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S4: Estimation algorithm 
 
Modeling the counterfactual outcomes 
The estimation of average direct and indirect effects is based on the so-called mediation formula. 
This involves first predicting each individual participant’s counterfactual mediator 𝑀௜(𝑡) at each 
treatment level t=0,1, using a regression model for the mediator in function of treatment and 
covariates. Here, `stochastic’ predictions are used, meaning that the fitted probabilities delivered by 
the regression model are subsequently used to generate counterfactual mediator values for each  
participant. Next, counterfactual outcomes are predicted for each participant at each treatment 
level, using a regression model for the outcome in function of mediator, treatment, and covariates.  
 
Separate statistical models are defined for the 𝑀 and 𝑌 to describe the relationship between the 
probability of a successful response and the covariates as independent variables. Given the binary 
nature of M and Y, we specify the following logistic regression models: 
 ൜logit(P(𝑀௜ = 1)) = 𝛼ଵ + 𝛽ଵ𝑇௜ + 𝜉ଵ𝐶௜                      (1)

logit(P(𝑌௜ = 1)) = 𝛼ଶ + 𝛽ଶ𝑇௜ + 𝛾𝑀௜ + 𝜉ଶ𝐶௜          (2) 

 
The mediator model (1) predicts whether participant i experiences VMAR at day 28 based on the 
participant’s treatment 𝑇௜ (ocriplasmin or sham) and relevant baseline covariates 𝐶௜. The outcome 
model (2) predicts whether participant i experiences e.g. VF-I at month 24 based on the participant’s 
treatment 𝑇௜, mediator 𝑀௜ status and relevant baseline covariates Ci. To estimate (in)direct effects, 
control must be made for all variables that confound the relationships between 𝑀௜ and 𝑌௜. This 
explains the inclusion of covariates Ci. 
 
The logistic regression models for 𝑀 and 𝑌 were built using the general strategy for model selection 
by Collet (Collett 2003), to decide on the inclusion or exclusion of baseline covariates Ci, the 
incorporation of higher order terms (nonlinearities) and/or interaction terms between covariates Ci 
and 𝑇௜ or Ci and 𝑀௜ (Table B). To determine how well the selected model fitted the observed data, 
goodness-of-fit was assessed using the Hosmer-Lemeshow statistic. 
 
In model (2) we assume there is no interaction between 𝑇 and 𝑀. However, causal effects may vary 
as a function of treatment with ocriplasmin vs. sham. To describe how mediation effects may differ 
depending on treatment, we added an interaction term 𝑇௜ ∗ 𝑀௜  resulting in outcome model 
 

logit(P(𝑌௜ = 1)) = 𝛼ଷ + 𝛽ଷ𝑇௜ +  𝛾𝑀௜ + 𝜆𝑇௜ ∗ 𝑀௜ + 𝜉ଶ𝐶௜  (3) 
 
A likelihood ratio (LR) test is performed comparing models (2) and (3) to assess whether the 
interaction term is required. 
 
To illustrate the generation of the counterfactual outcomes for each participant and derive the 
causal effects of interest from those, we continue with the outcome model (2) without interaction 
term. 
The 𝐼𝐸 are generated by the following models for the counterfactual outcomes: 
 
For 𝐼𝐸௜(1), the difference between the counterfactuals 𝑌௜(1, 𝑀௜(1)) and 𝑌௜(1, 𝑀௜(0)) (t=1) follows 
from: ൜logit P(𝑌௜(1, 𝑀௜(1) = 1)  = 𝛼ଶ + 𝛽ଶ + 𝛾𝑀௜(1) + 𝜉ଶ𝐶௜        (4)

logit P(𝑌௜(1, 𝑀௜(0) = 1)  = 𝛼ଶ + 𝛽ଶ + 𝛾𝑀௜(0) + 𝜉ଶ𝐶௜        (5) 
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and for 𝐼𝐸௜(0), the difference between the counterfactuals 𝑌௜(0, 𝑀௜(1)) and 𝑌௜(0, 𝑀௜(0)) (t=0) 
follows from: ൜logit P(𝑌௜(0, 𝑀௜(1) = 1)       = 𝛼ଶ + 𝛾𝑀௜(1) + 𝜉ଶ𝐶௜        (6)

logit P(𝑌௜(0, 𝑀௜(0) = 1)      = 𝛼ଶ + 𝛾𝑀௜(0) + 𝜉ଶ𝐶௜        (7)  

 
Specifically, from expressions (4)-(7), we obtain the predicted probabilities for the counterfactual 
outcomes: 

⎩⎪⎨
⎪⎧P(𝑌௜(1, 𝑀௜(1)) =  1) = exp(𝛼ଶ + 𝛽ଶ + 𝛾𝑀௜(1)  +  𝜉ଶ𝐶௜)1 + exp(𝛼ଶ + 𝛽ଶ + 𝛾𝑀௜(1) +  𝜉ଶ𝐶௜)

P(𝑌௜(1, 𝑀௜(0)) =  1) = exp(𝛼ଶ + 𝛽ଶ + 𝛾𝑀௜(0) +  𝜉ଶ𝐶௜)1 + exp(𝛼ଶ + 𝛽ଶ + 𝛾𝑀௜(0) +  𝜉ଶ𝐶௜)   (8) 

and 

⎩⎪⎨
⎪⎧ P(𝑌௜(0, 𝑀௜(1)) = 1) = exp(𝛼ଶ + 𝛾𝑀௜(1) +  𝜉ଶ𝐶௜)1 + exp(𝛼ଶ + 𝛾𝑀௜(1) +  𝜉ଶ𝐶௜)

P(𝑌௜(0, 𝑀௜(0)) =  1) = exp(𝛼ଶ + 𝛾𝑀௜(0) +  𝜉ଶ𝐶௜)1 + exp(𝛼ଶ + 𝛾𝑀௜(0) +  𝜉ଶ𝐶௜)            (9) 

 
 
The obtained probabilities for the four counterfactuals for each participant are used in a Monte 
Carlo approach that repeats these simulations many times.  
 
Monte Carlo simulations to estimate total, direct and indirect effect estimates 

The Monte Carlo approach simulates values of the counterfactual outcomes 𝑌௜(𝑇௜, 𝑀௜(𝑇௜)) used to 
derive the (in)direct effects per participant, which are then averaged over all study participants. 
From the different Monte Carlo draws, we obtain different summary statistics of the (in)direct 
effects, i.e., the point estimate for the mean and its uncertainty estimates from the distribution of 
effects (Imai, Keele & Tingley 2010). 
 
The Monte Carlo approach consists of different steps:  
 
First, we fit 𝑀 and 𝑌 models to obtain the model parameter estimates 𝜃ெ = (𝛼ଵ, 𝛽ଵ, 𝜉ଵ) and 𝜃௒ =(𝛼ଶ, 𝛽ଶ, 𝛾, 𝜉ଶ) with their variance and construct the sampling distribution of the maximum likelihood 
estimators of parameters 𝜃ெ and 𝜃௒ assuming the multivariate normal distribution. 
Next, the Monte Carlo simulation is started. To account for the uncertainty of the model coefficient 
estimates, a value is drawn from the sampling distributions of the maximum likelihood estimators of 𝜃ெ = (𝛼ଵ, 𝛽ଵ, 𝜉ଵ) and 𝜃௒ = (𝛼ଶ, 𝛽ଶ, 𝛾, 𝜉ଶ) at each iteration. Based on this value, probabilities are 
derived for each participant which are next used to randomly draw the counterfactual outcomes for 
each participant. The counterfactual outcomes are used to derive the indirect and direct effects per 
participant, which are then averaged over all study participants. 
 
The algorithm goes as follows(Imai, Keele & Tingley 2010): 

1. Set outer loop index to 1, i.e., k=1, 
2. Draw a random sample of the parameters for the mediator 𝑀 and outcome 𝑌 models from 

the sampling distribution of the maximum likelihood estimators of 𝜃ெ(௞) = (𝛼ଵ, 𝛽ଵ, 𝜉ଵ) and  𝜃௒(௞) = (𝛼ଶ, 𝛽ଶ, 𝛾, 𝜉ଶ) 
3. Set inner loop index to 1, i.e., l=1,  
4. For each participant i, i=1,…,n, obtain probability P(𝑀௜ = 1) from model (1) for the actual 

treatment given, i.e., 𝑇௜, and also for the other treatment 1- 𝑇௜ and draw randomly from a 
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Bernoulli distribution using these probabilities resulting in binary outcomes 𝑀௜(௞௟)(0) and 𝑀௜(௞௟)(1). Hence, we simulate two counterfactual values of the mediator 𝑀, each based on 
the mediator model, one under the treatment condition and the other under the control 
condition. 

5. For each participant i, i=1,…,n, obtain probability P(𝑌௜ = 1) from (2) for the actual treatment 
given, i.e., 𝑇௜, and also for the other treatment 1- 𝑇௜, and further using the mediator values 𝑀௜(௞௟)(0) and 𝑀௜(௞௟)(1) obtained in step 4. Draw randomly from a Bernoulli distribution using 
these probabilities resulting in binary outcomes 𝑌௜(௞௟)(1, 𝑀௜(௞௟)(0)), 𝑌௜(௞௟)(1, 𝑀௜(௞௟)(1)), 𝑌௜(௞௟)(0, 𝑀௜(௞௟)(0)) and 𝑌௜(௞௟)(0, 𝑀௜(௞௟)(1)). Hence, we simulate the counterfactual outcomes 𝑌௜(𝑇௜, 𝑀௜(𝑇௜)) given the simulated values of the mediator: 

6. Set l=l+1, and return to 4 until l=L. If l=L go to 7.    
7. Calculate the average indirect and direct effects 

a. 𝐼𝐸(௞)(1) = ଵ௡௅ ∑ ∑ 𝑌௜(௞௟) ൬1, 𝑀௜(௞௟)(1)൰ − 𝑌௜(௞௟) ൬1, 𝑀௜(௞௟)(0)൰௡௜ୀଵ௅௟ୀଵ  

b. 𝐼𝐸(௞)(0) = ଵ௡௅ ∑ ∑ 𝑌௜(௞௟) ൬0, 𝑀௜(௞௟)(1)൰ − 𝑌௜(௞௟) ൬0, 𝑀௜(௞௟)(0)൰௡௜ୀଵ௅௟ୀଵ  

c. 𝐷𝐸(௞)(1) = ଵ௡௅ ∑ ∑ 𝑌௜(௞௟) ൬1, 𝑀௜(௞௟)(1)൰ − 𝑌௜(௞௟) ൬0, 𝑀௜(௞௟)(1)൰௡௜ୀଵ௅௟ୀଵ  

d. 𝐷𝐸(௞)(0) = ଵ௡௅ ∑ ∑ 𝑌௜(௞௟) ൬1, 𝑀௜(௞௟)(0)൰ − 𝑌௜(௞௟) ൬0, 𝑀௜(௞௟)(0)൰௡௜ୀଵ௅௟ୀଵ  

Hence, the values of the counterfactual outcomes 𝑌௜(𝑇௜, 𝑀௜(𝑇௜)) are averaged across the L 
copies and the n participants in the sample to obtain an estimate of the average indirect and 
direct effects. 
Set k=k+1, and return to 2 until k=K. If k=K stop algorithm. 

 
The number of simulations to run for the approximation of parameter uncertainty was set at 10,000, 
and default standard errors were calculated. Below table displays a restricted set of patients with 
observed data and Stata model predictions. 
 
Table S4. A restricted set of patients with observed data and Stata model predictions 
Patient number 1 2 3 4 5 … 214 215 216 217 218 

OASIS observed values, covariates, treatment mediator and 24 month outcome for VF-I  
Treatment 𝑇௜ 1 1 1 0 0 … 1 1 0 1 0 
Mediator 𝑀௜ 1 0 1 0 0 … 0 0 0 1 0 
Age (centered) -7.11 1.89 -3.11 8.89 1.89 … -5.11 19.89 -3.11 -0.11 4.89 
ERM absent 1 1 1 0 1 … 0 0 1 1 0 
MH present 1 0 1 0 0 … 1 0 1 1 0 
Female 1 1 1 1 1 … 1 0 1 0 1 
VF-I  𝑌௜  0 1 1 1 0 … 1 1 0 0 0 

Simulated probabilities and counterfactual outcomes 
Monte Carlo simulation 1, counterfactual outcomes 𝑀௜(1) |𝐶௜ 0 1 0 0 1 … 0 0 0 0 0 𝑀௜(0) |𝐶௜ 0 0 0 0 0 … 0 0 0 0 0 𝑌௜(1, 𝑀௜(1)) |𝐶௜      …      𝑌௜(1, 𝑀௜(0)) |𝐶௜      …      𝑌௜(0, 𝑀௜(1)) |𝐶௜      …      𝑌௜(0, 𝑀௜(0)) |𝐶௜      …      

Monte Carlo simulation 1, probabilities* (%) 
P(𝑀௜(1)) = 1  |𝐶௜]      …      
P(𝑀௜(0)) = 1  |𝐶௜]      …      



 4 

P[𝑌௜(1, 𝑀௜(1)) = 1  |𝐶௜] 34.80 77.12 32.96 38.84 77.12 … 8.99 33.32 32.96 31.32 40.82 
P[𝑌௜(1, 𝑀௜(0)) = 1  |𝐶௜] 34.80 79.18 32.96 38.84 79.18 … 8.99 33.32 32.96 31.32 40.82 
P[𝑌௜(0, 𝑀௜(1)) = 1  |𝐶௜] 6.56 30.71 6.07 7.71 30.71 … 1.28 6.16 6.07 5.66 8.31 
P[𝑌௜(0, 𝑀௜(0)) = 1  |𝐶௜] 6.56 33.33 6.07 7.71 33.33 … 1.28 6.16 6.07 5.66 8.31 

Monte Carlo simulation 2, counterfactual outcomes 𝑀௜(1) |𝐶௜ 0 1 0 0 1 … 0 0 0 0 0 𝑀௜(0) |𝐶௜ 0 0 0 0 0 … 0 0 0 0 0 𝑌௜(1, 𝑀௜(1)) |𝐶௜      …      𝑌௜(1, 𝑀௜(0)) |𝐶௜      …      𝑌௜(0, 𝑀௜(1)) |𝐶௜      …      𝑌௜(0, 𝑀௜(0)) |𝐶௜      …      
Monte Carlo simulation 2, probabilities* (%) 

P(𝑀௜(1)) = 1  |𝐶௜]      …      
P(𝑀௜(0)) = 1  |𝐶௜]      …      
P[𝑌௜(1, 𝑀௜(1)) = 1  |𝐶௜] 31.20 77.03 27.90 32.49 77.03 … 7.26 38.12 27.90 40.48 36.05 
P[𝑌௜(1, 𝑀௜(0)) = 1  |𝐶௜] 31.20 77.25 27.90 32.49 77.25 … 7.26 38.12 27.90 40.48 36.05 
P[𝑌௜(0, 𝑀௜(1)) = 1  |𝐶௜] 5.68 30.84 4.89 7.71 30.71 … 1.03 7.57 4.89 8.29 6.97 
P[𝑌௜(0, 𝑀௜(0)) = 1  |𝐶௜] 5.68 31.10 4.89 6.01 31.10 … 1.03 7.57 4.89 8.29 6.97 

… 

 
Monte Carlo simulation 10,000, counterfactual outcomes 𝑀௜(1) |𝐶௜ 0 1 0 0 1 … 0 0 0 0 0 𝑀௜(0) |𝐶௜ 0 0 0 0 0 … 0 0 0 0 0 𝑌௜(1, 𝑀௜(1)) |𝐶௜      …      𝑌௜(1, 𝑀௜(0)) |𝐶௜      …      𝑌௜(0, 𝑀௜(1)) |𝐶௜      …      𝑌௜(0, 𝑀௜(0)) |𝐶௜      …      

Monte Carlo simulation 10,000, probabilities* (%) 
P(𝑀௜(1)) = 1  |𝐶௜]      …      
P(𝑀௜(0)) = 1  |𝐶௜]      …      
P[𝑌௜(1, 𝑀௜(1)) = 1  |𝐶௜] 22.77 58.34 20.27 31.68 58.34 … 11.06 28.67 20.27 22.87 34.96 
P[𝑌௜(1, 𝑀௜(0)) = 1  |𝐶௜] 18.65 18.17 21.18 61.27 11.06 … 13.77 28.67 20.27 22.87 34.96 
P[𝑌௜(0, 𝑀௜(1)) = 1  |𝐶௜] 11.79 38.82 10.33 17.36 38.82 … 6.75 15.41 10.33 11.84 19.59 
P[𝑌௜(0, 𝑀௜(0)) = 1  |𝐶௜] 11.79 31.82 10.33 17.36 31.82 … 6.75 15.41 10.33 11.84 19.59 

Probabilities averaged over the repeated Monte Carlo runs (%) 
P(𝑀௜(1)) = 1  |𝐶௜]      …      
P(𝑀௜(0)) = 1  |𝐶௜]      …      
P[𝑌௜(1, 𝑀௜(1)) = 1  |𝐶௜] 21.2 70.7 18.6 30.5 70.7 … 11.1 34.5 18.6 27.5 33.8 
P[𝑌௜(1, 𝑀௜(0)) = 1  |𝐶௜] 21.2 54.4 18.6 30.5 54.4 … 11.1 34.5 18.6 27.5 33.8 
P[𝑌௜(0, 𝑀௜(1)) = 1  |𝐶௜] 6.4 38.4 5.5 10.4 38.4 … 3.1 12.3 5.5 8.8 11.9 
P[𝑌௜(0, 𝑀௜(0)) = 1  |𝐶௜] 6.4 23.3 5.5 10.4 23.3 … 3.1 12.3 5.5 8.8 11.9 

*Probabilities between the different runs change even when M(0) and M(1) do not change between the different runs. This is because the 
parameters are drawn from their sampling distribution. 

 
 


