset. The
enhanced performance of the HIPAA-level sets has the potential to significantly improve
data security and privacy in EHR, which might have a significant positive impact on
real-world healthcare applications.

The results of the comprehensive assessment for each of the 23 basic categories of
PHI as defined by HIPAA are shown in Table 6. B-DATE performs best out of all of these
categories, achieving the maximum level of precision and efficiency. Within this evaluation
framework, the B-DATE category achieves an exceptional precision score of 99%, indicating
the model’s ability to correctly identify actual positive instances. Moreover, the model’s
98% recall score demonstrates its ability to identify real positive cases. A crucial measure
for balancing recall and precision, the F1-score, is 98%, indicating that the B-DATE model is
robust in achieving an equitable balance between these two crucial performance aspects.
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Table 6. Evaluation findings for each of the 23 PHIAA categories using the CRF model.

Categories Precision (P%) Recall (R%) F1-Score (F1%) Support

B-AGE 0.56 0.48 0.52 764
B-City 0.76 0.51 0.61 260
B-Country 0.68 0.11 0.19 117
B-Date 0.99 0.98 0.98 4980
B-Device 0 0 0 8
B-Doctor 0.65 0.57 0.60 1912
B-Email 0 0 0 1
B-FAX 0 0 0 2
B-Hospital 0.87 0.59 0.71 875
B-ID_Num, 0.98 0.76 0.86 195
B-Location
Other 0 0 0 13

B-Medical
Record 0.97 0.96 0.96 422

B-
Organization 0.50 0.07 0.13 82

B-Patient 0.53 0.25 0.34 879
B-Phone 0.96 0.93 0.94 215
B-Profession 0.59 0.21 0.31 179
B-State 0.91 0.76 0.83 190
B-Street 0.98 0.92 0.95 136
B-Username 0.99 0.90 0.94 92
B-ZIP 0.99 0.96 0.97 140
I-Age 0 0 0 1
I-City 0.83 0.36 0.50 81
I-Country 0 0 0 13
I-Date 0.95 0.88 0.91 509
I-Device 0 0 0 2
I-Doctor 0.73 0.74 0.74 1350
I-FAX 0 0 0 1
I-Health Plan 0 0 0 0
I-Hospital 0.93 0.78 0.85 700
I-ID_Num 1.00 0.57 0.73 14
I-Location
Other 0 0 0 7

I-Medical
Record 0 0 0 22

I-Organization 0.44 0.18 0.26 61
I-Patient 0.54 0.30 0.38 479
I-Phone 0.96 0.94 0.95 48
I-Profession 0.77 0.38 0.51 156
I-State 0 0 0 15
I-Street 0.91 0.92 0.92 280
Other “O” 0.99 1.00 0.99 301,937

According to Table 6 and Figure 3, we can note that the numbers of OTHER “O”
category represents 95% of all records with 4980 records, and it is achieved the best classifier
results with precision and an F1-score of 99%, as well as the other categories with a high
number of support records such as B-DATE with 4980 records, B-DOCTOR with 1912, and
I-DOCTOR with 1350. All of these categories achieve good metrics results as presented in
Figure 4.
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Figure 3. Support in each category without other in CRF model.

Figure 4. Results of metrics for categories with over 1000 records.

When analyzing the results according to B-tags and I-tags as presented in Table 7
and Figure 5, the B-tags indicate the beginning of entities; hence, it is critical to precisely
define these boundary errors in determining the beginning of an entity, as they may result
in a series of I-tag mistakes, which reduces its overall effectiveness. The I-tags often
consist of fragments of longer or more complex items. Misclassifications are more common
when an entity is extended (as shown by I-tags), especially when the model has difficulty
recognizing contextual details. Moreover, several I-tags show noticeably lower frequencies
of occurrence (that is, fewer instances in the dataset). As an illustration, categories like
I-AGE and I-COUNTRY show shallow support (with only 1 or 13 instances), which reduces
the model’s performance. However, compared to the extension of the entity with I-tags,
the identification of the initiation of an entity with B-tags typically performs better since
it is frequently less complicated and dependent on contextual clues. Furthermore, the
dataset’s restricted frequency of I-tag categories might exacerbate I-tags’ poor results
compared to B-tags.
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Table 7. Comparison of B-tag and I-tag Results using the CRF model.

Category
B-Tag I-Tag

Precision Recall F1-Score Support Precision Recall F1-Score Support

Age 0.56 0.48 0.52 764 0 0 0 1

City 0.76 0.51 0.61 260 0.83 0.36 0.50 81

Country 0.68 0.11 0.19 117 0 0 0 13

Date 0.99 0.98 0.98 4980 0.95 0.88 0.91 509

Device 0 0 0 8 0 0 0 2

Doctor 0.65 0.57 0.60 1912 0.73 0.74 0.74 1350

Email 0 0 0 1

FAX 0 0 0 2 0 0 0 1

Hospital 0.87 0.59 0.71 875 0.93 0.78 0.85 700

ID_Num 0.98 0.76 0.86 195 1 0.57 0.73 14

Location Other 0 0 0 13 0 0 0 7

Medical Record 0.97 0.96 0.96 422 0 0 0 22

Organization 0.5 0.07 0.13 82 0.44 0.18 0.26 61

Patient 0.53 0.25 0.34 879 0.54 0.30 0.38 479

Phone 0.96 0.93 0.94 215 0.96 0.94 0.95 48

Profession 0.59 0.21 0.31 179 0.77 0.38 0.51 156

State 0.91 0.76 0.83 190 0 0 0 15

Street 0.98 0.92 0.95 136 0.91 0.92 0.92 280

Username 0.99 0.90 0.94 92

ZIP 0.99 0.96 0.97 140

Other “O” 0.99 1 0.99 301,937

The model’s performance, however, shows a strong bias towards high-frequency
labels, particularly the “Other” (O) label, which constitutes 95% of the dataset records
as shown in Table 5 and Figure 3. This label achieves high precision and an F1-score of
99%, indicating that the model is highly accurate for the “Other” class. Similarly, cate-
gories with higher support counts, such as B-DATE, B-DOCTOR, and I-DOCTOR, also
display strong metrics as presented in Figure 4. However, the model struggles with
lower-frequency categories, particularly those labeled with I-tags, which represent in-
ternal segments of entities and often require more nuanced contextual understanding.
The infrequent occurrence of certain I-tags, such as I-AGE and I-COUNTRY with only
1 and 13 instances, respectively, hinders the model’s ability to generalize effectively for
these classes. As a result, the model’s overall performance across PHI categories is uneven,
showing marked accuracy for frequent labels but decreased precision and recall for less
common, more complex labels. This highlights a limitation in the model’s generalizability,
emphasizing the need for more balanced dataset representation to improve classification
across all PHI categories.
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(a) CRF Precision Results
(b) CRF Recall Results

(c) CRF F1-score Results

Figure 5. Comparison of CRF results: precision, recall, and F1-score.

4.3. Bi-LSTM-CRF Model

In the Bi-LSTM-CRF design, the CRF component makes post-prediction processing
easier and produces sense results. The CRF algorithm uses the relationships between
adjacent tokens to correct for any important data missed in the first prediction, improving
the accuracy of the result. By implementing the Bi-LSTM-CRF model, we can guarantee
enhanced workflow efficiency for medical professionals and improve data protection
accuracy. Healthcare organizations can enhance patient trust, improve data-breach defenses,
and preserve the ethical responsibility to secure sensitive health records. The results of
the Bi-LSTM-CRF model are presented in Table 8. Regarding the accuracy metrics, the
Bi-LSTM-CRF model performs admirably, with an accuracy rate of 98%, a recall score of
99%, and an F1-score of 99%.

Table 8. Bi-LSTM-CRF model overall results.

Evaluation Method Results

Precision 99%
Recall 99%

F1-score 99%
Accuracy 98%

The evaluation results for all 23 core categories of PHI as defined by the HIAA using
the Bi-LSTM-CRF model are presented in Table 9. When analyzing the results in the table
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and by looking into support values, we can see the difference between support in each
category as presented in Figure 6, where the other “O” tags represent 98% of the instances,
which will affect the evaluation results as shown in Figure 7.

Table 9. Evaluation findings for each of the 23 PHIAA categories using the Bi-LSTM-CRF model.

Categories Precision P% Recall R% F1-Score
F1% Support

B-Age 0.91 0.83 0.87 759
B-City 0.27 0.36 0.31 69
B-Country 0.33 0.14 0.20 36
B-Date 0.46 0.71 0.56 1440
B-Doctor 0.51 0.69 0.59 986
B-Hospital 0.41 0.50 0.45 359
B-Location Other 0.00 0.00 0.00 7
B-Medical Record 0.00 0.00 0.00 1
B-Organization 0.00 0.00 0.00 30
B-Patient 0.53 0.43 0.47 393
B-Phone 0.00 0.00 0.00 7
B-Profession 0.28 0.22 0.25 85
B-State 0.35 0.10 0.16 170
B-Street 0.62 0.67 0.65 89
B-Username 0.00 0.00 0.00 1
B-ZIP 0.00 0.00 0.00 0
I-Age 0.00 0.00 0.00 1
I-City 0.33 0.09 0.14 47
I-Country 0.00 0.00 0.00 7
I-Date 0.85 0.73 0.78 492
I-Device 0.00 0.00 0.00 2
I-Doctor 0.62 0.63 0.62 760
I-Health Plan 0.00 0.00 0.00 0
I-Hospital 0.83 0.45 0.59 634
I-ID_Num 0.00 0.00 0.00 0
I-Medical Record 0.00 0.00 0.00 21
I-Organization 0.00 0.00 0.00 23
I-Patient 0.47 0.24 0.32 269
I-Phone 0.00 0.00 0.00 1
I-Profession 0.65 0.24 0.35 118
I-Street 0.82 0.61 0.70 193
Other 1.00 0.99 0.99 287,426

According to Figure 7, the evolution results for tags with support greater than 400
are considered almost good, compared to those with support less than 400 as illustrated
in Figure 8. So, we can conclude that the amount of support will affect the results of the
evaluation metrics in some way, where smaller tags might have lower precision or recall
because the model struggles to learn from fewer examples, and tags with more support
provide more data, which usually leads to more reliable evaluation metrics.

On the other hand, when analyzing the results according to the B tag and I tag,
as presented in Table 10, we can conclude that the B-tags exhibit superior performance
across various categories. The model demonstrates a heightened level of confidence
in recognizing the initiation of entities in contrast to their internal components. I-tag
performance is low in categories like “AGE”, “CITY”, and “COUNTRY”, indicating that
the model struggles to maintain entity recognition beyond the first token. This could
be the result of the model leaning towards making simpler, single-token predictions or
a deficiency of sufficient training data for multi-token entities. I-tags perform well in
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categories like “DATE”, “HOSPITAL”, and “STREET”. These entities often have more
structured patterns and contain more tokens, which makes it easier for the model to capture
internal tokens efficiently.

(a)

(b)

Figure 6. Support in each category using Bi-LSTM-CRF. (a) Support in each category using Bi-LSTM-
CRF. (b) Support in each category using Bi-LSTM-CRF except the other category.

Figure 7. Evaluation results for tags with support greater than 400.
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Figure 8. Evaluation results for tags with support less than 300.

Table 10. Comparison of B-tag and I-tag results using Bi-LSTM-CRF model.

Category
B-Tag I-Tag

Precision Recall F1-Score Precision Recall F1-Score

Age 0.91 0.83 0.87 0 0 0

City 0.27 0.36 0.31 0.33 0.09 0.14

Country 0.33 0.14 0.20 0 0 0

Date 0.46 0.71 0.56 0.85 0.73 0.78

Doctor 0.51 0.69 0.59 0.62 0.63 0.62

Hospital 0.41 0.50 0.45 0.83 0.45 0.59

Patient 0.53 0.43 0.47 0.47 0.24 0.32

Profession 0.28 0.22 0.25 0.65 0.24 0.35

Street 0.62 0.67 0.65 0.82 0.61 0.70

For most of the 23 evaluated categories, the CRF model outperforms the Bi-LSTM-CRF
model, which has shown promising performance across most of the 23 evaluated categories.
However, its effectiveness is influenced by the need for a larger dataset to leverage its
complex architecture and hyperparameter tuning fully. While the CRF model has a simpler
architecture and is generally less prone to overfitting, the Bi-LSTM-CRF model requires
a larger volume of data to maximize its potential. Although the Bi-LSTM-CRF has been
carefully optimized and tuned, expanding the dataset would allow for even more effective
performance improvements and better utilization of the model’s capabilities.

4.4. Comparison Between Our Findings with Other Studies

Clinical data processing has been improved using Bi-LSTM-CRF techniques for
PHI de-identification in EHRs. This method, which combines the advantages of se-
quence labeling and deep learning, improves the accuracy and efficiency of identifying
sensitive information.

In [34], the authors used the Rennes University Hospital’s EHRs to create a French
de-identification dataset. The distribution of entities in the training and test sets was
consistent, and the dataset included extensive personal information. A Bi-LSTM + CRF
model was assessed using manually annotated clinical reports in conjunction with Flair
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and FastText word embeddings. The model outperformed other tested models and demon-
strated the efficacy of this strategy for de-identifying sensitive information with a high
F1-score of 96.96%. To identify text that should be classified as sensitive due to privacy
concerns, the authors in [35] used three different models: Bi-LSTM, Bi-LSTM with attention,
and BERT base models. The words used can disclose important details about a patient’s
character and personal life, even though it may not at first appear to be sensitive to privacy
concerns. Clinical data include hidden features that may cause privacy problems in addi-
tion to demographic data. Approximately 92% accuracy was achieved by enhancing the
Bi-LSTM model with an attention layer that highlights crucial words that are important for
categorization. The dataset comprised 206,926 phrases, of which 80% was used for training
and the remaining 20% for testing. Using the Bi-LSTM model alone, the dataset yielded an
accuracy of about 90%. In [36], the authors presented a novel multi-medical entity recogni-
tion approach combining BART, Bi-LSTM, and CRF using a fusion strategy. EHRs were
first cleaned, encoded, and segmented. Then, semantic representations were dynamically
merged using the BART model. Subsequently, sequential data were captured by the Bi-
LSTM network, and CRF was utilized to decode and produce multi-task entity recognition
outcomes. The approach produced an average precision, recall, and F1-score of 0.880, 0.887,
and 0.883, respectively. Based on the BiLSTM-CRF deep learning model, the authors in [37]
presented the Bi-RNN-LSTM-RNN-CRF electronic medical record named entity recognition
model. A bidirectional RNN-LSTM-RNN layer was trained by first gathering an electronic
medical record dataset and then utilizing a word vector tool to turn the characters into
vectors. After that, a CRF layer received the training data to compute the loss function and
produce predictions. To compare the two models, identical procedures were carried out
using the conventional BiLSTM-CRF model. According to the experimental results, the
Bi-RNN-LSTM-RNN-CRF model outperformed the BiLSTM-CRF model in recognition,
with an F1-score of 97.80%. Xiaocheng et al. [19] used a manually annotated corpus to
refine the bidirectional transformer pre-training model BERT by the BIOES (Begin Inside
Outside End Single) standard. Word vectors, which successfully capture the context in
electronic medical records, represent the semantic content of words in the text, which is
learned unsupervised. Character sequences are sent into the BERT model, which learns
their state properties. The CRF layer uses this information to optimize sequence transition
constraints. The BERT-IDCNN-CRF model obtained an average accuracy of 94.5%, recall of
93.8%, and F1-score of 94.1%, respectively.

Our research demonstrates that CRF performs better than Bi-LSTM-CRF in the majority
of the 23 assessed categories. This is probably because of the size of the dataset and the
significant chance of overfitting in deep learning models on smaller datasets. Our findings
show that while Bi-LSTM-CRF shows potential for larger and more diverse datasets, CRF
offers a solid baseline with robust generalization. The dual-model strategy used in our
work demonstrates the significance of choosing a model based on the properties of the data
and the necessity of giving similar importance to deep learning and simpler architectures
to attain the best results across a variety of datasets. By doing this, we offer a thorough
analysis that clarifies how our methodology successfully manages the trade-offs between
model complexity and performance, resulting in a more sophisticated knowledge of PHI
detection challenges. Table 11 compares the methods for de-identification used in other
recent research.
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Table 11. Comparison of methods for medical text de-identification and entity recognition.

Reference Methods Dataset Results Limitations

[34] Created a method for automatically
de-identifying clinical documents. Rennes University Hospital’s EHRs F1-score of 96.96% Lack of annotated data for medical

de-identification.

[35]
Three different models: Bi-LSTM,
Bi-LSTM with attention, and BERT
base models

206,926 sentences used for
classification.

Bi-LSTM achieved accuracy of 90%,
BERT accuracy of 93% High computational cost

[36]

A novel multi-medical entity
recognition approach combining
BART, Bi-LSTM, and CRF using a
fusion strategy.

CCKS2019 dataset Precision 0.880, Recall 0.887, F1-score
0.883

Lack of comparative analysis with
other models

[37]

Based on BiLSTM-CRF, the
Bi-RNN-LSTM-RNN-CRF medical
record named entity
recognition model.

No specific dataset details were
provided. F1 97.80% Slightly inferior recognition effect

compared to BiLSTM-CRF model.

[19]
Refines the bidirectional transformer
pre-training model BERT using
BIOES standard.

No specific dataset details were
provided.

Accuracy: 94.5%, Recall: 93.8%, F1:
94.1%

Bi-LSTM-CRF cannot utilize GPU
parallelism.

Our work Using Bi-LSTM-CRF model and deep
learning approach i2b2 dataset Precision: 99%, Recall: 98%, F1-score:

98%
Limited dataset size impacts model
optimization
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5. Conclusions and Potential Future Works
The privacy protection mechanism in healthcare has become critical due to the rapid

global adoption of EHRs, which contain vast amounts of unstructured textual data. The
sensitive nature of Protected Health Information (PHI) within these records presents sig-
nificant privacy challenges, necessitating robust de-identification techniques. This paper
introduces a novel Bi-LSTM-CRF model approach, utilizing the i2b2-2014 dataset from Har-
vard University to achieve accurate and reliable PHI de-identification. Unlike prior studies
that often unify Bi-LSTM and CRF layers, our approach emphasizes the individual design,
optimization, and hyperparameter tuning of both components, resulting in precise model
performance improvements. This rigorous approach to architecture and tuning, typically
underexplored in the existing literature, enhances the model’s capacity to effectively detect
PHI tags while retaining the essential clinical context.

Comprehensive evaluations were conducted across the 23 PHI categories defined by
HIPAA, ensuring robust security across vital domains. The optimized model demonstrates
exceptional performance, achieving a precision of 99%, recall of 98%, and an F1-score of 98%,
which underscores its effectiveness in balancing recall and precision. By enabling the de-
identification of medical records, this research strengthens patient confidentiality, promotes
compliance with privacy regulations, and facilitates safe data sharing for research and
analysis. Interestingly, certain PHI categories displayed outstanding accuracy, confirming
the model’s efficacy in identifying and safeguarding PHI within medical records.

The performance differences observed between the CRF and Bi-LSTM-CRF mod-
els suggest a range of influences, including dataset characteristics, specific tasks, and
model architecture.

6. Future Work
In future research, we plan to involve integrating distributed machine learning tech-

niques, such as federated learning, into the Bi-LSTM-CRF model. Federated learning
enables training machine learning models across different devices without centralizing the
data, thus preserving user privacy [38]. This approach guarantees privacy by keeping data
on local devices and improves model robustness by leveraging diverse data sources. In
future work, our objective is to explore the application of federated and split learning-based
methods, incorporating robust aggregation techniques to enhance the privacy, security,
and performance of the Bi-LSTM-CRF model. By combining these methods, we can en-
sure that the model maintains privacy while improving its predictive accuracy in the
de-identification of Protected Health Information (PHI).
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