Innovation Needs for the Integration of Electric Vehicles into the Energy System
Abstract
:1. Introduction
2. Materials and Methods
2.1. State of the Art
2.2. Vision
2.3. Challenges
2.4. Visual Roadmap
2.5. Research Activities
2.6. Innovation Needs
2.7. Recommondation for Action
3. Results
3.1. State-of-the-Art
- The share of electric vehicles in total vehicles sales is estimated at 60%.
- The share of electric vehicles in total vehicle stock is estimated at 25%.
- The share of renewable energies in energy generation is estimated at 60%.
- The total additional electricity demand from EVs is estimated at 26 TWh/a.
- The number of installed charging points is estimated at about 1.2 million.
3.1.1. EV Market Share
3.1.2. EV Stock
3.1.3. Renewable Energy Share
3.1.4. Additional Electricity Demand
3.1.5. Charging Infrastructure
3.2. Challenges
- There is no clear long-term strategy for the energy transition in the transport sector.
- The installation of charging infrastructure needs to keep pace with the increase of EVs on the road.
- Many different actors need to be involved in the instalment of public charging infrastructure.
- The large number of different billing schemes for public charging confuse the electric vehicle drivers.
- Simultaneous charging of electric vehicles may exceed grid capacity and lead to outages.
- No standardised infrastructure for the communication between EVs and actors in the energy system (e.g., system operators) is in place. Furthermore, the German smart meter (SMGW) rollout is thoroughly delayed.
- There are few incentives to incentivise demand side management (DSM) of the charging infrastructure.
3.3. Visual Roadmap
3.4. Recommendations for Action
3.4.1. Improve Socio-Economic and Regulatory Framework Conditions
- Develop a long-term strategy for the energy transition in the transport sector to reduce risks for investment decisions and to enhance the market diffusion of electric vehicles. Reduced risks in future planning should lead to an accelerated market diffusion of EVs and to intensified R&D activities.
- Align urban and rural development with long-term policy objectives. This includes the rural population and strengthens the political backing for more ambitious climate and innovation policies.
- Create incentives for grid conform energy management of vehicle charging and the usage of electricity from renewable energies. This could happen through dynamic electricity pricing and reduced taxes and levies. Therefore, a reform of taxes and levies on energy consumption is necessary.
3.4.2. Develop Enabling Technologies
- Enhance and implement standardised communication interfaces between electric vehicles and charging infrastructure to enable plug&charge and vehicle to grid (v2g) functionality. Vehicle and equipment manufacturers need to implement a standardised solution to enable the provision of energy system services by EVs while ensuring a satisfying user experience. A corresponding standard has been developed with ISO 15118. Furthermore, the roles and the areas of responsibility for the different actors (e.g., vehicle and equipment manufacturers, electric system operators or charging point operators) need to be clarified.
- Development, testing and implementation of grid conform energy management for charging infrastructure. Government research funding should be provided for the development and testing of intelligent charging solutions. Real world labs are a suitable instrument to enable a fast and secure transfer of this research into industrial products. Existing funding mechanisms for the implementation of charging infrastructure should provide incentives for the implementation of smart charging stations with integrated energy management.
- Develop inductive charging technology and unlock synergies with automated driving. Government research funding should be provided to intensify research and standardisation work in this field. A special focus should be put on autonomous parking and charging of EVs.
3.4.3. Market-Ready Products and Services
- Roll out of smart meter gateways to enable secure communication between charging infrastructure and system operator. The smart meter rollout has been delayed in Germany by high security requirements and a protracted certification process. The rollout is expected to start at the end of 2019. Smart meter gateways are an essential element in the communication chain between charging infrastructure and the electric grid.
- Implement a mechanism to communicate the status of the energy system, e.g., by dynamic pricing of electricity as a function of grid status. Besides technical innovations, efficient business processes are needed to minimise the transaction costs and make demand side management of charging infrastructures profitable.
- Create transparency for charging prices and billing schemes. This can be achieved by decoupling the operation of charging infrastructure and charging services, through regulations on pricing for EV charging or through a web-based price comparison platform. This would limit the power of charging oligopolies and strengthen consumers.
3.4.4. Social and Economic Impacts
- Reduce local air pollution through sped up market diffusion of EVs to minimise health risks caused by particulate matter and nitrogen dioxide and to comply with EU regulation.
- Seamlessly integrate public charging infrastructure into public spaces. Since public space is limited in urban areas, a seamless integration of charging infrastructure needs to be achieved in order to gain public acceptance for EVs.
- Change charging habits to comply with fluctuating energy supply through automated energy management. This has to be achieved without limiting the mobility of EV drivers. Automation and streamlined service products help to gain acceptance through minimised additional effort for the EV driver. The visualisation of cost and ecologic benefits would be beneficial for user acceptance.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2014. Synthesis Report; The Intergovernmental Panel on Climate Change (IPCC), Ed.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2. [Google Scholar]
- European Environment Agency (EEA). Available online: https://www.eea.europa.eu/data-and-maps/daviz/change-of-co2-eq-emissions-2#tab-chart_4, 2014 (accessed on 27 September 2018).
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Klimaschutz in Zahlen—Fakten, Trends und Impulse Deutscher Klimapolitik; BMU: Berlin, Germany, 2019.
- Umweltbundesamt (UBA). Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2019—Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990–2017; CLIMATE CHANGE 23/2019; UBA: Dessau-Roßlau, Germany, 2019; ISSN 1862-4359.
- European Environment Agency (EEA). Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-11 (accessed on 1 October 2019).
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Klimaschutzplan 2050—Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung; BMU: Berlin, Germany, 2016.
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Entwurf eines Gesetzes zur Einführung eines Bundesklimaschutzgesetzes und zur Änderung weiterer Vorschriften—Gesetzentwurf der Bundesregierung; BMU: Berlin, Germany, 2019.
- European Environment Agency (EEA). Progress of EU Transport Sector towards Its Environment and Climate Objectives—Transport and Environment Reporting Mechanism (TERM); EEA: København, Denmark, 2018. [Google Scholar]
- European Union. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011; European Union: Brussels, Belgium, 2019. [Google Scholar]
- European Parliament. Parliament Pushes for Cleaner Cars on EU Roads by 2030. Available online: http://www.europarl.europa.eu/news/en/press-room/20180925IPR14306/parliament-pushes-for-cleaner-cars-on-eu-roads-by-2030 (accessed on 10 October 2019).
- International Energy Agency (IEA). Global EV Outlook 2019. 2019. Available online: www.iea.org/publications/reports/globalevoutlook2019/ (accessed on 29 May 2019).
- Organization for Economic Co-operation and Development (OECD); International Energy Agency (IEA). World Energy Outlook 2017; IEA Publications: Paris, France, 2017; ISBN 9789264282056. [Google Scholar]
- Graichen, P. Energiewende 2030: The Big Picture—Megatrends, Targets, Strategies and a 10-Point Agenda for the Second Phase of Germany’s Energy Transition; Agora Energiewende: Berlin, Germany, 2018. [Google Scholar]
- Steurer, M. Analyse von Demand Side Integration im Hinblick auf eine Effiziente und Umweltfreundliche Energieversorgung. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2017. [Google Scholar]
- Bundesministerium für Wirtschaft und Energie. ELEKTRO POWER II: Elektromobilität—Positionierung der Wertschöpfungskette. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Industrie/elektromobilitaet-elektro-power-ii.html (accessed on 11 March 2019).
- Hannah, K.; Gassner, R. Methods of Future and Scenario Analysis—Overview, Assessment and Selection Criteria; Dt. Inst. für Entwicklungspolitik: Bonn, Germany, 2007; ISBN 9783889853752. [Google Scholar]
- Bundesministerium für Bildung und Forschung (BMBF). Förderkatalog. Available online: https://foerderportal.bund.de/foekat/jsp/DefaultAction.do?actionMode=impressum (accessed on 10 October 2019).
- Europäische Kommission. CORDIS: Forschungs- und Entwicklungsinformationsdienst der Gemeinschaft. Available online: https://cordis.europa.eu/home_de.html (accessed on 23 August 2018).
- National Science Foundation (NSF). Research Spending & Results Database. Available online: https://www.research.gov/research-web/ (accessed on 10 October 2019).
- Begleit- und Wirkungsforschung ELEKTRO POWER II. Innovationen für die Elektromobilität—Ergebnisse aus dem Förderprogramm ELEKTRO POWER II. 2016–2018. 2018. Available online: www.bmwi.de/Redaktion/DE/Publikationen/Technologie/innovationen-fuer-die-elektromobilitaet-elektro-power-ii.html (accessed on 10 October 2019).
- Boesche, K.V.; Friesen, I.; Giacomini, M.; Gieschen, J.H.; Grawenhoff, S.; Johnsen, D.; Seidel, U.; Wolf, S. Perspektiven der ELEKTROMOBILITÄT für Energiewende, Produktion und Ladeinfrastruktur—Aktuelle Ergebnisse und internationale Einordnung der Begleit- und Wirkungsforschung zum Förderprogramm ELEKTRO POWER II des Bundesministeriums für Wirtschaft und Energie. 2018. Available online: www.iit-berlin.de/de/publikationen/perspektiven-der-elektromobilitaet-fuer-energiewende-produktion-und-ladeinfrastruktur/ (accessed on 12 November 2018).
- Bundesministerium für Wirtschaft und Energie (BMWi). Bekanntmachung Förderaufruf “Errichtung von Ladeinfrastruktur für Elektrofahrzeuge im engen Zusammenhang mit dem Abbau bestehender Netzhemmnisse sowie dem Aufbau von Low Cost-Infrastruktur und Mobile Metering-Ladepunkten”; AT 04.01.2018 B2; BMWi: Berlin, Germany, 2017.
- Bundesamt für Sicherheit in der Informationstechnik (BSI). Standardisierungsstrategie zur sektorübergreifenden Digitalisierung nach dem Gesetz zur Digitalisierung der Energiewende. Available online: https://www.bmwi.de/Redaktion/DE/Downloads/S-T/standardisierungsstrategie.pdf?__blob=publicationFile&v=4 (accessed on 10 October 2019).
- Ernst & Young GmbH. Barometer Digitalisierung der Energiewende—Neues Denken und Handeln, Berichtsjahr 2018; BMWi: Berlin, Germany, 2019.
- Bundesministerium für Wirtschaft und Energie (BMWi). Batterien für die Mobilität von Morgen. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Industrie/batteriezellfertigung.html (accessed on 10 October 2019).
- European Environment Agency (EEA). CO2 Emission Intensity: Data Visualization. Available online: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5#tab-googlechartid_chart_11_filters=%7B%22rowFilters%22%3A%7B%7D%3B%22columnFilters%22%3A%7B%22pre_config_ugeo%22%3A%5B%22Austria%22%3B%22European%20Union%20(current%20composition)%22%3B%22Germany%22%5D%7D%7D (accessed on 8 October 2019).
- European Environment Agency (EEA). Electric Vehicles from Life Cycle and Circular Economy Perspectives—TERM 2018: Transport and Environment Reporting Mechanism (TERM) Report; EEA Report 13/2018; EEA: København, Denmark, 2018; Available online: www.eea.europa.eu/highlights/eea-report-confirms-electric-cars (accessed on 27 November 2018).
- Belmer, F.; Bensmann, B.; Brandt, T.; Cremers, C.; Derflinger, M.; Hanke-Rauschenbach, R.; Grube, T.; Heinzel, A.; Horenkamp, W.; Jungmann, T.; et al. Brennstoffzellen- und Batteriefahrzeuge—Bedeutung für die Elektromobilität; VDI/VDE-Studie; VDI: Düsseldorf, Germany, 2019. [Google Scholar]
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Wie Klimafreundlich Sind Elektroautos? BMU: Berlin, Germany, 2019.
- Jochem, P.; Babrowski, S.; Fichtner, W. Assessing CO2 emissions of electric vehicles in Germany in 2030. Transp. Res. Part A Policy Pract. 2015, 78, 68–83. [Google Scholar] [CrossRef]
- Bundesministerium für Verkehr und digitale Infrastruktur (BMVI). Förderrichtlinie Ladeinfrastruktur für Elektrofahrzeuge. Available online: https://www.bmvi.de/DE/Themen/Mobilitaet/Elektromobilitaet/Ladeinfrastruktur/Ladeinfrastruktur.html (accessed on 8 October 2019).
- Kraftfahrt-Bundesamt (KBA). Bestand: Jahresbilanz des Fahrzeugbestandes am 1. Januar 2019. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/b_jahresbilanz.html?nn=644526 (accessed on 31 October 2019).
- Kraftfahrt-Bundesamt (KBA). Neuzulassungen: Jahresbilanz der Neuzulassungen. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/neuzulassungen_node.html (accessed on 31 October 2019).
- Kraftfahrt-Bundesamt (KBA). Verkehr in Kilometern: Inländerfahrleistung. Available online: https://www.kba.de/DE/Statistik/Kraftverkehr/VerkehrKilometer/pseudo_verkehr_in_kilometern_node.html (accessed on 31 October 2019).
- United Nations. Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Van der Slot, A.; Schlick, T.; Pfeiffer, W.; Baum, M. Integrated Fuels and Vehicles Roadmap to 2030+; Roland Berger GmbH: Munich, Germany, 2016. [Google Scholar]
- Kampman, B.; van Essen, H.; Braat, W.; Grünig, M.; Kantamaneni, R.; Gabel, E. Impact Analysis for Market Uptake Scenarios and Policy Implications; Final Report; CE Delft: Delft, The Netherlands, 2011. [Google Scholar]
- Harrison, P.; Hill, N.; Kollamathodi, S.; Varama, A.; Cesbron, S.; Wells, P.; Slater, S.; Cluzel, C.; Summerton, P.; Pollitt, H.; et al. Fuelling Europe’s Future—How Auto Innovation Leads to EU Jobs; European Climate Foundation: Brussels, Belgium, 2016. [Google Scholar]
- Kearney, A.T. Powertrain 2025—A Global Study on the Passenger Car Powertrain Market towards 2025. Available online: https://www.atkearney.de/documents/856314/1214682/BIP_Powertrain_2025.pdf/9db4b0fe-ea05-4df8-ab8b-8425d7d1f9a2 (accessed on 10 October 2019).
- Pasaoglu, G.; Honselaar, M.; Thiel, C. Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe. Energy Policy 2012, 40, 404–421. [Google Scholar] [CrossRef]
- Oliver Wyman. Future of ICE: Why Accelerating R&D Spend Is Critical for Future Competitiveness & to Reach 50 g CO2/km. Available online: https://www.ertrac.org/uploads/documents_publications/2015%20ICE%20workshop/R%20Cornubert%20Oliver%20Wyman.pdf (accessed on 10 October 2019).
- Harrison, G.; Thiel, C. An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe. Technol. Forecast. Soc. Chang. 2017, 114, 165–178. [Google Scholar] [CrossRef]
- Pasaoglu, G.; Harrison, G.; Jones, L.; Hill, A.; Beaudet, A.; Thiel, C. A system dynamics based market agent model simulating future powertrain technology transition: Scenarios in the EU light duty vehicle road transport sector. Technol. Forecast. Soc. Chang. 2015, 104, 133–146. [Google Scholar] [CrossRef]
- Bundesministerium für Wirtschaft und Energie (BMWi). Elektromobilität in Deutschland. Available online: https://www.bmwi.de/Redaktion/DE/Dossier/elektromobilitaet.html (accessed on 8 October 2019).
- Bundesministerium für Wirtschaft und Energie (BMWi); Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU). Energiekonzept für Eine umwelt Schonende, Zuverlässige und Bezahlbare Energieversorgung; BMU: Berlin, Germany, 2010.
- Vieweg, M.; Bongardt, D.; Hochfeld, C.H.; Jung, A.; Scherer, E.; Adib, R.; Guerra, F. Towards Decarbonising Transport 2018: Taking Stock of G20 Sectoral Ambition. Report on behalf of Agora Verkehrswende and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ). Available online: https://www.agora-verkehrswende.de/en/publications/towards-decarbonising-transport-2018/ (accessed on 10 October 2019).
- Bundesministerium für Wirtschaft und Energie (BMWi). Energiedaten—Gesamtausgabe. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Energie/energiedaten-gesamtausgabe.html (accessed on 10 October 2019).
- Ultra-E Partners—Bayern Innovative GmbH. Market and Business Models for Ultra Charging—Key Findings Study 1; Ultra Charging Study Europe; Bayern Innovative GmbH: Nuremberg, Germany, 2019. [Google Scholar]
- Nobis, P.; Fischhaber, S. Belastung der Stromnetze Durch Elektromobilität; Forschungsstelle für Energiewirtschaft: München, Germany, 2015. [Google Scholar]
- Wietschel, M.; Kühnbach, M.; Stute, J.; Gnann, T.; Marwitz, S.; Klobasa, M. Auswirkung der Elektromobilität auf die Haushaltsstrompreise in Deutschland; Working Paper Sustainability and Innovation, No.S21/2018; Fraunhofer ISI: Karlsruhe, Germany, 2018. [Google Scholar]
- Eichrecht bei Ladeinfrastruktur: Gemessener Gleichstrom—Electrive.net. Available online: https://www.electrive.net/2018/12/17/eichrecht-bei-ladeinfrastruktur-gemessener-gleichstrom/ (accessed on 11 March 2019).
- Nationale Plattform Elektromobilität (NPE). Die Deutsche Normungs-Roadmap Elektromobilität 2020. Available online: https://www.plattform-zukunft-mobilitaet.de/wp-content/uploads/2018/11/NormungsRoadmap_Elektromobilitaet_2020_bf.pdf (accessed on 7 March 2018).
- Transport & Environment. Roll-Out of Public EV Charging Infrastructure in the EU—Is the Chicken and Egg Dilemma Resolved? Transport & Environment: Brussels, Belgium, 2018. [Google Scholar]
- Vennegeerts, H.; Tran, J.; Rudolph, F.; Pfeifer, P. Metastudie Forschungsüberblick Netzintegration Elektromobilität. 2018. Available online: www.bdew.de/presse/presseinformationen/metastudie-von-vdefnn-und-bdew-zur-netzintegration-der-elektromobilitaet-veroeffentlicht/ (accessed on 11 December 2018).
- Tan, K.M.; Ramachandaramurthy, V.K.; Yong, J.Y. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renew. Sustain. Energy Rev. 2016, 53, 720–732. [Google Scholar] [CrossRef]
- Habib, S.; Kamran, M.; Rashid, U. Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks—A review. J. Power Sources 2015, 277, 205–214. [Google Scholar] [CrossRef]
- Daim, T.U.; Wang, X.; Cowan, K.; Shott, T. Technology roadmap for smart electric vehicle-to-grid (V2G) of residential chargers. J. Innov. Entrep. 2016, 5, 155. [Google Scholar] [CrossRef] [Green Version]
- Hochfeld, C.; Jung, A.; Klein-Hitpaß, A.; Maier, U.; Meyer, K.; Vorholz, F. Transforming Transport to Ensure Tomorrow’s Mobility—12 Insights into the Verkehrswende; Agora Verkehrswende: Berlin, Germany, 2017. [Google Scholar]
Category (Number) of Participants | ||||
---|---|---|---|---|
Research (7) | Industry (9) | Consultancy (3) | Politics (3) | |
Fields of expertise | Traffic and infrastructure management, charging services, energy system and electric grid modelling, energy storage | Small- and large-scale charging solutions, electric grid planning, energy trading, energy management software, technical inspection and metrology | Energy systems, electric vehicles, charging infrastructure development | Industrial policy, electric mobility, towns and municipalities |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, S.; Korzynietz, R. Innovation Needs for the Integration of Electric Vehicles into the Energy System. World Electr. Veh. J. 2019, 10, 76. https://doi.org/10.3390/wevj10040076
Wolf S, Korzynietz R. Innovation Needs for the Integration of Electric Vehicles into the Energy System. World Electric Vehicle Journal. 2019; 10(4):76. https://doi.org/10.3390/wevj10040076
Chicago/Turabian StyleWolf, Stefan, and Roman Korzynietz. 2019. "Innovation Needs for the Integration of Electric Vehicles into the Energy System" World Electric Vehicle Journal 10, no. 4: 76. https://doi.org/10.3390/wevj10040076
APA StyleWolf, S., & Korzynietz, R. (2019). Innovation Needs for the Integration of Electric Vehicles into the Energy System. World Electric Vehicle Journal, 10(4), 76. https://doi.org/10.3390/wevj10040076