S4: Estimation algorithm

Modeling the counterfactual outcomes

The estimation of average direct and indirect effects is based on the so-called mediation formula.
This involves first predicting each individual participant’s counterfactual mediator M;(t) at each
treatment level t=0,1, using a regression model for the mediator in function of treatment and
covariates. Here, ‘stochastic’ predictions are used, meaning that the fitted probabilities delivered by
the regression model are subsequently used to generate counterfactual mediator values for each
participant. Next, counterfactual outcomes are predicted for each participant at each treatment
level, using a regression model for the outcome in function of mediator, treatment, and covariates.

Separate statistical models are defined for the M and Y to describe the relationship between the
probability of a successful response and the covariates as independent variables. Given the binary
nature of M and Y, we specify the following logistic regression models:

{Iogit(P(ML- =1)) = a; + B1T; + &C; ¢Y)
logit(P(Y; = 1)) = a, + BoT; + YM; + &,(; 2)

The mediator model (1) predicts whether participant i experiences VMAR at day 28 based on the
participant’s treatment T; (ocriplasmin or sham) and relevant baseline covariates C;. The outcome
model (2) predicts whether participant i experiences e.g. VF-1 at month 24 based on the participant’s
treatment T;, mediator M; status and relevant baseline covariates C;. To estimate (in)direct effects,
control must be made for all variables that confound the relationships between M; and Y;. This
explains the inclusion of covariates C;.

The logistic regression models for M and Y were built using the general strategy for model selection
by Collet (Collett 2003), to decide on the inclusion or exclusion of baseline covariates C;, the
incorporation of higher order terms (nonlinearities) and/or interaction terms between covariates C;
and T; or G;and M; (Table B). To determine how well the selected model fitted the observed data,
goodness-of-fit was assessed using the Hosmer-Lemeshow statistic.

In model (2) we assume there is no interaction between T and M. However, causal effects may vary
as a function of treatment with ocriplasmin vs. sham. To describe how mediation effects may differ
depending on treatment, we added an interaction term T; * M; resulting in outcome model

logit(P(Y; = 1)) = a3 + B5T; + yM; + AT; * M; + §,C; (3)

A likelihood ratio (LR) test is performed comparing models (2) and (3) to assess whether the
interaction term is required.

To illustrate the generation of the counterfactual outcomes for each participant and derive the
causal effects of interest from those, we continue with the outcome model (2) without interaction
term.

The IE are generated by the following models for the counterfactual outcomes:

For IE;(1), the difference between the counterfactuals Y;(1, M;(1)) and Y;(1, M;(0)) (t=1) follows
from:

{Iogit P(LM;(1)=1) =az + B +yMi(D) + &6 (4
logit P(Y;(1, M;(0) = 1) =az + B, +yM;(0) + &G (5)



and for IE;(0), the difference between the counterfactuals Y; (0, M;(1)) and Y;(0, M;(0)) (t=0)
follows from:
{logit P(OM;(1)=1) =az+yM(D)+&56 (6)
logit P(Y; (0, M;(0) = 1) =ap, +yM;(0) + &6 (7)

Specifically, from expressions (4)-(7), we obtain the predicted probabilities for the counterfactual
outcomes:

o explay + By +yMi(1) + §,C)
P M (D) = 1) =7 + exp(ay + B, + yM;(1) + &,C;) 8)
v explay + B + yM;(0) + §,C)
kP(Yi(l‘ Mi(0)) = 1) = 1+ exp(a; + B, + yM;(0) + &,C;)
and
( o explay +yM (D) + §,6)
< PO, M:(1) =1) = 7 + exp(ay +yM;(1) + &C;) ©)
ST (0 M(0) = 1) = exp(ay + yM;(0) + £,C;)
U 7 1+ exp(ay +yM;(0) + &,C)

The obtained probabilities for the four counterfactuals for each participant are used in a Monte
Carlo approach that repeats these simulations many times.

Monte Carlo simulations to estimate total, direct and indirect effect estimates

The Monte Carlo approach simulates values of the counterfactual outcomes Y;(T;, M;(T;)) used to
derive the (in)direct effects per participant, which are then averaged over all study participants.
From the different Monte Carlo draws, we obtain different summary statistics of the (in)direct
effects, i.e., the point estimate for the mean and its uncertainty estimates from the distribution of
effects (Imai, Keele & Tingley 2010).

The Monte Carlo approach consists of different steps:

First, we fit M and Y models to obtain the model parameter estimates 6, = (a4, 1,¢1) and 6y =
(as, B2, 7, &,) with their variance and construct the sampling distribution of the maximum likelihood
estimators of parameters 8, and 8y assuming the multivariate normal distribution.

Next, the Monte Carlo simulation is started. To account for the uncertainty of the model coefficient
estimates, a value is drawn from the sampling distributions of the maximum likelihood estimators of
0y = (aq,B1,€1) and By = (a,, B, 7, &,) at each iteration. Based on this value, probabilities are
derived for each participant which are next used to randomly draw the counterfactual outcomes for
each participant. The counterfactual outcomes are used to derive the indirect and direct effects per
participant, which are then averaged over all study participants.

The algorithm goes as follows(Imai, Keele & Tingley 2010):

1. Setouterloopindextol,i.e., k=1,

2. Draw a random sample of the parameters for the mediator M and outcome Y models from
the sampling distribution of the maximum likelihood estimators of 9,5,]{) = (a4, By, &) and
G}Ek) = ((ZZ' :82' Y, 52)

3. Setinnerloopindextol,i.e., I=1,

4. For each participant j, i=1,...,n, obtain probability P(M; = 1) from model (1) for the actual
treatment given, i.e., T;, and also for the other treatment 1- T; and draw randomly from a



Bernoulli distribution using these probabilities resulting in binary outcomes Mi(kl)(O) and

Mi(kl)(l). Hence, we simulate two counterfactual values of the mediator M, each based on
the mediator model, one under the treatment condition and the other under the control
condition.

5. For each participant i, i=1,...,n, obtain probability P(Y; = 1) from (2) for the actual treatment
given, i.e., T;, and also for the other treatment 1- T;, and further using the mediator values
Mi(kl)(O) and Mi(kl)(l) obtained in step 4. Draw randomly from a Bernoulli distribution using
these probabilities resulting in binary outcomes Yi(kl)(l, Mi(kl)(O)), Yi(kl)(l, Mi(kl)(l)),
Yl.(kl)(O, Ml.(kl)(O)) and Yi(kl)(O, Mi(kl)(l)). Hence, we simulate the counterfactual outcomes
Y;(T;, M;(T;)) given the simulated values of the mediator:

6. Set/=/+1, and returnto 4 until I=L. If I=Lgo to 7.

7. Calculate the average indirect and direct effects

a. IE®(1) =23k, 3, v* (1, Mi(kl)(l)> — v (1, Mi(kl)(0)>
b. 1E®(0) = 25k, 5, v (0, M (1)) = v (0, M )
C. DE(k)(l) — iz%;l Z?=1 }/i(kl) (1’ Ml(kl)(l)) _ )/i(kl) (0’ Ml(kl)(l))

d. DEW(0) = n_lLZlL=1 sn Yi(kl) (1, Mi(kl)(o)) _ Yi(kl) (0’ Mi(kl)(o))

Hence, the values of the counterfactual outcomes Y;(T;, M;(T;)) are averaged across the L
copies and the n participants in the sample to obtain an estimate of the average indirect and
direct effects.

Set k=k+1, and return to 2 until k=K. If k=K stop algorithm.

The number of simulations to run for the approximation of parameter uncertainty was set at 10,000,
and default standard errors were calculated. Below table displays a restricted set of patients with
observed data and Stata model predictions.

Table S4. A restricted set of patients with observed data and Stata model predictions

Patient number 1 2 3 4 5 .. 1214 215 216 217 218
OASIS observed values, covariates, treatment mediator and 24 month outcome for VF-I

Treatment T; 1 1 1 0 0 : 11 1 0 1 0

Mediator M, 1 0 1 0 0 : go 0 0 1 0

Age (centered) 711 189 -311 889 1.8 | .. 511 19.89 -311 -0.11 4.89

ERM absent 1 1 1 0 1 L. 0 0 1 1 0

MH present 1 0 1 0 0 | i1 0 1 1 0

Female 1 1 1 1 1 : il 0 1 0 1

VF-1 Y; 0 1 1 1 0 It 1 0 0 0

Simulated probabilities and counterfactual outcomes

__________________________________ Monte Carlo simulation 1, counterfactual outcomes

M,(1) | 0 1 0 0 1 oo 0 0 0 0 '

M;(0) |C; 0 0 0 0 0 | go 0 0 0 0

Yi(1, My(1)) |G i i

Y;(1, M;(0)) |C; : |

Y(0, Mi(2)) 1C; | §

Y:(0, M;(0)) | C; i i

PM(1)=1 |C] M,
P(M(0) =1 |C] G




3480 77.12 3296 38.84 77.12 i8.99 33.32 3296 3132 40.82

PIVi(1, My(1) =1 |G : o

3480 79.18 3296 3884 79.18 | .. 899 3332 3296 3132 4082
|
|

PIY;(1, My(0) =1 |C;
PIY;(0, My(1)) =1 |C;
PIY;(0, M;(0) =1 |C;

6.56 30.71  6.07 7.71 30.71 !1.28 6.16 6.07 5.66 8.31
6.56 3333 6.07 7.71 33.33 i1.28 6.16 6.07 5.66 8.31

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Monte Carlo simulation 2, counterfactual outcomes

|
M(0) |C; 0 0 0 0 0 i
YL, My(1) 1, |
Yi(1, M;(0) | C; :
Yi(0, Mi(1)) 1C; |
Y;(0, M;(0)) |G i

P(M;(1)) =1 |C] !
P(M;(0)) =1 |C] i i
PIY;(1, M;(1)) =1 |C] .. 1726 3812 27.90 4048 36.05
PIY;(1, M;(0))=1 |C;] 31.20 77.25 27.90 3249 7725 | .. 17.26 3812 27.90 40.48 36.05
PIY,(0, M;(1)) =1 |C;] 5.68 30.84 489 771 3071 | 1103 757 489 829  6.97
PIY;(0, M;(0)=1 |C;] 568 3110 4.89 601 3110 | §1.03 757 489 829  6.97

31.20 77.03 2790 3249 77.03

M;(0) |C; 0 0 0 0 0
Yi(1, M(1)) 1€,
Yi(1, M(0)) 1C;
Yi(0, Mi(1)) |C;
Y,(0, Mi(0)) |,

e Monte Carlosimulation 10,000, probabilities” (%) _
P =1 [ e
P(M;(0)) =1 |C] o
P[Y;(1, M;(1))=1 |C;] 22.77 58.34 20.27 31.68 58.34 ! '11.06  28.67 20.27 22.87 34.96
P[Y;(1, M;(0))=1 |C;] 18.65 18.17 21.18 61.27 11.06 : 513.77 28.67 20.27 22.87 34.96
PIY;(0, My(1)) =1 |C;] 11.79 3882 1033 17.36 38.82 | 16.75 15.41 1033 11.84 19.59

|

PLY;(0, M;(0))=1 |C;] 11.79 31.82 1033 1736 31.82 i6.75  15.41 1033 11.84 19.59

_____________________________ Probabilities averaged over the repeated Monte Carloruns (%)
P(Mi(1))=1 |C/]

P(Mi(0)=1 |C;]

PIY,(1, M;(1))=1 |C;] 212 707 186 305  70.7
PIY,(1, M;(0)=1 |C;] 212 544 186 305 544
PIY,(0, M;(1))=1 |C;] 64 384 55 104 384
PIY,(0, M;(0)=1 |C;] 64 233 55 104  23.3

111 34,5 18.6 27.5 33.8
111 34,5 18.6 27.5 33.8
3.1 12.3 5.5 8.8 11.9
3.1 12.3 5.5 8.8 11.9

*Probabilities between the different runs change even when M(0) and M(1) do not change between the different runs. This is because the
parameters are drawn from their sampling distribution.



