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Abstract: The rapid loss of biodiversity significantly impacts birds’ environments and
behaviors, highlighting the importance of analyzing bird behavior for ecological insights.
With the growing adoption of Machine Learning (ML) algorithms in the Internet of Things
(IoT) domain, edge computing has become essential to ensure data privacy and enable
real-time predictions by processing high-dimensional data, such as video streams, effi-
ciently. This paper introduces a set of dimensionality reduction techniques tailored for
video sequences based on cutting-edge methods for this data representation. These meth-
ods drastically compress video data, reducing bandwidth and storage requirements while
enabling the creation of compact ML models with faster inference speeds. Comprehensive
experiments on bird behavior classification in rural environments demonstrate the effective-
ness of the proposed techniques. The experiments incorporate state-of-the-art deep learning
techniques, including pre-trained video vision models, Autoencoders, and single-frame
feature extraction. These methods demonstrated superior performance to the baseline,
achieving up to a 6000-fold reduction in data size while reaching a classification accuracy
of 60.7% on the Visual WetlandBirds Dataset and obtaining state-of-the-art performance on
this dataset. These findings underline the potential of using dimensionality reduction to
enhance the scalability and efficiency of bird behavior analysis.

Keywords: deep learning; spatio-temporal dimensionality reduction; bird behavior classification;
edge computing; video processing

1. Introduction
The accelerating pace of global biodiversity loss necessitates efficient environmental

management strategies to mitigate its impacts [1]. Bird behavior, closely influenced by
environmental conditions, weather, and surrounding ecosystems, serves as a valuable
indicator of ecological health [2]. Analyzing bird behavior provides critical insights for
researchers and ecologists, enabling the identification of behavioral changes and anomalies
that may signal environmental shifts [3,4]. As highly sensitive species, birds can detect
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subtle changes in their habitats, making them indispensable in monitoring and conservation
efforts [5].

Video classification can be used for automating the study of bird behavior. However,
this task can be resource-intensive, requiring the analysis of both visual and temporal data,
which presents significant challenges in terms of time and effort. Additionally, it presents
several challenges inherent to the task itself. The main one is the high dimensionality of the
data the models have to process. This leads to a sparse data distribution due to the curse of
dimensionality [6], requiring lots of samples to train a classifier without significant over-
fitting. Moreover, the high dimensionality significantly increases the number of trainable
parameters in the classifiers, which in turn demands greater computational resources for
both training and inference. In the context of bird behavior recognition, resources are often
highly constrained due to deployment in rural environments.

To address these challenges, we present a study focused on reducing the dimension-
ality of video recordings by transforming them into smaller and more compact represen-
tations while preserving the most relevant features for classification. To achieve this, we
employ various state-of-the-art deep learning techniques, including the employment of
embeddings obtained from large video vision models, such as 3D Convolutional Neural
Networks (3DCNNs) [7,8] or Video Transformers [9,10]. In addition, other techniques are
proposed, including Autoencoders and extracting visual features from a single frame within
the sequence. We present a comprehensive ablation study to identify the most effective
methods and parameters. Our results demonstrate that the proposed methodologies can
reduce video representations by a factor of 6000, while these compact representations out-
perform the baseline model. All experiments were carried out on the Visual WetlandBirds
Dataset [11], yielding up to a 60.7% accuracy increase over the test set and presenting new
state-of-the-art performance. Furthermore, they significantly reduce training time due to
the smaller data size. In summary, our key contributions are as follows:

• We proposed three different approaches to dimensionality reduction for the specific
task of action classification from videos of birds in natural environments. These
methods can reduce the size of a video by up to 6000 times for much faster training
and inference.

• Additionally, the new classifiers trained with the reduced representations outper-
formed the previously proposed baselines, achieving state-of-the-art results on this
specific dataset. In this particular task, characterized by a limited number of sam-
ples, our reduced representation has proven more effective in capturing differences
between classes.

• Finally, we performed an exhaustive ablation study of the different proposed methods
to determine parameter selection and the importance of each of them. This process
allowed us to establish the capabilities and limitations of each method.

The remainder of this paper is structured as follows: Section 2 reviews the most
relevant related work within this field. Section 3 outlines the methodology employed in
this study. Section 4 presents the experimental results. Section 5 discusses and interprets
the results obtained from this study. Finally, Section 6 discusses the conclusions drawn
from this work, along with potential directions for future research.

2. Related Work
Deep learning techniques excel at identifying and analyzing patterns in heterogeneous,

high-dimensionality data. However, certain data modalities and scenarios benefit from
reduced representations. For instance, video data present challenges due to their high
spatial and temporal dimensionality. Similarly, in scenarios like the Internet of Things
(IoT), where computational resources are limited and low inference times are critical, using
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reduced data representations leads to smaller models with lower computational costs and
faster inference times.

In this context, dimensionality reduction involves mapping a set of input features to a
smaller set while retaining meaningful information that can still be used for the same tasks
as the original representation [12–15]. Two main approaches are commonly discussed in
the literature [12]: feature selection and feature extraction.

Feature selection focuses on identifying and retaining a subset of the original features
that preserve the most information. These features remain in their original form, and the
methods prioritize selecting them based on specific criteria. This approach is particularly
useful in scenarios with low-sample, high-dimensionality tabular data, where noise and
feature redundancy are prevalent.

In contrast, feature extraction transforms the initial features into a lower-dimensional
representation, making it more suitable for unstructured data such as images and videos.
Traditional linear approaches aim to achieve this transformation through linear methods.
Examples include techniques based on variances and contribution ratios, such as Principal
Component Analysis (PCA) [16,17], Linear Discriminant Analysis (LDA) [18], and Factor
Analysis (FA). Other linear feature extraction methods include Independent Component
Analysis (ICA), Multi-Dimensional Scaling (MDS) [19], and Singular Value Decomposition
(SVD) [20]. However, these linear methods are limited in their ability to address the inherent
non-linearity and complexity of video data.

Non-linear feature extraction algorithms provide flexibility to handle complex, non-
linear relationships in data that linear methods fail to capture effectively. Examples include
Kernel Principal Component Analysis (KPCA) [21], which uses kernel functions to project
data into higher-dimensionality spaces where linear separation is feasible, and Locally
Linear Embedding (LLE) [22], which maintains local neighborhood relationships while
embedding data into a low-dimensionality space. Isometric Mapping (ISOMAP) [23] is
another prominent approach, extending classical MDS by preserving geodesic distances
between data points, effectively capturing the manifold structure of complex data. Non-
negative Matrix Factorization (NMF) [24] offers a part-based representation of data by
imposing non-negativity constraints, making it highly interpretable in fields such as text
mining and facial recognition. These non-linear methods provide improved capability to
represent the complexity and inherent non-linear nature of video and image data compared
to traditional linear approaches.

Dimensionality reduction using deep learning can be categorized into supervised [25],
unsupervised, and semi-supervised methods. Supervised methods, such as Convolutional
Neural Networks (CNNs) [26] and Transformer [27] models, effectively reduce feature
dimensions by capturing both local and global features present in data. These methods
work particularly well for structured tasks where labeled data are available, enabling the
extraction of key information while minimizing irrelevant details. On the other hand, unsu-
pervised methods, like Deep Autoencoders [28–31] and Deep Belief Networks (DBNs) [32],
focus on compressing high-dimensional data into lower-dimensional representations with-
out relying on labels, making them suitable for discovering hidden structures and patterns
in unstructured data.

Semi-supervised approaches leverage the strengths of both supervised and unsu-
pervised learning by combining unsupervised pre-training with labeled data to improve
generalization. For instance, pre-training with unlabeled data helps the model learn
meaningful representations, while fine-tuning with labeled data refines its accuracy. This
combination is particularly valuable when labeled data are scarce, enhancing the model’s
ability to generalize effectively. Overall, deep learning-based dimensionality reduction
methods can handle the complexity and non-linearity of high-dimensionality data [33],
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providing efficient and meaningful feature representations for tasks like image, video, and
sensor data analysis.

Dimensionality reduction is crucial for handling video data due to their high compu-
tational complexity and memory requirements and the challenge of extracting effective
spatio-temporal features. Unlike static data, videos involve a temporal dimension, which
requires specialized approaches for the efficient management of both spatial and temporal
aspects [12]. Various methods have been developed to reduce dimensionality, making video
data more manageable while maintaining the quality of extracted features. Techniques like
the Spatio-temporal Prompting Network (STPN) [34], Regularized Deep Neural Networks
(rDNNs) [35], and lightweight optimization for frame interpolation [36] exemplify how
dimensionality reduction can enhance performance in video classification, detection, and
segmentation tasks. These methods focus on reducing redundancy, preserving essential
information, and improving computational feasibility.

Dimensionality reduction also finds applications beyond video classification, such
as human action recognition, medical video analysis, and human detection. For action
recognition, local CNN features are aggregated to create global representations, addressing
GPU memory limitations while preserving performance [37]. In medical video analy-
sis, particularly gastrointestinal endoscopy, hybrid feature extraction techniques reduce
computational costs while retaining critical diagnostic information [38,39]. Additionally,
incremental Principal Component Analysis (PCA) has been used to improve human de-
tection by reducing the dimensionality of CoHOG features [40]. Overall, dimensionality
reduction plays an essential role in making video data analysis practical and improving
efficiency, memory management, and accuracy across various video-related applications.

In the study of animal behavior [41–43] and, more specifically, in bird-related re-
search [44–47], videos serve as a primary data structure for analysis and insight generation.
However, to the best of our knowledge, no prior work has applied dimensionality reduction
techniques to this specific domain, making our approach the first to explore and integrate
these methods for analyzing video data in the context of animal behavior and avian studies.

When considering datasets for training deep learning algorithms, there is a notable
scarcity of resources focused on bird behavior recognition. For instance, the VB100
dataset [48], which consists of video recordings of birds in their natural environments, is
annotated only with bird species and lacks labels for the actions being performed. Conse-
quently, this dataset is not suitable for behavior recognition tasks. Similarly, the AnimalK-
ingdom dataset [49] contains video recordings of various animals and includes annotations
of their corresponding actions. However, as this dataset encompasses a wide range of
animal species, including but not limited to birds, it is not suitable for focused bird behavior
recognition. The Visual WetlandBirds Dataset [11] provides video recordings exclusively of
birds, making it the most appropriate dataset for this study. In addition, other datasets, such
as Birds525 (https://huggingface.co/datasets/chriamue/bird-species-dataset, accessed
on 18 January 2024), CUB-200-2011 [50], and NABirds [51], offer images of different bird
species, but these datasets lack temporal or behavioral annotations. As a result, they are
unsuitable for tasks requiring such information.

3. Materials and Methods
In this section, we present the methodology proposed for this study. The main scope of

this study and the proposed pipeline are formulated to capture the most relevant information
within video frames while converting videos into lower-dimensionality representations.

The proposed techniques aim to generate lower-dimensionality representations of the
video input. Each technique includes a final Multi-Layer Perceptron (MLP) designed to clas-
sify and evaluate the effectiveness of the representations. An ablation study was conducted

https://huggingface.co/datasets/chriamue/bird-species-dataset


Future Internet 2025, 17, 53 5 of 15

to identify the most suitable technique and the optimal parameters for training and the
MLP. As a result, the configuration of the final MLP may vary depending on the employed
method. All code developed for this project is publicly available in our GitHub repository
(https://github.com/3dperceptionlab/DimensionalityReductionBirdBehaviours, accessed
on 1 December 2024).

3.1. Dataset

The Visual WetlandBirds Dataset [11] consists of videos of birds from the Valencian
region, each depicting different actions. The dataset consists of 2765 video frames and
is distributed into 1834 samples for training, 440 for validation, and 491 for testing. This
distribution was designed taking into consideration the bird species in the video, as well
as the action performed in it. Furthermore, this division was not limited to bird species
and actions but also considered the original video source, which was segmented into
smaller video frames. This approach ensures that videos are separated based on factors
such as the recording camera, the day of recording, and the time of day. These videos
are annotated with the bird species and the actions performed. The videos encompass
16 frames, with three color channels per frame and a resolution of 224 × 224 pixels. This
dataset establishes a baseline for the classification of bird behaviors using 3DCNNs and
Video Transformers. The models trained end-to-end include ResNet3D, S3D, Video Swin
Transformer, and MViTv2.

3.2. Features

With the advent of deep learning technologies, a wide range of pre-trained models
are available for various modalities and purposes. For instance, in Natural Language
Processing (NLP), models such as BERT [52], LLaMA [53], and Gemini [54] have been
developed. These models are trained on extensive datasets and can capture and encode the
most relevant information from an input, leveraging the knowledge acquired during their
training phase.

Similarly, for video analysis, several large pre-trained models can be used for fea-
ture extraction and classification tasks. These models have been trained on the Kinetics
Dataset [55], enabling them to learn general patterns that can be effectively leveraged
for transfer to other tasks, for example, bird behavior classification. These models rely
on diverse backbone architectures, such as 3DCNNs [56] and Video Transformers [57].
Examples of 3DCNNs include ResNet3D [7] and Video S3D [8], while Video Transformers
include models like Video Swin Transformer [9] and MViTv2 [10].

The Features dimensionality reduction technique involves utilizing these models to
extract internal representations of videos, generating embeddings that encapsulate essential
features. These embeddings serve as input into an MLP for the final classification task. This
architecture processes a sequence of 16 frames, each with dimensions of 16 × 3 × 224 × 224,
and transforms it into a single embedding with a size of 400. This transformation achieves
a dimensionality reduction of over 6000 times compared to the original video sequence,
substantially decreasing the input size while preserving critical information. An overview
of the proposed architecture is shown in Figure 1.

3.3. Autoencoder

An alternative methodology proposed in this study utilizes Autoencoders, designed
to reduce the dimensionality of input data and reconstruct them from a latent space. This
approach allows the model to compress the input into a lower-dimensionality representa-
tion while retaining its essential features. An Autoencoder is composed of two primary
components: an encoder, which reduces the dimensionality of the input data, and a decoder,
which reconstructs the input data to their original form [31,58,59].

https://github.com/3dperceptionlab/DimensionalityReductionBirdBehaviours
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MLP

3D CNNs

Video
Transformers16 frames

(16, 3, 224, 224)

Video features
(1, 400)

Figure 1. Overview of the Baseline Feature Method: The architecture utilizes the internal representa-
tions of the proposed models in conjunction with an MLP. Discontinued lines indicate that only one
of the models is selected for use in each experiment. The snowflake symbol denotes a frozen model.

During the training process, the Autoencoder learns to effectively represent the input
data within the latent space and reconstruct them. Once trained, the decoder is removed
from the pipeline. The latent space representation is used for downstream tasks. This study
employs this latent space representation and an MLP to classify bird behaviors.

The spatio-temporal Autoencoder architecture is designed to process video data by
utilizing 3D convolutions to capture spatial and temporal features. The encoder comprises
four 3D convolutional layers that progressively reduce the spatial and temporal dimensions
of the input. Each convolutional layer is followed by batch normalization and ReLU
activation to enhance convergence and improve model robustness. The output of the
encoder is flattened and passed through a fully connected layer, compressing the data into
a 1024-dimensional latent space. The decoder is structured to mirror the encoder, employing
transposed 3D convolutions to reconstruct the video data from the latent representation.
However, after the training process, the decoder is discarded, and representations from
the latent space are used to reduce the dimensionality of video inputs. The learning rate
for the training process is set to 0.0001, and the Adam optimizer is employed. Training is
conducted over 100 epochs with a batch size of 32. The Mean Squared Error (MSE) loss
function is utilized to minimize the pixel-wise difference between the input videos and
their reconstructions in alignment with the Autoencoder’s objective. During training, the
performance is periodically evaluated by saving the model state every 20 epochs, providing
progress checkpoints, and facilitating recovery if needed.

This method allows for a significant reduction in data size, compressing a 16 × 3 × 224
× 224 input into a single embedding of size 1024—a reduction of more than 2350 times the
original data volume. Figure 2 provides an overview of the proposed architecture.

3D CNN
Encoder

3D CNN
Decoder

Latent
Space

MLP

16 frames
(16, 3, 224, 224) (1, 1024)

Figure 2. Overview of the Autoencoder Method: An Autoencoder is pre-trained to reconstruct video
frames. Following the training process, the decoder is discarded, and the latent space representation
is combined with an MLP. Discontinued lines indicate that the decoder is discarded after being
trained, and only the latent space is used to classify the bird action.
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3.4. Single Frame

The final dimensionality reduction technique implemented in this study involves
using a single frame for the task, thereby discarding the temporal information contained
within the video. The selected architecture processes a single frame, utilizing both the
environmental context and the bird-specific features captured at that moment to perform
the classification. We propose two primary approaches to extract a single frame from the
video sequence. The first one is selecting the central frame of the sequence, while the
second is computing the mean pixel values across the sequence to generate a representative
frame. This selection serves as the first step in dimensionality reduction, reducing the input
dimensions from 16 × 3 × 224 × 224 to a single frame of 3 × 224 × 224, effectively achieving
a 16-fold reduction in size.

Following this initial dimensionality reduction step and drawing on methodologies
used in previously proposed architectures, we employed pre-trained models such as 2D
CNNs, Vision Transformers, the DINOv2 [60,61] model, and a Histogram of Oriented Gradi-
ents (HOG) [62]. The 2D CNNs utilized include ResNet [63], MobileNet [64], DenseNet [65],
and VGG [66], while the implemented Vision Transformer models include ViT [67] and
Swin Transformer [68]. The primary objective of this methodology is to leverage CNN
kernels and transformer layers to extract meaningful patterns and features from images
for classification tasks. The extent of dimensionality reduction achieved depends on the
chosen model. For example, using ResNet, which delivers the most promising results
among the 2D CNNs, we obtained embeddings of size 2048, achieving a reduction of
over 1100 times. Other 2D CNNs produce varying reduction rates based on their internal
representation sizes. For Vision Transformers and the DINOv2 model, the embedding
size is 768, resulting in a reduction of more than 3100 times in size. HOG features were
computed to extract complementary information [69,70], with these features yielding a
reduction size of 1,031,940, corresponding to a more modest reduction of slightly over two
times. As in prior methodologies, the extracted representations were combined with an
MLP for final classification. Figure 3 illustrates the overall architecture.

16 frames
(16, 3, 224, 224)

Central frame

Mean of frames

single frame
(3, 224, 224)

2D CNNs

Vision
Transformers

Dino V2

HOG Descriptor

MLP

(1, 1031940)

(1, 768)

(1, 768)

(1, 2048)

Figure 3. Overview of single-frame methods. The initial dimensionality reduction step involves
selecting either the central frame or the mean pixel values of the frames. Subsequently, visual
embeddings are obtained using 2D CNNs, Vision Transformers, or DinoV2. Finally, classification is
performed using an MLP. Discontinued lines indicate that only one of the models and frames are
selected for use in each experiment.

4. Results
In this section, we present quantitative experimentation with the methods previously

introduced in this work. In Table 1, we can observe the evaluation of the different proposed
approaches and their reduction rates. By analyzing the results, we can observe that the
method labeled Features is the best concerning reduction and metrics, even outperforming
the original metrics obtained by the baseline.
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Table 1. Quantitative evaluation of the proposed dimensionality reduction techniques, including
their performance metrics and the reduction achieved relative to the original input size. Evaluations
were conducted 5 times to mitigate the effects of randomness. The symbol ± indicates the 95%
confidence interval.

Model Accuracy Precision Recall F1 Reduction

Baseline 0.558 0.335 0.438 0.371 -

Features 0.607±0.004 0.423±0.02 0.424±0.009 0.398±0.05 6021
Autoencoder 0.513±0.002 0.279±0.25 0.170±0.001 0.144±0.003 235

Single Frame (mean) 0.576±0.004 0.442±0.01 0.419±0.01 0.409±0.004 1176
Single Frame (central) 0.556±0.007 0.385±0.006 0.390±0.01 0.368±0.004 3136

The experiments demonstrate that the most relevant features were obtained by ex-
tracting embeddings from large pre-trained video models. These embeddings effectively
capture high-level information from prior tasks, reducing the representation size by more
than 6000 times while improving performance across various metrics. While this method is
highly efficient for training, its benefits are more limited during the inference time due to
the time required to extract the embeddings from the pre-trained models. The effectiveness
of this method can be graphically observed in Figure 4.

The second-best method involves removing temporal information by processing only
a single frame from each video sequence. We tested two strategies for selecting this single
frame: The first was picking the central frame and calculating the mean frame pixel-wise
across the entire sequence. The results indicate that using the mean frame leads to slightly
better performance than using the central frame, likely because it retains some contextual
information from the entire sequence. Features are extracted from the single frame using
pre-trained image models, being a more lightweight process than the previous method in
the video processing stage. As such, this could be the most suitable option in resource-
constrained environments. Despite removing temporal information, this method achieves
highly competitive performance metrics.
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(b) Features
Figure 4. Confusion matrix comparing the baseline approach with the proposed best dimensionality
reduction method on the Visual WetlandBirds Dataset test set.

Among the methods we proposed, the one based on Autoencoders performed the
worst. Its lack of effectiveness can be attributed to overfitting, which occurred due to the
limited availability of large datasets for this particular task. Figure 5 shows the learning
curves for the loss functions for the different proposed methods.
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Figure 5. Loss curves over the training procedure for each of the proposed methods.

5. Discussion
In this work, we proposed using various dimensionality reduction techniques to

classify bird behaviors through videos. To evaluate the performance of the resulting
representations, we performed an ablation study, where the most relevant methods were
identified. In the following subsections, we will analyze the ablation carried out with
the different features and parameters tested from the different dimensionality reduction
methods we proposed.

5.1. Features

The first comparison we made was between the dataset’s baselines and the method
labeled Features, where we proposed the use of the architectural backbones of the baseline to
extract some features that would later be classified using an MLP. In the comparison shown
in Figure 6, we can observe that while the best architecture for the baseline was ResNet3D,
the backbone that obtained the most meaningful features was the Swin Transformer.

(a) Baseline

mvit r3d s3d swin

0.1

0.2

0.3

0.4

0.5

0.6

(b) Features

Figure 6. Violin plots illustrating the distribution of parameter importance, comparing the dimen-
sionality reduction method labeled Features with the overall performance of the other methods on the
Visual WetlandBirds Dataset test set.

5.2. Autoencoder

For the Autoencoder technique, in Figure 7, we can observe a correlation between certain
architecture components and their performance. The information that can be extracted
from these plots is that the smaller the encoder, the better performance. As the number of
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samples in the dataset that we used was not too high, smaller models can better capture
insights from the data without massive amounts of overfitting, which hinders the quality
of the extracted features.

However, even with the smaller models, the performance remains the lowest among
all the approaches, exhibiting significant overfitting. Unlike the other methods, which
benefitted from pre-trained weights, training the Autoencoder from scratch on this limited
dataset led to its failure in adequately capturing the distribution of diverse actions.

256 512 1024
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0.3

0.4

0.5

(a) Hidden Dimension Size

2 3 4

0.1

0.2

0.3

0.4

0.5

(b) Number of Layers

Figure 7. Violin plots illustrating the distribution of parameter importance, comparing the Autoencoder
dimensionality reduction method with the overall performance of the other methods on the Visual
WetlandBirds Dataset test set.

5.3. Single Frame

For the single-frame technique, Figure 8 illustrates the impact of the method used to
select the single frame and the choice of image model on feature extraction. As shown, the
mean image provides more information and achieves slightly better performance. Among
the image feature extractors, the ResNet architecture produced the best accuracy on the
test set.
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Figure 8. Violin plots illustrating the distribution of parameter importance, comparing the single-frame
dimensionality reduction method with the overall performance of the other methods on the Visual
WetlandBirds Dataset test set.

Although temporal information was lost, this approach demonstrates strong perfor-
mance, even achieving the best results in certain metrics. Furthermore, while the reduction
in data size was not the most substantial, the computation of the reduced representation
was significantly faster, as it relied on a single image rather than processing an entire
video sequence.

5.4. Other Parameters

Finally, Figures 9–11 display the effect of different parameters on the performance
of the different dimensionality reduction techniques that we proposed. Concerning the
batch size, we can observe that the differences are minimal, with the smallest being slightly
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better overall. Choosing not to assign class weights to the losses during training led to
higher performance across all the methods. And, concerning learning rates, the smallest
ones seem to work better with this particular combination of methods and dataset.
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Figure 9. Impact of batch size on the performance of each proposed method.
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Figure 10. Impact of class weight on the performance of each proposed method.
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Figure 11. Impact rate on the performance of each proposed method.

6. Conclusions
We explored various methods to reduce the dimensionality of videos from the Visual

WetlandBirds Dataset for bird action classification. Among the approaches we proposed,
the most effective in terms of accuracy and dimensionality reduction utilizes a feature
extractor based on a Swing Transformer pre-trained on the Kinetics 400 dataset. This
method outperformed the current state-of-the-art techniques while achieving a remarkable
reduction in the classifier input size of over 6000 times. As a result, it significantly decreased
both the training time and the computational resources required.

While our study was specifically tailored to the Visual WetlandBirds Dataset, the princi-
ples we introduced can be applied to other datasets featuring similar challenges—namely, fast
movements in noisy natural environments. This flexibility makes our approach well suited
for a wide range of animal action videos captured in real-world settings. Consequently,
our work opens up promising avenues for future research, especially as new comparable
datasets emerge and bring forth fresh challenges in action detection and classification.

Although we conducted an exhaustive ablation study of the methods we tested, sev-
eral topics for future work remain open. While we implemented various dimensionality
reduction techniques, there are other traditional methods we have yet to explore. Addi-
tionally, combining the reduced representations we proposed could further enhance the
classifiers’ performance. Finally, even though it is beyond the scope of this paper, applying
these reduced representations to the entire pipeline of action detection and classification
could offer valuable insights into the quality of the reduction techniques that we proposed.
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