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Abstract: Plug-in hybrid electric vehicles (PHEVs) are an effective intermediate vehicle technology
option in the long-term transition pathway towards light-duty vehicle electrification. Their net
environmental impact is evaluated using the performance metric Utility Factor (UF), which quantifies
the fraction of vehicle miles traveled (VMT) on electricity. There are concerns about the gap between
Environmental Protection Agency (EPA) sticker label and real-world UF due to the inability of test
cycles to represent actual driving conditions and assumptions about their driving and charging
differing from their actual usage patterns. Using multi-year longitudinal data from 153 PHEVs
(11–53 miles all-electric range) in California, this paper systematically evaluates how observed
driving and charging, energy consumption, and UF differs from sticker label expectations. Principal
Components Analysis and regression model results indicated that UF of short-range PHEVs (less than
20-mile range) was lower than label expectations mainly due to higher annual VMT and high-speed
driving. Long-distance travel and high-speed driving were the major reasons for the lower UF
of longer-range PHEVs (at least 35-mile range) compared to label values. Enhancing charging
infrastructure access at both home and away locations, and increasing the frequency of home charging,
improves the UF of short-range and longer-range PHEVs respectively.
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1. Introduction

Climate change, air quality, and public health concerns have necessitated that governments across
the world implement policies to promote battery electric (BEVs) and plug-in hybrid electric vehicles
(PHEVs), collectively addressed as plug-in electric vehicles (PEVs). In the U.S., the transportation
sector is responsible for 30% of total national greenhouse gas (GHG) emissions, and the light duty
vehicle (LDV) segment alone contributed close to 60% of total transport GHGs in 2017 [1]. In the state
of California, 40% of total GHGs comes from the transportation sector, and the contribution from the
LDV segment was close to 70% of transport GHGs [2]. California and many other governments have
implemented a suite of technology forcing mandates, performance standards for transportation fuels,
GHG emissions, and incentive-based policies to increase the market penetration of PEVs [3–5].

Plug-in hybrid electric vehicles are often considered to be a transitional technology with the
potential to expedite the shift towards BEVs [6,7]. Plug-in hybrid electric vehicles are equipped with
a larger battery pack compared to conventional hybrid vehicles (HEVs) that can be charged using
grid electricity, and have an internal combustion engine (ICE). PHEVs are not limited by the range
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anxiety and higher upfront purchase cost concerns associated with BEVs, and they combine the pure
electric driving capabilities of a BEV with the fuel and energy efficiency enhancements due to engine
downsizing, low or no engine idling, and regenerative braking capabilities of an HEV. This design
and operational flexibility allow them to be driven in Charge Depleting (CD) or Charge Sustaining
(CS) mode depending on the source of motive power. Charge depleting (CD) mode can further be
categorized into CD-EV and CD-blended (CDB) modes. In the CD-EV mode of operation, the entire
motive power is provided by the electric motor by discharging the energy stored in the battery and the
engine is never turned on. This type of operation is often called all-electric mode or zero emission (ZE)
mode because only electricity is consumed and there are no tail-pipe emissions. Depending on the
powertrain configuration, road network topology, speed and acceleration characteristics, and driver
behavior, the engine may turn on to partially assist the motor in meeting the total propulsion energy
demand in the CD mode. This is called CDB mode of operation because both electricity and gasoline
are consumed, and the motive power is provided by the electric motor and the ICE. The CD mode of
operation continues until the battery is depleted, after which the PHEV is operated in the CS mode
as a regular HEV with the ICE providing the entire propulsion energy demand and only gasoline
is consumed. Driving in the CD mode could be entirely electric VMT (eVMT) or a combination of
electricity and gasoline (gVMT) VMT, whereas CS mode comprises of only gVMT.

A critical aspect while assessing the real-world environmental performance of PHEVs depends on
the eVMT in the CD mode, which has direct implications on the fuel economy and exhaust emissions.
In this regard, the concept of Utility Factor (UF) of PHEVs has been developed, which represents the
proportion of VMT travelled on electricity. The formal procedures and test conditions under which
the UF and the Environmental Protection Agency (EPA) “sticker label fuel economy” are estimated,
are outlined in Society of Automotive Engineers (SAE) J1711 [8] and SAE J2841 [9] respectively.
Standardized dynamometer certification cycles [10,11] are recommended in SAE J1711 to estimate
the all-electric range (AER) and per-mile energy consumption in the CD-EV (kWh/mile) mode and
miles per gallon (MPG) in the CS mode. Strictly speaking, AER or the charge depleting range, is the
total miles traveled by a fully charged PHEV in the CD-EV mode prior to the first engine start event.
To ensure parity and representativeness across geographies and socio-demographics with varying
travel needs, the per mile energy consumption is weighted against national driving statistics such as
the National Household Travel Survey (NHTS) [12] in order to determine at an aggregate level how
much of a vehicle’s driving can be accomplished on CD mode in SAE J2841. The SAE J2841 explicitly
assumes that:

• the PHEV starts its travel day on a fully charged battery;
• PHEV is fully charged once per day on days driven at the end of travel day trip at home;
• effect of additional intra-day charging and vehicle not being charged at the end of last trip nullify

each other;
• travel patterns and VMT by PHEVs are identical to the self-reported single-day trip diary

information of mainstream ICE users in the 2001 NHTS.

Due to its simplistic and selective set of assumptions, the J2841 may not adequately reflect
how PHEVs are driven and charged in real-world conditions. Using year-long longitudinal data
collected via on-board data loggers from 153 PHEVs (11–53 miles AER) in California, this paper
systematically examines the disparities between observed PHEV driving, charging behavior and
generalized expectations about their usage patterns, and its implications on UF estimates encapsulated
in existing PEV policies.

Prior studies that relied on cross-sectional travel survey data like the NHTS broadly focused
on understanding the sensitivity of UF to different assumptions about travel patterns and charging
behavior. In [13] alternatives to the J2841 UF is proposed using the 2009 NHTS instead of the 2001
NHTS and a mid-day opportunistic charging, typically at the workplace, is also considered. Their
study reported that the proposed UF is higher than the J2841 UF, but only for PHEVs with AER less
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than 65 miles. While the J2841 UF is strictly a distance based metric, Ref. [14] proposes an energy
based UF. Sensitivity of UF to different vehicle attributes such as age, class, annual VMT, and charging
behavior depending on dwelling unit type is examined, and their analyses indicates that UF is largely
insensitive to vehicle class and dwelling unit type, but highly sensitive to annual VMT, age, and
charging behavior [14]. With the availability of real-world driving data collected using loggers albeit
from ICEs, efforts have been undertaken to develop a more realistic PHEV driving cycle compared
to dynamometer cycles [10] in order to better estimate their real-world energy consumption and
emissions [15]. The scope of such efforts expanded by incorporating additional charging opportunities
based on dwelling times and location. High resolution GPS enabled travel data collected over a span of
18 months from 400 ICEs in the Seattle metropolitan area is utilized in [16] to investigate how UF would
change if only home based tours are considered. Their study reports that gasoline and electricity prices
have no statistically significant impact on the UF, and that workplace or away from home charging
increases the UF only if the AER of PHEV is less than 40 miles. Studies also applied UF by utilizing
longitudinal data from ICEs for evaluating the life-cycle costs, emissions, and value proposition of
PHEVs [17,18], and optimal battery size design and its impact on market acceptance [19,20].

Around early 2011, a nationwide PEV demonstration and charging infrastructure deployment
was undertaken as part of the EV project [21,22] to understand Chevrolet Volt and Nissan Leaf usage
patterns across 20 different U.S. metropolitan regions. This was the first project at such a scale that
offered insights into the performance PHEVs by directly observing their actual usage via telematics
loggers. In [21] it is reported that the observed UF of approximately 800 Chevy Volts with 35 miles AER
(2011–2012 model years) and 600 Chevy Volts (2013 model year) with 38 miles AER was higher than
their respective SAE J2841 UF counterparts by at least 6%. Fewer share of long-distance travel days
compared to the 2001 NHTS and charging more than once per day were attributed to be the reasons for
deviating from J2841 UF estimates. A study of close to 60,000 Chevy Volts (2011–2014 model years)
reported that the observed Volts were able to travel 74% of their total miles in CD-EV mode alone [23].
Charging more than once per day by taking advantage of day time opportunities was identified to be
the major reason for exceeding the J2841 UF and EPA sticker label fuel economy estimates similar to the
findings of [21,22]. In [24] a real-world fuel economy and UF of five PHEV models with 11–38 miles of
AER is analyzed and their analysis indicates that deviation from certification cycle fuel economy were
reported to be anywhere between 2% to 100% depending on the AER.

Most of the literature on PHEV usage focused on energy, emissions, and value proposition mainly
from the perspective of driving. Reliable access to charging infrastructure is also important factor,
because apart from user preferences, it is the availability of charging infrastructure that determines
charger utilization and the charging demand. Understanding when, where, how long PHEVs are
charged, and what the anticipated charging demand is are important factors for charging infrastructure
developers from cost recovery, charger accessibility, user’s willingness to pay for charging, and charger
utilization perspectives [25]. Utility companies are particularly concerned about the additional demand
imposed on the grid from charging, as it has the potential to create localized hot spots if not managed
properly, necessitating network upgrade or expansion. This highlights the importance of deploying
coordinated or smart charging strategies that incorporate not only the economics of charging but
also user preferences for charging location, time of day, duration of charging, and charging power
levels [26]. Of particular concern are the competing objectives between the charging infrastructure
developer and the user. The charging infrastructure developer seeks to minimize the cost of charging,
which includes the fixed installation costs as well as the varying operating cost of providing electricity
at the outlet. The PHEV driver, on the other hand, would like to maximize the convenience of charging
without having to wait for a long duration, while simultaneously accomplishing this task at the lowest
possible cost [27].

In summary, apart from the J2841 assumptions, the nature of travel data (longitudinal or
cross-sectional), duration of data-collection, mode of data acquisition (self-reported trip diaries,
data loggers with or without GPS), type of vehicle(s) used for data collection, and the targeted
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population (mainstream ICE users, actual PHEV owners or potential PHEV buyers) will also have
consequential impacts on the techno-economic, electrification, and environmental benefits of PHEVs.
The significance of UF cannot be understated since it is the vital environmental performance metric on
which many federal and state level policies such as Corporate Average Fuel Economy (CAFE) and
Pavley GHG emission standards [3,28,29], zero emission vehicle(ZEV) credit allocation under the ZEV
mandate [30,31], vehicle emissions and label fuel economy estimates [32,33], and California’s Low
Carbon Fuel Standards (LCFS) [34] rely on.

The main contributions of this study are the following:

• Comparative assessment of observed PHEV driving and charging and EPA sticker label
expectations and the SAE J2841 assumptions.

• Eight dominant factors (four each for driving and charging) that explains the variations in observed
PHEV usage patterns are extracted using Principal Components Analysis (PCA).

• Ordinary Least Squares (OLS) regression models are formulated to test the explanatory power
of the factors by including them as dependent variables and the independent variable is the
difference between observed and expected UF.

• Relative importance of the extracted factors in terms of their contributions to the disparities
between observed and expected UF is then quantified.

• Though dimensionality reduction using PCA and regression modeling are commonly used, their
specific application in the context of real-world observational study of PHEVs and UF is a new
approach that is carried out in this study.

This paper advances to the body of literature that focuses on improving our understanding of the
real-world UF of PHEVs by discerning influential driving and charging traits that contributes to the
deviations from sticker label UF. To the best of our knowledge, compared to existing studies which limit
their scope of analysis to either aggregate or daily levels [16,21,22,24,35], this paper focuses on explaining
why real-world performance deviates from label expectations by methodically examining disparities
at varying time-scales (trip/charging sessions, daily, and annual); incorporates locational aspects of
charging infrastructure access and utilization and how it impacts the UF; and explores if the key driving
and charging factors that introduces deviations in real-world UF from their label values are the same
irrespective of the AER. The outcomes of this study will offer a realistic assessment of the real-world
electrification potential of PHEVs, challenges, and/or validates conventional wisdom on PHEV usage,
and subsequently their energy consumption and emissions. Understanding the causes, magnitude, and
direction of differences between assumptions about PHEV usage and their observed usage will help the
broader scientific community in parametric updates, calibration, and validation efforts to strengthen the
representativeness or correct for the lack thereof in vehicle choice modeling [36], powertrain simulation
tools [37], integrated assessment studies [38], charging infrastructure planning [39], and emissions
inventory [40]. We expect the paper help in formulating policies aimed to incentivize PHEVs based on
road performance and also to inform automakers when exploring future vehicle design.

The assemblage of data analyzed in this paper consists of driving and charging data collected
between June 2015–June 2018 from 153 PHEVs in California. Five PHEV models are examined in this
study: Toyota Prius (11-mile AER), Ford CMax and Fusion Energi (20-mile AER), Chevrolet Volts
(35/38 miles and 53 miles AER). The rest of the paper is organized as follows. Section 2 summarizes the
aggregate driving and charging data and describes the quantitative methods used. Our analysis and
results are detailed in Section 3. Comparative assessment of observed driving and charging behavior
with sticker label expectations, followed by the PCA and OLS model results are presented in Section 3.
We discuss our findings in Section 4 and conclude this paper in Section 5.

2. Data and Methods

The source of the data used in this paper is from the Advanced PEV Driving and Charging
Behavior project, a multi-year study to monitor PEV usage in California [41,42]. Online survey was first
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administered to PEV owners randomly sampled from the California Clean Vehicle Rebate Project [43]
and vehicle registration records. Sub-sample of respondents were selected and GPS enabled data
loggers were installed in the on-board diagnostics (OBD) port and monitored for at least a year.
The data loggers report more than two dozen variables related to driving, charging, performance, and
comfort. The important vehicle usage parameters relevant to our analysis are: trip and charging session
start and ending time stamps and locations; trip and charging session start and end state of charge
(SOC); charger level, charging duration, and charged energy; trip distances, duration, and consumption
(electricity and gasoline). Since the scope of this paper is on real-world performance, our analysis
strictly focuses on the data from the loggers, and the respondent’s home location is the only relevant
survey information that is included in our analysis. Five PHEV models with sticker label AER varying
from 11–53 miles [44] are in the dataset: Toyota Prius (11 miles AER, N = 22), Ford CMax Energi
(20 miles AER, N = 28), Ford Fusion Energi (20 miles AER, N = 24), Chevrolet Volts (35/38 miles AER,
N = 43; 53 miles AER, N = 36). The 35- and 38-mile AER Chevy Volts were grouped together as
Volt-35/38 since there was little difference between their AER capabilities. The PHEV models analyzed
in this study accounted for close to 85% of rebates issued to PHEVs under the California Clean Vehicle
Rebate Project [43].

2.1. Driving and Charging Data

Table 1 presents the driving and charging data which consists of approximately 2 million VMT,
200,000 trips, 52,000 charging sessions, and 260 MWh of charging energy collected over the course of
45,000 driving days (driving and charging or driving only) between June 2015–June 2018 in California.
On average, every vehicle in the dataset was driven 292 days, and among the PHEV types it varied
between 268 and 315 days during the data collection period. Of the 52,237 charging sessions, 53% were
at Level 1(L1), 1.4 kW rated and the rest were at Level 2 (L2), 3.3 kW rated [45]. Throughout the rest
of the paper, unless otherwise specified, J2841 UF [9], AER and mode specific energy consumption,
kWh/mile in CD-EV mode or Miles Per Gallon(MPG) in CS mode, found in EPA fuel economy labelling
data [46] are collectively addressed as Expectations. The label UF refers to the EPA sticker label
city/highway combined UF. Corresponding values estimated from the data analyzed in this study
as Observed. Table 2 presents the average annualized and daily estimates of key PHEV driving and
charging metrics.

Table 1. Aggregate driving and charging data.

Distance in Miles Charging (L1 and L2) L1/L2 Share (%)

PHEV
Model N Driving

Days Trips VMT eVMT Sessions Charged
kWh Sessions

Prius-11 22 6921 33,421 315,166 46,573 7677 17,618 92/8
Cmax-20 28 7516 33,434 322,526 122,732 9796 36,100 57/43

Fusion-20 24 6972 34,028 346,720 108,136 9615 34,528 48/52
Volt-35/38 43 12,574 53,274 557,498 355,048 15,292 96,046 47/53

Volt-53 36 10,663 47,475 414,803 281,372 9857 73,956 33/67

Total 153 44,646 201,632 1,956,713 913,862 52,237 258,248

Table 2. Average annualized and daily driving and charging metrics.

Annualized Average daily

PHEV Model eVMT gVMT VMT Charging Sessions Charged kWh VMT

Prius-11 2456 14,165 16,621 1.12 2.6 45.5
Cmax-20 5960 9703 15,663 1.32 4.9 42.9

Fusion-20 5661 12,489 18,151 1.39 5.0 49.7
Volt-35/38 10,306 5877 16,183 1.23 7.8 44.3

Volt-53 9632 4567 14,199 0.95 7.1 38.9
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2.2. Quantitative Methods

Principal Component Analysis (PCA) is a statistical procedure to reduce the dimensionality of
the dataset and it falls under the larger umbrella of Exploratory Factor Analysis (EFA). In this paper,
we use PCA to reduce the dimensionality of the observed driving and charging data which is highly
susceptible to the problem of multicollinearity. Since Utility Factor is the ratio of eVMT to VMT and
eVMT is a function of charging behavior, multicollinearity would persist and as such could severely
undermine interpreting the statistical significance of driving and/or charging related independent
variables (IV) on the dependent variable (DV). Combining both driving and charging related usage
metrics and then performing the PCA may not eradicate the problem of multicollinearity. A correlation
that existed in the higher dimensional space of the original data merely gets transformed and projected
onto a new and lower- dimension space. This could complicate factor definition, number of factors to
retain, determining the minimum loading criteria, and the rotation method to choose. To address these
issues, we performed PCA of driving and charging related variables separately.

2.2.1. Validity and Suitability of the Data for PCA

The EFA involves four major steps. The first step is to check the appropriateness of the dataset
for factor analysis. For this, we used the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy
(MSA) [47,48] and Bartlett’s Test for Sphericity [49]. The KMO MSA is an index between 0–1 which
quantifies the ratio of observed correlations to partial correlations, the higher the better indication
of the suitability of PCA [50,51]. Literature recommends a empirical rule of thumb of at least 0.6
as a minimum for the KMO MSA [52,53]. Bartlett’s Test for Sphericity tests the hypotheses that the
correlation matrix is an identify matrix, thereby implying that variables are unrelated and not suitable
for PCA. Bartlett’s test with a p-value of less than 0.05 is required for PCA. The KMO and Bartlett’s
tests together determine whether the underlying structure of the dataset is suitable before proceeding
to perform the PCA. The second step is to decide how many factors to retain. The number of factors
to extract and retain is typically determined based on the share of variance explained by each of the
factors and a suitable threshold for the cumulative total variance captured by the PCA. Scree plot
for Eigen Value of greater than one is a widely used method to select the number of factors to retain,
which this paper employed. The resultant component matrix shows the factor loadings or correlation
between variables used for PCA (row-wise) and the factors (column-wise). Factor loadings outside
the interval of ±0.3 are typically omitted [53,54]. The third step is to rotate the component matrix to
simplify their structure and facilitate their interpretation. There are two major categories of factor
rotation, Orthogonal and Oblique [55]. In orthogonal rotation, the factors are rotated by 90◦ to make
them un-correlated, whereas in Oblique rotation, correlation between extracted factors are permissible.
Varimax and Quartimax are the commonly used orthogonal rotation methods. The Quartimax method
minimizes the number of factors needed to explain each variable used in the PCA and the Varimax
method of rotation causes each variable to load heavily on one factor [56–58]. We used the Varimax
method because of the simplicity of interpretation. Since the factors themselves are not correlated,
Varimax rotated factors can be used in assessing the explanatory power of the factors in a regression
model. The fourth and final step is to suitably name the rotated factors based on the factor loadings.

The aggregate driving and charging data of 153 PHEVs was first annualized based on the number
of days every PHEV was driven. Using PCA, we identified four dominant driving and charging factors,
eight in total. In this paper, the KMO MSA was close to 0.8 for both the driving and charging related
PCA, which is considered “meritorious” [47,50,51]. The p-value of Bartlett’s test was extremely low
and lower than the significance level of 0.05 for both the driving and charging related PCA, the data is
suitable for PCA. The extracted factors captured 87% of the total variance in the dataset. Variables
used for PCA, extracted factors, and their definitions are detailed in Section 3.2.
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2.2.2. OLS Model Development

To test the explanatory power of the extracted factors, we built Ordinary Least Squares (OLS)
multi-variate linear regression models with the extracted factors as the independent variables (IVs), and
the deviation of observed UF from label UF as the dependent variable (DVs). The dataset was divided
into two based on the AER: short-range PHEVs (Prius, Ford CMax/Fusion Energi) and long-range
PHEVs (Volts). OLS regressions models for short-range PHEVs and long-range PHEVs were developed
separately. We carried out a-priori and post-hoc hypothesis tests and validated that the sample
size and power are adequate for the given significance level (5%) and sample size for both models.
To supplement the insights gathered from the regression models and gauge the practical utility rather
than just their statistical significance of the IV, we performed a relative importance analysis of each of
these extracted factors by quantifying their main and total effects. The main effect is the contribution by
an IV to the total variance by itself, and the total effect is the contribution by an IV to the total variance
in combination with other IVs [59–61]. We also examined the effect of including interaction terms in the
regression models. The regression model estimates and outcomes of the relative importance analysis
are detailed in Section 3.3. The PCA was done using IBM SPSS and the OLS regression modeling,
and relative importance analysis were carried out using JMP Pro 15.3.

3. Analysis and Results

In this section, we compare real-world performance of observed PHEVs with sticker label
expectations from the perspectives of UF, daily driving distances and style, mode specific energy
consumption, and charging behavior. Wherever applicable, we also contrast driving and charging
behavior observed among the five PHEV models studied in this paper.

3.1. Descriptive Comparisons

3.1.1. Observed UF and Expected UF

Figure 1 depicts the UF distribution of every PHEV observed in this study. The EPA label expected
city/highway combined UF is shown inset in Figure 1 as well. Except for the Volt-35/38, all the other
PHEV models performed below EPA expectations, and the deviations were most notable in the case of
short-range PHEVs (AER 20 miles or less) compared to the longer-range PHEVs (35 miles or more
AER). On average, the observed UF was anywhere between 60–103% of label UF. Figure 2 shows the
ratio of observed UF to label UF and its distribution by PHEV type. The observed UF of 82% (N = 18) of
the Prius, 75% (N = 18) of Fusion, 66% (N = 24) of Volt-53, 54% (N = 15) of CMax, and 44% of Volt-35/38
(N = 19) were lower than the label UF estimates. Two interesting observations can be gleaned from
Figures 1 and 2. First, the range of UF deviations is higher for shorter-range PHEVs (Prius, CMax,
and Fusion) compared to longer-range PHEVs (Volts); secondly, there are few short-range PHEVs
that rarely or never plug in and are operated as a regular HEV. Referring to Table 2, the annual VMT
of PHEVs observed in this study is higher than estimates reported in other real-world PHEV usage
studies [3,22,23,62]. From we can except for the Volt-35/38, the UF of PHEVs observed in this study
(Figures 1 and 2) was lower than the values reported in [3,22,23,62].
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3.1.2. Observed Driving Styles and EPA Dynamometer Test Cycles

Figure 3a shows the percentage share of total driving time based on driving speed in mph of the
observed PHEVs and Figure 3b depicts the share of total driving time by driving speed of certification
cycles commonly used in fuel economy and exhaust emissions measurements. The Urban Dynamometer
Driving Cycle (UDDS) and Highway Fuel Economy Testing (HWFET) represent urban/city driving cycle
and highway driving conditions (under 60 mph) respectively [10,29,63]. The Federal Test Procedure
(FTP) is an extension of the UDDS which consists of the UDDS, followed by the first 505 seconds
of the UDDS. The US06 is a high speed and acceleration aggressive highway driving cycle used by
the California Air Resources Board (CARB) to determine additional credit allocation under its ZEV
mandate [64]. Driving style within the context of this study refers to attributes such as stop frequency
per mile, percentage share of driving time, and distance driven at different speeds.
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Figure 3. Percentage share of total driving time by driving speed in mph: (a) Observed PHEVs;
(b) Comparison with EPA Test Cycles.

Figure 3 indicates some clear trends and divergences among the observed PHEVs, as well as
between the observed PHEVs and test cycles. Volts (Volt-35/38 and Volt-53 combined) have a higher
fraction of idling time and lower fraction of time in highway driving conditions (60 mph or more)
compared to shorter-range PHEVs. We can observe a certain level of conservativeness in driving style
by the Volt-53 if we compare their share of time at different speeds, which gradually decreases with an
increase in speed. It can be noticed from Figure 3 that shows that the test cycles do not adequately
capture how the driving style varies among PHEVs with different AER capabilities. Moreover, the test
cycles either underestimate or completely exclude the share of driving at highway speeds (60 mph
or more).

Figure 4 shows the distribution of stops per mile at a trip level. Figure 4a shows the cumulative
distribution and Figure 4b shows the probability density function. For reference, stops per mile of
HWFET, UDDS, and FTP is also indicated in Figure 4. It is interesting to note that the share of trips
made with stop frequency lower than UDDS stop frequency per mile increases with AER, and varied
from 60% for the Volt-53, to 75% for the Prius.

World Electric Vehicle Journal 2019, 11, 6 9 of 28 

World Electric Vehicle Journal 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/wevj 

 

(a) (b) 

Figure 3. Percentage share of total driving time by driving speed in mph: (a) Observed PHEVs; (b) 
Comparison with EPA Test Cycles. 

Figure 3 indicates some clear trends and divergences among the observed PHEVs, as well as 
between the observed PHEVs and test cycles. Volts (Volt-35/38 and Volt-53 combined) have a higher 
fraction of idling time and lower fraction of time in highway driving conditions (60 mph or more) 
compared to shorter-range PHEVs. We can observe a certain level of conservativeness in driving style 
by the Volt-53 if we compare their share of time at different speeds, which gradually decreases with 
an increase in speed. It can be noticed from Figure 3 that shows that the test cycles do not adequately 
capture how the driving style varies among PHEVs with different AER capabilities. Moreover, the 
test cycles either underestimate or completely exclude the share of driving at highway speeds (60 
mph or more).  

Figure 4 shows the distribution of stops per mile at a trip level. Figure 4a shows the cumulative 
distribution and Figure 4b shows the probability density function. For reference, stops per mile of 
HWFET, UDDS, and FTP is also indicated in Figure 4. It is interesting to note that the share of trips 
made with stop frequency lower than UDDS stop frequency per mile increases with AER, and varied 
from 60% for the Volt-53, to 75% for the Prius.  

 

(a) (b) 

Figure 4. Distribution of stops per mile. (a) Cumulative distribution function (CDF); (b) Density plot. 
Vertical lines are drawn to indicate representative highway and urban drive cycles stops per mile. 

(a) (b) 
Figure 5a shows the percentage share of total distance driven at different speed intervals among 

the observed PHEVs and Figure 5b shows the percentage share of total distance driven at different 
speed intervals under EPA test cycles. Approximately 40% of total distance was driven at highway 

Figure 4. Distribution of stops per mile. (a) Cumulative distribution function (CDF); (b) Density plot.
Vertical lines are drawn to indicate representative highway and urban drive cycles stops per mile.

Figure 5a shows the percentage share of total distance driven at different speed intervals among
the observed PHEVs and Figure 5b shows the percentage share of total distance driven at different
speed intervals under EPA test cycles. Approximately 40% of total distance was driven at highway
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speeds (60 or more mph), and the shorter-range PHEVs had a slightly higher share of travel at 60 mph
or more compared to the Volts. As found in Figure 3b, majority of the city/urban or highway test cycles
overestimate the share of travel at 45 mph or less, especially UDDS in the case of travel at 15–30 mph.
Figures 3–5 clearly illustrate that the test cycles are more conservative when compared to the real-world
driving style of PHEVs. The gap between observed driving and test cycles, especially highway speed
driving, manifests in the form of deviations in the real-world fuel economy and UF.
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(b) Comparison with EPA Test Cycles.

Since high-speed driving consumes more energy (gasoline and/or electricity) compared to city
or stop-and-go driving, the effective AER, fuel economy, and UF realized on-road by a fully charged
PHEV could be lower than their respective sticker label estimates. This is highlighted in Table 3
and Figure 6. Table 3 compares the label and observed CS mode fuel economy in miles per gallon
(MPG) and CD-EV or ZE mode per mile electricity consumption (kWh/mile) and Figure 6 shows their
respective distributions of the CS mode MPG and CD-EV mode kWh/mile observed. On average, the
observed CS mode fuel economy and ZE mode electricity consumption per mile was lower than the
sticker label values for the Prius and Volts (Volt35/38 and Volt-53). In the case of CMax and Fusion, their
CS mode fuel economy was slightly higher than sticker label values but their CD-EV mode kWh/mile
was lower than the label values. From Table 3, we can infer that the disparities between label and
observed ZE mode kWh/mile translates into the effective AER realized on-road being 3–18% lower
than of label AER. In the proceeding sub-sections, we specifically focus on driving and charging varied
among the five PHEV models analyzed in this paper.

Table 3. Comparison of label expected and observed ZE and CS mode energy consumption.

CD-EV or ZE Mode Trips kWh/mile CS Mode Trips MPG

Label Observed ( Observed
Label ) Label Observed ( Observed

Label )

Prius-11 0.29 0.33 87.9% 50 48 96.0%
Cmax-20 0.37 0.39 94.9% 38 40 105.3%

Fusion-20 0.37 0.40 92.5% 38 40 105.3%
Volt-35/38 0.35 0.36 97.2% 37 34 91.9%

Volt-53 0.31 0.38 81.6% 42 38 90.5%
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Figure 6. Distribution of real-world fuel economy (MPG) in CS mode trips and electricity consumption
in CD-EV or ZE mode (kWh/mile) trips. In the ZE mode the engine was never turned on and CS trips
was accomplished entirely on gasoline. Values adjacent to the solid dashed line show the average and
standard deviation.

3.1.3. Daily VMT Comparisons among the Observed PHEV Models

Figure 7 shows the percentage share of total VMT categorized by distance and type of day
(weekday or weekend). Using the criteria of daily VMT of 50 miles or more to define long-distance
travel (LDT) [65], the share of LDT (50 miles or more) was highest for the Fusion (37%) and lowest for
the Volt-53 (21%). Overall, daily travel of 50–100 miles contributed the most (24–27%) to the share
of total VMT (weekday and weekend combined) for the Prius, Fusion, and Volt35/38. In the case of
CMax and Volt53, daily travel of 5–20 miles contributed the most to the share of total VMT (28%).
Referring to Figure 7, it is interesting to note that on weekends, all the five PHEV models had similar
or comparable share of travel across all distance bins. If we examine the weekday travel by distance
bins, daily travel of 50–100 miles still contributed the most (19–23%) to the share of weekday VMT
for the Prius, Fusion, and Volt35/38. A relatively shorter driving distance of 5–20 miles dominated
the share (20%) of weekday travel for the CMax and in the case of Volt-53, 20–35 miles of daily travel
contributed the most (21%) to weekday VMT.
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all; and (ii) days when the PHEV charged more than once. Only on approximately 42–47% of the 
driving days (weekdays and weekends combined) the PHEV charged at least once, on all other days, 
the observed daily charging frequency did not align with the J2841 assumptions of one charging per 
day. While conventional wisdom would suggest that shorter-range PHEVs (Prius, Cmax, and Fusion) 
will have a higher proportion of days when they charged more than once due to AER limitations, our 
analysis shows the counterfactual. On 44% of driving days, the Volt-35/38 charged more than once 
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The cumulative effect of travel distance preferences depending on type of day is reflected in
Table 4, which summarizes the daily VMT distribution by type of day. The average weekday VMT was
higher than the average weekend VMT for all PHEV models expect for the CMax and Volt-53, which
were driven roughly the same 43 miles and 39 miles, respectively, on weekdays and weekends. Fusions
had the highest average daily VMT and the Volt-53 had the lowest average daily VMT, irrespective
of the type of day. From Table 4, it can be seen that the AER had little or no impact on the average,
median, or standard deviations of VMT of Volt-35/38 and Volt-53.

Table 4. Daily VMT Summaries by type of day.

Weekdays Weekends Overall

Average ± Std. Dev Median Average ± Std. Dev Median Average ± Std. Dev Median

Prius-11 46.7 ± 42.8 37.8 42.1 ± 51.8 27.0 45.5 ± 45.2 35.1
Cmax-20 42.9 ± 37.3 35.2 43.0 ± 58.5 24.2 42.9 ± 43.2 33.7
Fusion-20 50.3 ± 44.6 39.0 48.0 ± 61.0 28.6 49.7 ± 49.1 36.5
Volt-35/38 45.9 ± 39.6 36.6 39.7 ± 47.0 25.1 44.3 ± 41.7 33.6
Volt-53 39.0 ± 39.4 30.8 38.4 ± 47.1 24.1 38.9 ± 41.4 29.2

3.1.4. Charging Frequency and Travel Day Starting SOC

Figure 8 depicts the percentage share of driving days by number of charging sessions on weekdays
and weekends. If we compare Figure 7 with the J2841 assumptions of one charging session per day,
it is very clear that the differences in charging behavior are salient. The J2841 method for UF estimation
ignores two situations depicted in Figure 8: (i) days when the PHEV was not charged at all; and (ii)
days when the PHEV charged more than once. Only on approximately 42–47% of the driving days
(weekdays and weekends combined) the PHEV charged at least once, on all other days, the observed
daily charging frequency did not align with the J2841 assumptions of one charging per day. While
conventional wisdom would suggest that shorter-range PHEVs (Prius, Cmax, and Fusion) will have a
higher proportion of days when they charged more than once due to AER limitations, our analysis
shows the counterfactual. On 44% of driving days, the Volt-35/38 charged more than once per day,
whereas the CMax and Fusion charged more than once on 39% of the driving days, and the Prius
charged only on 30% of the driving days. Depending upon the AER, on 13%–26% of driving days
(weekdays and weekends combined), PHEV did not charge at all.
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Figure 8. Percentage share of driven days by number of charging sessions on weekdays and weekends.

The J2841 also assumes that the travel day starts with the fully charged battery. The effect of the
travel day starting state of charge (SOC) of the battery on the daily VMT and eVMT is illustrated in
Figure 9. Empty battery refers to SOC of 5% or low, while full battery refers to SOC of 95% or more.
We can observe from Figure 9 that there are three additional situations that the J2841 does not address
or adequately capture: (i) PHEV driven as conventional HEV when the travel day starts with an empty
battery; (ii) possibility that the PHEV might charge away from home; and (iii) possibility for intra-day
charging outside of overnight parked at home time windows, typically mid-day at a workplace or
any other non-home location. Figure 9 reveals that on average, PHEVs drive longer when travel day
starts with an empty battery compared to travel days starting with a fully-charged battery. Except the
Volt-53, all other PHEVs drive on average more than 50 miles when starting their travel day on an
empty battery. We can also see that the average eVMT of Volt-35/38 and Volt-53 are almost similar on
days when travel starts with a fully-charged battery.
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3.1.5. Charging Location Distance from Home

Figure 10 portrays the percentage share of charging sessions by charger level and distance from
the home location. Out of 52,237 charging sessions, 46,137 had valid GPS data. The percentage share
by distance from home indicate Figure 10 is based on these 46,137 sessions. Overall, roughly 74% of all
charging sessions (L1 and L2 for all PHEVs combined) occurred at locations that are less than a mile



World Electric Vehicle Journal 2020, 11, 6 14 of 30

(great-circle distance) from home. Close to 80% of charging sessions (L1 and L2 combined) happen
within 1 mile of the home location for Prius, CMax and Fusion. In the case of Volt-35/38 and Volt-53,
the share of charging sessions less than a mile from home was 70% and 63%, respectively. In terms
of charger utilization by charger level, level 1 charging was the most frequently used by Prius and
Cmax, as it accounts for 90% and 60% of their total number charging sessions, respectively. Even
though the Fusion also has the same 20-mile AER as CMax, it had an equal share of charging at L1
and L2, like the Volt-35/38. Close to 60% of Volt-53 charging sessions were at L2 and 25%, of which
occurred at locations more than a mile away from the home location. Approximately 90% of CMax
and Volts (Volt-35/38 and Volt-53), 88% of Fusion, and 83% of Prius charging happened at locations
that are less than their respective AER. Home or close-to-home seems to be the most preferred location
for irrespective of AER.
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3.2. Principle Components Analysis(PCA) of Driving and Charging Behavior

The goal of PCA is to deduce the most important driving and charging traits that significantly
impact the UF and thereby its deviation from label UF. Since UF is the ratio of eVMT to VMT and eVMT
is intricately linked to charging behavior, we perform PCA on driving and charging separately. In order
to adequately represent important VMT indicators such as annual mileage, driving style (highway or
stop and go city dominant), and long-distance travel needs, the following variables were used:

i. Annual VMT (miles)
ii. Share of annual VMT at 55 mph or faster (%)
iii. Long-distance travel (LDT) 100 miles or more share of annual VMT (%)
iv. Daily VMT 50 miles or less share of annual VMT (%)
v. Average number of stops per mile

Table 5 summarizes the PC loadings, Eigen values, and the cumulative percentage of variance
captured. The criteria to evaluate the suitability of data structure for PCA are indicated in Table 5.
KMO MSA index of 0.8 is considered as “meritorious” [47,50,51], and KMO MSA of 0.711 yields reliable
factors [66]. The KMO MSA was 0.799 and the p-value of Bartlett’s test was extremely low, and lower
than the significance level of 0.05, so the data is suitable for PCA.
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Table 5. PCA of Driving Behavior: Unrotated and Rotated PC Loadings, Eigen Values, and Percentage
of Variance (σ2) Captured.

PC Initial Eigenvalues Extraction Sums of Squared
Loadings

Rotated Sums of Squared
Loadings

Total % of σ2 Cum.
% σ2 Total % of σ2 Cum.

% σ2 Total % of σ2 Cum.
% σ2

1 3.27 65.3 65.3 3.27 65.3 65.3 1.20 24.0 24.0
2 0.70 14.0 79.4 0.70 14.0 79.3 1.09 21.8 45.9
3 0.49 9.8 89.2 0.49 9.8 89.1 1.07 21.3 67.2
4 0.39 7.8 97.0 0.39 7.8 97 1.03 20.6 87.8

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser normalization. Rotation
converged in 5 iterations. Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy (MSA) = 0.799; Bartlett’s Test
of sphericity: χ2 = 406.410, df = 10, p < 0.000.

Using the Scree test for Eigen values greater than 1 [67], four factors were retained which capture
88% of total variance, and each factor roughly captures a similar proportion of variance. Table 6
summarizes the Varimax rotated factor loadings. The KMO MSA of the individual driving related
variables was at least 0.74. For notational convenience, the four factors extracted are named with the
suffix. Drv in Table 6.

Table 6. PCA of Driving Behavior: Varimax Rotated Factor Loadings and Influential Driving
Traits Extracted.

Variables * KMO MSA ** PC1.Drv PC2.Drv PC3.Drv PC4.Drv

Annual VMT (miles) 0.752 0.872 0.237 −0.266 0.232

Share (%) of Annual VMT
at 55 mph+

0.856 0.231 0.222 −0.269 0.892

Long-distance travel(LDT)
100 miles or more share

(%) of annual VMT
0.89 0.21 0.939 −0.105 0.195

Daily VMT 50 miles or less
share (%) of annual VMT 0.74 −0.54 −0.305 0.227 −0.291

Average Stops Per Mile 0.848 −0.228 −0.107 0.928 −0.241

High Usage
intensity

Long-distance
travel

Conservative
driving

High energy
intensity

* All variables are annualized unless otherwise specified. ** KMO MSA of individual variable. Significant loadings
(absolute loadings greater than 0.3) shown in bold and underlined.

Based on the relative magnitude and direction of loading, the underlying factors can be described
as follows. Loading of annual VMT is highest on PC1.Drv, and it represents the high usage intensity.
The loading of long-distance travel 100 miles or more share of annual VMT on PC2.Drv is highest,
whereas the loading of daily VMT 50 miles or less share of annual VMT is significant, but negative
on PC2.Drv. PC2.Drv thus represents driving behavior characterized by strong preferences for
long-distance travel. The variable with the highest loading on PC3.Drv is the average stops per mile.
Annual VMT and share of VMT at high speeds loads negatively on PC3.Drv, but is not significant,
and conservative driving style is captured by PC3.Drv. Since the share of VMT at 55 mph or more
loads heavily on PC4.Drv, it is concerned with the energy intensity of driving and inclination for
high-speed driving. Charger accessibility and utilization are key indicators of charging behavior and
subsequently eVMT. In order to uncover these, the following variables were selected for the PCA of
charging behavior:

i. Away: charged energy (kWh)
ii. Away: Number of charging sessions
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iii. Away: Charging duration (minutes)
iv. Share of charging at away locations (%)
v. Home: charged energy (kWh)
vi. Home: Number of charging sessions
vii. Home: Charging duration (minutes)
viii. Number of days vehicle charged both at home and away locations

Where home-based refers to locations that are less than a mile from home and away refers to
all non-home locations. Charged energy, number of sessions, and duration include both L1 and
L2 charging.

Table 7 summarizes the PC loadings, Eigen values, and the cumulative percentage of variance
captured by the PCA of charging behavior. Similar to the PCA of driving behavior, the suitability of
data for PCA of charging behavior was validated. The Scree test for Eigen value criterion one was used,
and four factors were retained which capture 87% of total variance. Table 8 summarizes the Varimax
rotated factor loadings and the influential charging traits extracted by the PCA. From Table 8, we can
see that all away charging related variables load positively on PC1.Chg and are significant. Likewise,
loading of all home charging related variables are positive and significant on PC2.Chg. Though the
loading of home charging related variables on PC3.Chg is comparable to its loading on PC2.Chg,
there is an important distinction between them. The loading of home charging duration is positive,
significant, and numerically greater on PC2.Chg compared to PC3.Chg. In contrast, the loading of
the number of home charging sessions is positive, significant, and numerically greater on PC3.Chg
compared to PC2.Chg. The higher the loading of charging duration, the longer is the charging duration,
and thereby implies deep charge cycles. Likewise, a higher loading of number of charging sessions
indicates higher frequency of charging. The number of days PHEV charged at both home and away
locations is strongly correlated with PC4.Chg, and the loading is significant. This is indicative of
enhanced charger accessibility both at home and away. The number of away charging sessions, and to
an extent the number of home charging sessions, is also positively associated with PC4.Chg, though
the absolute loading is only slightly below the threshold of 0.3. Based on these observations, we
describe the factors based on charger accessibility, charger utilization measured in the form of charging
frequency, and charger utilization measured in the form of charged duration. PC1.Chg describes
frequent and deep charge cycles at away locations. PC2.Chg describes less frequent, deep charge cycles
at home, PC3.Chg describes frequent, shallow charge cycles at home, and PC4.Chg is indicative of
balanced utilization of charger at home and away locations.

Table 7. PCA of Charging Behavior: Unrotated and Rotated PC Loadings, Eigen Values, and Percentage
of Variance (σ2) Captured.

PC Initial Eigenvalues Extraction Sums of Squared
Loadings

Rotated Sums of Squared
Loadings

Total % of σ2 Cum.
% σ2 Total % of σ2 Cum.

% σ2 Total % of σ2 Cum.
% σ2

1 4.3 53.5 53.5 4.3 53.5 53.5 2.9 35.7 35.7
2 2.0 24.6 78.1 2.0 24.6 78.1 1.8 22.2 57.9
3 0.8 9.5 87.6 0.8 9.5 87.6 1.2 15.5 73.3
4 0.4 5.0 92.6 0.4 5.0 92.6 1.1 13.8 87.2

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser normalization. Rotation
converged in 6 iterations. Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy (MSA) = 0.797. Bartlett’s Test
of sphericity: χ2 = 1015.83, df = 28, p < 0.000.
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Table 8. PCA of Charging Behavior: Varimax Rotated Factor Loadings and Influential Charging
Traits Extracted.

Variables * KMO MSA PC1.Chg PC2.Chg PC3.Chg PC4.Chg

Away: charged energy
(kWh) 0.821 0.909 −0.121 −0.173 0.108

Away: Number of
charging sessions 0.803 0.853 −0.188 −0.047 0.307

Away: Charging
duration (minutes) 0.811 0.954 −0.116 −0.162 −0.013

Share of charging at
away locations (%) 0.876 0.492 −0.338 −0.407 0.008

Home based: charged
energy (kWh) 0.761 −0.158 0.752 0.537 0.081

Home based: Number of
charging sessions 0.788 −0.242 0.336 0.822 0.284

Home based: Charging
duration (minutes) 0.781 −0.164 0.952 0.128 0.071

Number of days vehicle
charged both at home

and away locations
0.565 0.197 0.104 0.184 0.953

Charger Accessibility Away Home Home Home and away

Charger Utilization: Charging
Frequency Frequent Less frequent Frequent Balanced

Charger Utilization: Charge Cycle Deep Deep Shallow

* All variables are annualized unless otherwise specified. Charging sessions, duration, and charged energy include
both Level 1 and Level 2. Significant loadings (absolute loadings greater than 0.3) shown in bold and underlined.

3.3. OLS Regression Model Results

The eight retained PCs are the IVs and the DV is the difference between observed UF and EPA label
city/highway combined UF (∆UF = Observed UF—label UF). The purpose of developing regression
models is to understand how well the extracted PCs can explain the difference between observed
and label UF, and also identify which PCs contribute the most to the ∆UF and how it varied between
short-range and longer-range PHEVs. Using the aggregate annualized dataset, we created OLS
regression models for short-range (Prius, CMax, and Fusion) and longer-range PHEVs (Volt35/38
and Volt-53) separately. Statistical tests using G * Power 3 [68] was performed to verify and validate
the following:

• A priori: for given significance level, effect size, and power, computing the number of
samples required

• Post hoc: compute power achieved for the given sample size, significance level and effect size

For both regression models, all the a priori and post hoc test results confirmed that our sample
size was adequate to detect a large effect size based on Cohen’s d, and the achieved statistical power
was more than 95% [69–71]. These test results are summarized in Table A1 in Appendix A. To ensure
consistency and parity across all the hypothesis and statistical significance tests, significance level of
5% was chosen.
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Tables 9 and 10 summarizes the regression model coefficients (β) and summary of fit for the
short-range and long-range PHEVs, respectively. Referring to Table 9 for the short-range PHEVs,
except long-distance travel and the conservative driving style, all other factors were statistically
significant. At 5% significance level, except the PC that describes less frequent and deep cycle home
charging, all other charging related PCs have a statistically significance and positive impact on the UF of
short-range PHEVs. All the four charging related PCs have statistically significant and positive impacts
on the UF of longer-range PHEVs. Except for the PC that describes conservative driving, all other
driving related PCs had a statistically significant and negative impact on the UF of longer-range PHEVs.
In the case of longer-range PHEVs, except conservative driving, all other factors were statistically
significant at 5%. Long-distance travel had a statistically significant impact on ∆UF of LRPHEVs, but
not on short-range PHEVs. When we compare the model fit, the R2 of LRPHEV regression model is
lower than that of the SRPHEV regression model even though the LRPHEV model (Table 1) had a
slightly higher number of observations and higher number of statistically significant factors compared
to the SRPHEV regression model (Table 9). This could potentially be due to larger variations in
LRPHEV usage patterns compared to SRPHEVs.

Table 9. OLS Regression Model Results: Short-range PHEVs (SRPHEVs).

DV = ∆UF ∆UF =
Observed UF—Label UF Short-Range(SR) PHEVs N = 74

PCs Estimate Std. Error Prob > |t| t-Ratio Std.
Estimates

Intercept −0.0662 0.0288 0.005 13.11

PC1.Chg Away-frequent and deep
cycle 0.0911 0.0430 0.0104 * 1.8 0.1815

PC2.Chg Home-less frequent and
deep cycle 0.047 0.0329 0.0799 3.76 0.2842

PC3.Chg Home-frequent and
shallow cycle 0.0531 0.0157 <0.0001 * 3.17 0.2310

PC4.Chg Home and away-balanced
utilization 0.0593 0.0197 0.0004 * 3.58 0.3595

PC1.Drv High usage intensity −0.0703 0.0158 <0.0001 * −5.1 −0.4024
PC2.Drv Long-distance travel −0.0152 0.0185 0.31 −0.11 −0.0084
PC3.Drv Conservative driving −0.0208 0.0273 0.346 0.95 0.0655
PC4.Drv High energy intensity −0.0718 0.0159 <0.0001 * −3.79 −0.2795

SRPHEV Model Fit
R2 0.772

Adjusted R2 0.744
Root mean square error 0.103

Akaike Information Criterion (AIC) −112.3
Bayesian Information Criterion (BIC) −92.846

* Factors that are statistically significant at 5%. Std. error is standard error; Std. estimates is the standardized estimates.
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Table 10. OLS Regression Model Results: Long-range PHEVs (LRPHEVs).

DV = ∆UF ∆UF =
Observed UF—Label UF Longer-Range(LR) PHEVs N = 79

PCs Estimate Std. Error Prob > |t| t-Ratio Std.
Estimates

Intercept −0.0423 0.0170 0.015 38.56

PC1.Chg Away-frequent and deep
cycle 0.0462 0.0136 0.0011 * 3.11 0.2777

PC2.Chg Home-less frequent and
deep cycle 0.0397 0.0139 0.0055 * 2.47 0.2183

PC3.Chg Home-frequent and
shallow cycle 0.0955 0.0144 <.0001 * 5.91 0.4354

PC4.Chg Home and away-balanced
utilization 0.042 0.0203 0.0385 * 1.32 0.1026

PC1.Drv High usage intensity −0.0894 0.0197 <0.0001 * −4.46 −0.4077
PC2.Drv Long-distance travel −0.1118 0.0135 <0.0001 * −8.44 −0.6515
PC3.Drv Conservative driving 0.0102 0.0118 0.386 1.46 0.1141
PC4.Drv High energy intensity −0.0635 0.0148 <0.0001 * −4.06 −0.3102

LRPHEV Model Fit
R2 0.673

Adjusted R2 0.636
Root mean square error 0.115

Akaike Information Criterion (AIC) −102.48
Bayesian Information Criterion (BIC) −82.02

* Factors that are statistically significant at 5%. Std. error is standard error; Std. estimates is the standardized estimates.

3.3.1. Assessing the Relative Importance of Influential Driving and Charging Traits

We ascertain the practical utility of the insights gathered from the regression models by carrying
out relative importance analysis. Relative importance analysis quantifies the contribution of an IV to
the total predictable variance by itself (main effect) and in combination with other IVs (total effect),
without making any assumptions about its statistical significance [61]. This would enable comparing
the relative contribution of the eight PCs and how it varied between short-range and longer-range
PHEVs. For each of the IV, Monte Carlo samples using Latin Hyper Cube sampling are obtained from
its initial set of observed values and the process is iterated until the standard error of the main and
total effects are below a certain threshold [72]. Table 11 summarizes the main and total effect of the IVs
in the across the three models. The top three predictors based on the magnitude of their main effect are
also highlighted in Table 11

Table 11. Relative contribution of IVs to total predictable variance.

DV = ∆UF ∆UF = Observed
UF—Label UF Short-Range PHEVs Longer-Range PHEVs

PCs Main Effect Total Effect Main Effect Total Effect

PC1.Chg Away-frequent and deep cycle 0.0873 0.1022 0.06 0.0857
PC2.Chg Home-less frequent and deep cycle 0.0138 0.0228 0.034 0.0554
PC3.Chg Home-frequent and shallow cycle 0.1184 0.1333 0.1973 2 0.2235

PC4.Chg Home and away-balanced
utilization 0.1881 3 0.203 0.0123 0.0257

PC1.Drv High usage intensity 0.2531 1 0.2681 0.1293 3 0.1556
PC2.Drv Long-distance travel 0.0036 0.0073 0.3463 1 0.3725
PC3.Drv Conservative driving 0.0028 0.0062 0.0012 0.004
PC4.Drv High energy intensity 0.2376 2 0.2526 0.0675 0.0933

Inputs are independently resampled inputs using Monte Carlo. 1 Most important predictor; 2 Second most important
predictor; 3 Third most important predictor.
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The magnitude of the main and total effects from Table 11, when examined in conjunction with
the direction (positive or negative) of coefficient estimates in Tables 9 and 10, provides a better picture
of how dominant driving and charging traits impact the UF of short-range and longer-range PHEVs.
In the case of short-range PHEVs, high usage intensity, high energy intensity, and home and away
balanced utilization capture close to 65% of total predictable variance, Table 11. For the longer-range
PHEVs, the main effect of long-distance travel accounts for 35% of total predictable variance, followed
by the main effects of home-frequent and shallow cycle charging, and high usage intensity, respectively.
While the UF of short-range PHEVs increases with the increase in charger access at home and away
locations, for the longer-range PHEVs, encouraging more home-based charging had a positive effect of
UF. For the longer-range PHEVs, increasing the frequency of charging at home has a much bigger and
positive effect on UF compared to deep charging cycles or longer charging duration. This is attributable
to their AER capabilities coupled with lower annual mileage and daily driving distances (Table 2).
It can be inferred from Table 11 that the relatively aggressive and higher energy intensity of driving
has a much bigger effect on the UF of short-range PHEVs compared to the longer-range PHEVs.

3.3.2. Examining the Interaction Effects

We investigated whether inclusion of interaction terms to the regression models improves their
explanatory power. To avoid confounding and conflating, which would hinder the interpretation of
independent variables, we specifically focused on the statistically insignificant driving and charging in
Tables 9 and 10. This would clearly indicate the statistical significance of the interaction term and its
effect on the overall model fit, which could not have been captured in the main effects only model
(Tables 9 and 10). The variables we considered for interaction effects are Long-distance travel (PC2.Drv),
Conservative driving (PC3.Drv), and Home-less frequent and deep cycle charging (PC2.Chg). Since
the driving and charging PCs themselves are orthogonal due the nature of component extraction using
Varimax method, and to avoid overfitting, only one interaction term (between a driving related PC and
charging related PC) were considered at a time and individual regression models were developed for
each of the interaction terms. In addition, we also interacted the top two predictors that contributed
most to predictable variance from Table 11.

We developed the four additional regression models with main and interaction effects.
For short-range PHEVs, the following interaction terms were considered: (i) PC2.Chg * PC3.Drv;
(ii) PC2.Chg * PC2.Drv; and (iii) PC4.Chg * PC1.Drv. For the longer-range PHEVs, since only one term
was statistically insignificant (PC3.Drv, Table 1), we included the top two predictors from Table 11,
PC3.Chg * PC2.Drv as the interaction term. The parameter estimates and model fits of the four regression
models are summarized in Appendix A, Table A3. None of the interaction terms were statistically
significant at 5%, and there were no noticeable improvements in the model fit. Due to these two
reasons, the relative importance of the interaction terms were not analyzed further.

4. Discussion

This paper analyzed year-long driving and charging behavior of 153 PHEVs in California and
compared it against EPA test cycles and SAE J2841 assumptions. We expanded upon these observations
by examining usage pattern differences among the five PHEV models included in this paper. Our
findings are summarized below.

Observed PHEVs are driven more aggressively and accomplish a higher share of travel in
non-urban driving conditions (45 mph or faster or less than 3 stops per mile) compared to standardized
dynamometer test cycles. The percentage share of time and distance traveled at highway speeds
(60 mph or faster) is noticeably under-represented or excluded in test cycles. Approximately 80% of
VMT in the UDDS cycle is at 45 mph or slower, whereas the overall average in our dataset was only
40%. Short-range PHEVs (Prius, CMax and Fusion) are driven 4% to 7% more at 60 mph or faster
compared to longer-range PHEVs (Volts). The above disparities clearly manifested in the form of
increased energy consumption in the CD-EV mode, which reduces the effective AER realized on-road.
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Using PCA, we characterized driving behavior based on 4 factors: vehicle usage intensity, aggressive
driving style at highway speeds which increases the energy intensity, preference for long-distance
travel, and conservative driving style.

Analysis of charging behavior revealed marked differences between the single, overnight, fully
charged assumption of J2841. On average, observed PHEVs (except the Volt-53) charged more than
once per day, and the driving distance on days when the PHEV was not charged was more compared
to the days on which they charged at least once. Results indicated that short-range PHEVs have a
higher share of driving days when they are not charged at all. The possibility of PHEVs to charge
away from home, more than once per day, and PHEV being used like a regular HEV are the other
notable distinctions between this study and the generalized J2841 assumptions. The differences in
charging behavior outlined above are due to charger accessibility by location (home, away, or both),
and charger utilization which could be defined based on frequency of charging or duration of charging.
These were characterized using four influential factors extracted by the PCA. Regression models and
relative importance analysis indicated that for short-range PHEVs (Prius, CMax, and Fusion), higher
annual VMT and share of travel at highway speeds contributed the most to the observed UF being
lower than label rated estimates, whereas enhanced charging infrastructure at home and while away
increases the UF. In the case of the Volts, long-distance travel days (50 miles or more) and share of
travel at highway speeds were the primary reason for lowering the observed UF below its label rated
estimated, and increasing the frequency of charging at home increases the UF.

Driving related differences could due to a combination of road infrastructure, early adopter
preferences, and vehicle technology attributes like age, AER, maximum electric speed, and drivetrain
design. California has the third highest rural interstate and the highest urban interstate highway
system length [73], which was partly reflected in the relatively bigger share of highway speed driving
observed in this study, compared to test cycles that are used in performance evaluation. California
also scores low in proximity to major roadways [74] and ranks among the top three states by average
VMT in urban and suburban census tract groups [75]. The cumulative effect of these California specific
features were clearly revealed annual VMT and share of long-distance travel (50 miles or more) of
the PHEVs observed in this study. The sub-sample of drivers in this dataset are PEV early adopters
who purchased or leased a new PHEV and are generally more educated, wealthier, and own a home,
compared to mainstream ICE user’s driving patterns in the NHTS on which the J2841 relies on [76,77].
Rebound effect in the classical sense by which improvements in fuel economy of newer vehicles
increase the travel demand [78], could also have played a part in higher vehicle usage intensity of all
the PHEV models compared to sticker label annual mileage of 15,000 miles, except the Volt-53, which
seemed to have faced a slight backfire effect [79].

Apart from differences among the PHEV models in terms of annual VMT, driving style (aggressive
or conservative), and the magnitude of long-distance travel, the distribution of UF (Figure 1) indicates
that heterogeneity in charging preferences exists among different as well as within the same PHEV
model. The fact that some PHEVs, irrespective of AER, electrified less than 20% of their rated label UF
demonstrates that motivations for charging or not charging are far more complex in reality compared
to the simplistic notion of one fully charged session per day at home. Our study illustrates that
charger accessibility and utilization have varying levels of influence on the UF depending on the AER.
In the case of short-range (20 miles or less, Prius, CMax and Fusion), since their AER is less than their
average daily VMT (about 46 miles), there was not enough incentive in the form of eVMT gained, to
charge more for compensating their higher travel demand. Lower UF of observed PHEVs compared
to their rated label estimates could also be due to self-selection bias by PHEV buyers who are less
concerned about eVMT because their decision to purchase the PHEV was motivated by other reasons
such as rebate, clean air vehicle decals, or preferential parking spaces. It is also evident that there are
diminishing marginal returns in UF and eVMT with an increase in the AER, the case in point being the
UF of Volt-53, which was similar to that of Volt-35/38, in spite of the Volt-35/38 driving 2000 miles more
than Volt-53 annually.
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The performance of PHEVs depends on the intertwined relationships between driving behavior,
charging behavior, vehicle technology attributes, and user preferences. The dual propulsion energy
source (electric motor and conventional ICE) enables the automakers to offer a wide range of design
options to potential buyers depending on the degree of emphasis of one driving mode over the
other, which is influenced by the policy goals. Fuel economy and energy efficiency of the ICE were
prioritized over the all-electric mode operation due to cost and charging infrastructure considerations
in the infant stages of the PHEV market. To maximize the GHG reduction potential of PHEVs,
policies that encourage longer-range PHEVs which emphasize more on all-electric mode are needed.
While this has a direct impact on the policy signals sent to the automakers and subsequently the
model offerings available for potential PHEV buyers, it is critical to consider aspects outside the
domain of vehicle technology such as charging infrastructure expansion and heterogeneous user
preferences. Though this study does not advocate moving away or replacing the J2841 UF as the metric
to quantify the environmental impact of PHEVs, there is definitely room for improving the accuracy
UF estimates by incorporating additional scenarios that are more representative of real-world driving
and charging behavior.

Generalizability and applicability of this paper’s insights to the broader PHEV market in general,
or even within California, is not feasible due to sample size limitations, which is very common and
unavoidable, and intrinsic to real-world observational studies. Moreover, today’s PHEV users are early
adopters, whose socio-demographic and economic indicators differ from the general population of
mainstream ICE users [43]. In essence, results presented in this paper should be interpreted within
developmental phases of the PHEV market.

5. Conclusions and Future Research Directions

This study systematically analyzed the driving and charging patterns of 153 PHEVs operating in
California. The purpose of this study was to investigate why the observed performance of PHEVs
deviated from their expectations and what the influential factors were that contributed to these
disparities. We first compared observed and expected PHEV usage patterns.. We also compared the
usage patterns of the five PHEV models (Prius, CMax/Fusion Energi, first and second generation
Chevrolet Volts) that were analyzed in this study at time-scales varying from trip-level to annual
estimates. We utilized principal components analysis to reduce the dimensionality of the dataset while
capturing at least 87% of the variance in dataset using just four driving and four charging related factors.
The explanatory power and the statistical significance of the extracted factors were evaluated using
multivariate regression models. We quantified the relative contribution of each of the extracted factors
toward the difference in observed Utility Factor from label expected values. We also investigated if
there are any statistically significance interaction terms which further improve the regression model fit
and offer additional insights.

Results indicated that higher annual mileage and higher energy intensity were the top two aspects
that lowered the observed UF of short-range PHEVs (Prius, CMax/Fusion) when compared to label
expectations. Enhanced charging infrastructure access and balanced utilization at home and away
increased the observed UF of short-range PHEVs. In the case of longer-range PHEVs (Volts), their
propensity toward more long-distance travel (50 or more miles/day), followed by their annual mileage,
contributed the most to lowering their UF from label values. Due to their bigger battery capacity,
increasing the frequency of shallow charging sessions had a bigger and positive effect on UF, rather
than charging for a longer duration time, but less frequently. Regression models indicated that the effect
of long-distance travel and deep cycle charging at home were statistically significant for longer-range
PHEVs, but not for short-range PHEVs. Analyses also indicated the absence of any statically significant
interaction terms. Distribution of UF (Figures 1 and 2) indicated that even within PHEVs with the
same AER, there was a diversity in usage patterns. Daily driving distances and style (Figures 2–5),
number of charging sessions on days driven (Figure 8), and charging location distance from home
(Figure 10) demonstrated the linkage between travel and charging behavior and AER.
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Plug-in electric vehicles (BEVs and PHEVs) are essential to reduce transport sector GHG emission
and energy consumption. Plug-in hybrid electric vehicles are considered to be an intermediate and
enabling technology option that can catalyze large-scale adoption of PEVs. The environmental benefits
of BEVs are unambiguous due to their zero tail pipe emissions, however the same cannot be said
of the PHEVs. Operational and fuel-use flexibility helps the PHEVs in overcoming range anxiety
related issues associated with BEVs, but the same flexibility complicates the task of evaluating their net
environmental impact. To address this, the concept of UF has been developed and widely utilized
in the policy domain and techno-economic assessments. There is a growing body of demonstrable
evidence suggesting that a mismatch or gap exists between official EPA sticker label and real-world UF,
which warrants a deeper examination to improve our understanding of the electrification potential of
PHEVs. This paper focused on this research need by scrutinizing real-world PHEV usage patterns and
discerning salient facets of driving and charging that deviated from assumptions embodied in sticker
label energy consumption and UF estimates.

Superimposing a set of preconceived notions about driving and charging behavior has direct
ramifications on how PHEVs are evaluated in command and control policies like the ZEV mandate,
regulations governing their on-road performance, and policies that encourage their usage through
economic incentives. Developments in battery technologies, diversification of PHEV model offerings,
expansion of charging infrastructure, and a favorable policy environment will increase the market share
of PHEVs. As the PHEV market evolves and grows, the need for observing PHEV through studies
such as the one presented in this paper will become increasingly valuable. Recognizing real-world
scenarios that diverged from assumptions will better inform future policies.

The data collection is still ongoing and future work will include newer PHEV models such as the
Chrysler Pacifica Hybrid (33-mile AER) and Toyota Prius Prime (25-mile AER). Future research will
incorporate spatio-temporal aspects to identify trip level variables that affect decision to charge or not
charge, identify missed charging opportunities at public charging locations, and its implications on the
net environmental impact (driving and charging) and electrification potential of PHEVs.
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Appendix A

This section summarizes the results of the power analysis regression models, and the rationale
behind excluding interaction terms in the OLS regression models as well as their relative contribution
to the overall model effects.

Table A1. A-priori Test: Compute sample size for a given α, power, and effect size.

Effect Size α Err prob Power
(1-β)

Non-Centrality
Parameter Critical F Sample

Size
Actual
Power

Short-range
PHEVs 0.35 0.05 0.95 25.9 2.08 74 0.95

Long-range
PHEVs 0.72 0.05 0.95 29.04 2.25 40 0.95
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Table A2. Post-hoc Test: Compute achieved power for a given α, sample size, and effect size.

Effect Size α Err prob Non-Centrality
Parameter Critical F Actual Power

Short-range
PHEVs 1.02 0.05 75.48 2.08 0.999

Long-range
PHEVs 1.84 0.05 145.71 2.07 0.999

Table A1 presents the results of the A-priori test that determines the number of samples (number
of PHEVs) required to give the significance level (α = 5%), power (1-β), number of predictors (eight,
the 4 driving and 4 charging related PCs), and effect size. The probability of Type I and Type II error is
α and β respectively. From Tables A1 and A2 we can see that there are sufficient number of short-range
and long-range PHEVs in the dataset to detect a “true” effect of a predictor. Table A2 is a post-hoc test
which calculates the power achieved given the significance level, sample size and effect size. From
Table A2, we can see that the achieved power of the OLS regression models is more than sufficient.

Table A3 presents the regression model estimates and the model fit summaries with interaction
effects. When we compare the main effects only model results (Tables 9 and 10) and the model results
with main and interaction effects in Table A3, the estimates changed slightly. However, their statistical
significance almost remained identical to the main effects only model, even after the inclusion of
interaction effects across all the four models in Table A3, the only change was observed when interacting
PC2.Chg * PC2.Drv (Home-less frequent and deep cycle * Long-distance travel) of short-range PHEVs, where
the predictor PC2.Chg is statistically significant, whereas in the main effects only model in Table 9,
it was not statistically significant at 5%. Since the interaction terms were not statistically significant,
no additional analyses were performed to assess their relative importance and only the main effects
model were considered in our analysis.
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Table A3. OLS Regression Model Results with Interaction Effects.

DV = ∆UF = Observed
UF—Label UF SR PHEVs N = 74 SR PHEVs N = 74 SR PHEVs N = 74 LR PHEVs N = 79

PCs Estimate Prob > |t| Estimate Prob > |t| Estimate Prob > |t| Estimate Prob > |t|

Intercept −0.067 0.006 −0.055 0.023 −0.069 0.009 −0.044 0.010

PC1.Chg Away-frequent and
deep cycle 0.09 0.012 * 0.101 0.005 * 0.089 0.015 * 0.046 0.001 *

PC2.Chg Home-less frequent and
deep cycle 0.046 0.088 0.057 0.036 * 0.045 0.118 0.042 0.003 *

PC3.Chg Home-frequent and
shallow cycle 0.054 <0.0001 * 0.053 <0.0001 * 0.053 <0.0001 * 0.100 <0.0001 *

PC4.Chg Home and away-balanced
utilization 0.058 0.001 * 0.056 0.001 * 0.059 0.000 * 0.049 0.018 *

PC1.Drv High usage intensity −0.07 <0.0001 * −0.077 <0.0001 * −0.070 <0.0001 * −0.099 <0.0001 *

PC2.Drv Long-distance travel −0.016 0.297 −0.018 0.234 −0.015 0.306 −0.121 <0.0001 *

PC3.Drv Conservative driving −0.022 0.324 −0.022 0.302 −0.021 0.346 0.011 0.340

PC4.Drv High energy intensity −0.071 <0.0001 * −0.072 <0.0001 * −0.072 <0.0001 * −0.066 <0.0001 *

PC2.Chg *
PC3.Drv

Home-less frequent and deep
cycle * Conservative driving −0.023 0.679 - - -

PC2.Chg*
PC2.Drv

Home-less frequent and deep
cycle * Long-distance travel - −0.008 0.802 -

PC4.Chg *
PC1.Drv

Home and away-balanced
utilization * High usage

intensity
- - −0.021 0.071 -



World Electric Vehicle Journal 2020, 11, 6 26 of 30

Table A3. Cont.

DV = ∆UF = Observed
UF—Label UF SR PHEVs N = 74 SR PHEVs N = 74 SR PHEVs N = 74 LR PHEVs N = 79

PCs Estimate Prob > |t| Estimate Prob > |t| Estimate Prob > |t| Estimate Prob > |t|

PC3.Chg *
PC2.Drv

Home-frequent and shallow
cycle * Long-distance travel - - - 0.028 0.096

SRPHEV Model Fit SRPHEV Model Fit SRPHEV Model Fit LRPHEV Model Fit

R2 0.773 0.772 0.783 0.687

Adj. R2 0.741 0.740 0.753 0.646

AIC −109.83 −109.70 −113.42 −102.98

BIC −88.74 −88.61 −92.33 −80.862

* Factors that are statistically significant at 5%; AIC and BIC-Akaike and Bayesian Information Criterion.



World Electric Vehicle Journal 2020, 11, 6 27 of 30

References

1. U.S. Environmental Projection Agency (EPA). Inventory of U. S. Greenhouse Gas Emissions and Sinks: 1990–2017;
April 11, 2019, EPA 430-R-19-001; EPA: Washington, DC, USA, 2017.

2. California Air Resources Board (CARB). California Greenhouse Gas Emissions for 2000 to 2017. Trends of Emissions
and Other Indicators; CARB: Sacramento, CA, USA, 2017.

3. California Air Resources Board (CARB). California’s Advanced Clean Cars Midterm Review; CARB: Sacramento,
CA, USA, 2017.

4. Wang, N.; Tang, L.; Pan, H. A global comparison and assessment of incentive policy on electric vehicle
promotion. Sustain. Cities Soc. 2019, 44, 597–603. [CrossRef]

5. Lutsey, N. Transition to a Global zero-Emission Vehicle Fleet: A Collaborative Agenda for Governments. 2015.
Available online: https://theicct.org/sites/default/files/publications/ICCT_GlobalZEVAlliance_201509.pdf
(accessed on 1 August 2019).

6. Poullikkas, A. Sustainable options for electric vehicle technologies. Renew. Sustain. Energy Rev. 2015, 41,
1277–1287. [CrossRef]

7. Cordera, R.; dell’Olio, L.; Ibeas, A.; Ortúzar, J.D.D. Demand for environmentally friendly vehicles: A review
and new evidence. Int. J. Sustain. Transp. 2019, 13, 210–223. [CrossRef]

8. Society of Automotive Engineers (SAE). J1711_201006: Recommended Practice for Measuring the Exhaust
Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles; SAE International:
Warrendale, PA, USA, 2010.

9. Society of Automotive Engineers (SAE). J2841_201009: Utility Factor Definitions for Plug-In Hybrid Electric
Vehicles Using Travel Survey Data; SAE International: Warrendale, PA, USA, 2010. [CrossRef]

10. U.S. Environmental Protection Agency (EPA). Dynamometer Drive Schedules. Available online: https://www.
epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules (accessed on 10 October 2018).

11. CARB. California’s Advanced Clean Cars Midterm Review, Appendix H: Plug-in Hybrid Electric Vehicle Emissions
Testing; CARB: Sacramento, CA, USA, 2017.

12. Hu, P.S.; Reuscher, T.R. Summary of Travel Trends: 2001 National Household Travel Survey. 2004. Available
online: http://nhts.ornl.gov/2001/pub/STT.pdf (accessed on 10 October 2018).

13. Bradley, T.H.; Davis, B.M. Alternative Plug in Hybrid Electric Vehicle Utility Factor; 0148-7191; SAE Technical
Paper: Warrendale, PA, USA, 2011.

14. Bradley, T.H.; Quinn, C.W. Analysis of plug-in hybrid electric vehicle utility factors. J. Power Sources 2010,
195, 5399–5408. [CrossRef]

15. Brady, J.; O’Mahony, M. Development of a driving cycle to evaluate the energy economy of electric vehicles
in urban areas. Appl. Energy 2016, 177, 165–178. [CrossRef]

16. Wu, X.; Aviquzzaman, M.; Lin, Z. Analysis of plug-in hybrid electric vehicles’ utility factors using GPS-based
longitudinal travel data. Transp. Res. Part C Emerg. Technol. 2015, 57, 1–12. [CrossRef]

17. Karabasoglu, O.; Michalek, J. Influence of driving patterns on life cycle cost and emissions of hybrid and
plug-in electric vehicle powertrains. Energy Policy 2013, 60, 445–461. [CrossRef]

18. Neubauer, J.; Brooker, A.; Wood, E. Sensitivity of plug-in hybrid electric vehicle economics to drive patterns,
electric range, energy management, and charge strategies. J. Power Sources 2013, 236, 357–364. [CrossRef]

19. Björnsson, L.-H.; Karlsson, S.; Sprei, F. Objective functions for plug-in hybrid electric vehicle battery range
optimization and possible effects on the vehicle fleet. Transp. Res. Part C Emerg. Technol. 2018, 86, 655–669.
[CrossRef]

20. Tamor, M.A.; Gearhart, C.; Soto, C. A statistical approach to estimating acceptance of electric vehicles and
electrification of personal transportation. Transp. Res. Part C Emerg. Technol. 2013, 26, 125–134. [CrossRef]

21. Smart, J.; Bradley, T.; Salisbury, S. Actual versus estimated utility factor of a large set of privately owned
Chevrolet Volts. SAE Int. J. Altern. Powertrains 2014, 3, 30–35. [CrossRef]

22. Smart, J.; Powell, W.; Schey, S. Extended Range Electric Vehicle Driving and Charging Behavior Observed Early in
the EV Project; 0148-7191; SAE Technical Paper: Warrendale, PA, USA, 2013.

23. Duhon, A.N.; Sevel, K.S.; Tarnowsky, S.A.; Savagian, P.J. Chevrolet volt electric utilization. Sae Int. J.
Altern. Powertrains 2015, 4, 269–276. [CrossRef]

24. Plötz, P.; Funke, S.Á.; Jochem, P. Empirical Fuel Consumption and CO2 Emissions of Plug-In Hybrid Electric
Vehicles. J. Ind. Ecol. 2018, 22, 773–784. [CrossRef]

http://dx.doi.org/10.1016/j.scs.2018.10.024
https://theicct.org/sites/default/files/publications/ICCT_GlobalZEVAlliance_201509.pdf
http://dx.doi.org/10.1016/j.rser.2014.09.016
http://dx.doi.org/10.1080/15568318.2018.1459969
http://dx.doi.org/10.4271/J2841_201009
https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
http://nhts.ornl.gov/2001/pub/STT.pdf
http://dx.doi.org/10.1016/j.jpowsour.2010.02.082
http://dx.doi.org/10.1016/j.apenergy.2016.05.094
http://dx.doi.org/10.1016/j.trc.2015.05.008
http://dx.doi.org/10.1016/j.enpol.2013.03.047
http://dx.doi.org/10.1016/j.jpowsour.2012.07.055
http://dx.doi.org/10.1016/j.trc.2017.12.009
http://dx.doi.org/10.1016/j.trc.2012.07.007
http://dx.doi.org/10.4271/2014-01-1803
http://dx.doi.org/10.4271/2015-01-1164
http://dx.doi.org/10.1111/jiec.12623


World Electric Vehicle Journal 2020, 11, 6 28 of 30

25. Ensslen, A.; Ringler, P.; Dörr, L.; Jochem, P.; Zimmermann, F.; Fichtner, W. Incentivizing smart charging:
Modeling charging tariffs for electric vehicles in German and French electricity markets. Energy Res. Soc. Sci.
2018, 42, 112–126. [CrossRef]

26. Clairand, J.-M.; Rodríguez-García, J.; Álvarez-Bel, C. Smart charging for electric vehicle aggregators
considering users’ preferences. IEEE Access 2018, 6, 54624–54635. [CrossRef]

27. Chung, H.-M.; Li, W.-T.; Yuen, C.; Wen, C.-K.; Crespi, N. Electric vehicle charge scheduling mechanism to
maximize cost efficiency and user convenience. IEEE Trans. Smart Grid 2018, 10, 3020–3030. [CrossRef]

28. California Air Resources Board (CARB). California’s Advanced Clean Cars Midterm Review; Appendix G, H I;
CARB: Sacramento, CA, USA, 2017.

29. U.S. Environmental Protection Agency (EPA). Special Procedures Related to Electric Vehicles and Hybrid Electric
Vehicles; 40, FR 39548, 6 July 2011, as Amended at 76 FR 57380, 15 September 2011; EPA: Washington, DC,
USA, 2011; Volume 76.

30. EIA. Analysis of the Effect of Zero-Emission Vehicle Policies: State Level Incentives and the California Zero-Emission
Vehicle Regulations; EIA: Washington, DC, USA, 2017.

31. Allen, P.; Van Horn Vermeer, G. California’s Light-Duty Vehicle Emissions Standards: The Clean Air Act Waiver,
Standards History, and Current Status; MJ Bradley & Associates Issue Brief: Concord, MA, USA, 2017; pp. 1–7.

32. Duoba, M. Design of an On-Road PHEV Fuel Economy Testing Methodology with Built-In Utility Factor
Distance Weighting. Sae Int. J. Altern. Powertrains 2012, 1, 349–353. [CrossRef]

33. Gonder, J.; Brooker, A.; Carlson, R.B.; Smart, J. Deriving in-use PHEV fuel economy predictions from
standardized test cycle results. In Proceedings of the IEEE Vehicle Power and Propulsion Conference,
Dearborn, MI, USA, 7–10 September 2009; pp. 643–648.

34. Farrell, A.E.; Sperling, D.; Arons, S.; Brandt, A.; Delucchi, M.; Eggert, A.; Farrell, A.; Haya, B.; Hughes, J.;
Jenkins, B.; et al. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis; UCB-ITS-TSRC-RR-2007-3;
UC Berkeley: Berkeley, CA, USA, 2007.

35. Aviquzzaman, M. Analysis of Plug-In Hybrid Electric Vehicles’ Utility Factors Using GPS-Based Longitudinal
Travel Data; Lamar University-Beaumont: Beaumont, TX, USA, 2014.

36. Stephens, T.S.; Levinson, R.S.; Brooker, A.; Liu, C.; Lin, Z.; Birky, A.; Kontou, E. Comparison of Vehicle Choice
Models; Argonne National Lab. (ANL): Argonne, IL, USA; Sandia National Lab. (SNL-NM): Albuquerque,
NM, USA; National Renewable Energy Lab. (NREL): Golden, CO, USA; Oak Ridge National Lab. (ORNL):
Oak Ridge, TN, USA, 2017.

37. Kim, N.; Duoba, M.; Kim, N.; Rousseau, A. Validating Volt PHEV model with dynamometer test data using
Autonomie. Sae Int. J. Passeng. Cars Mech. Syst. 2013, 6, 985–992. [CrossRef]

38. McCollum, D.L.; Wilson, C.; Pettifor, H.; Ramea, K.; Krey, V.; Riahi, K.; Bertram, C.; Lin, Z.; Edelenbosch, O.Y.;
Fujisawa, S. Improving the behavioral realism of global integrated assessment models: An application to
consumers’ vehicle choices. Transp. Res. Part D Transp. Environ. 2017, 55, 322–342. [CrossRef]

39. Wood, E.W.; Rames, C.L.; Bedir, A.; Crisostomo, N.; Allen, J. California Plug-In Electric Vehicle Infrastructure
Projections: 2017–2025-Future Infrastructure Needs for Reaching the State’s Zero Emission-Vehicle Deployment
Goals; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018.

40. U.S. Environmental Protection Agency (EPA); California Air Resources Board (CARB). EMFAC Emissions
Model; EPA: Washington, DC, USA; CARB: Sacramento, CA, USA, 2018.

41. Tal, G.; Raghavan, S.; Karanam, V.; Favetti, M.; Sutton, K.; Lee, J.H.; Nitta, C.; Chakraborty, D.; Nicholas, M.;
Turrentine, T. Advanced Plug-in Electric Vehicle Travel and Charging Behavior -Final Report; California Air
Resources Board Contract #12-319(Under Review): Sacramento, CA, USA, 2019.

42. Turrentine, T.; Tal, G. Advanced Plug-In Electric Vehicle Usage and Charging Behavior; Contract #12-319. California
Air Resources Board (CARB); California Energy Commission (CEC): Washington, DC, USA, 2015.

43. Center for Sustainable Energy. Clean Vehicle Rebate Project, Final Report Fiscal Year 2014–2015, Center for
Sustainable Energy. Prepared under Grant G14-AQIP-01 for the California Air Resources Board; Center for
Sustainable Energy: San Diego, CA, USA, 2016.

44. Environmental Protection Agency (EPA). Fuel Economy Labeling of Motor Vehicles; EPA: Washington, DC, USA,
2006; Volume 71, pp. 77871–77969.

45. Society of Automotive Engineers (SAE). J1772_201710: Electric Vehicle and Plug in Hybrid Electric Vehicle
Conductive Charge Coupler; SAE International: Warrendale, PA, USA, 2017. [CrossRef]

http://dx.doi.org/10.1016/j.erss.2018.02.013
http://dx.doi.org/10.1109/ACCESS.2018.2872725
http://dx.doi.org/10.1109/TSG.2018.2817067
http://dx.doi.org/10.4271/2012-01-1194
http://dx.doi.org/10.4271/2013-01-1458
http://dx.doi.org/10.1016/j.trd.2016.04.003
http://dx.doi.org/10.4271/J1772_201710


World Electric Vehicle Journal 2020, 11, 6 29 of 30

46. U.S. EPA. Fuel Economy Data. Available online: https://www.fueleconomy.gov/feg/download.shtml (accessed
on 1 May 2019).

47. Kaiser, H.F.; Rice, J. Little jiffy, mark IV. Educ. Psychol. Meas. 1974, 34, 111–117. [CrossRef]
48. Kaiser, H.F. A second generation little jiffy. Psychometrika 1970, 35, 401–415. [CrossRef]
49. Tobias, S.; Carlson, J.E. Brief report: Bartlett’s test of sphericity and chance findings in factor analysis.

Multivar. Behav. Res. 1969, 4, 375–377. [CrossRef] [PubMed]
50. Cerny, B.A.; Kaiser, H.F. A study of a measure of sampling adequacy for factor-analytic correlation matrices.

Multivar. Behav. Res. 1977, 12, 43–47. [CrossRef] [PubMed]
51. Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [CrossRef]
52. Chan, L.L.; Idris, N. Validity and Reliability of The Instrument Using Exploratory Factor Analysis and

Cronbach’s alpha. Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 400–410.
53. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Prentice

Hall: Upper Saddle River, NJ, USA, 2006; Volume 6.
54. Salkind, N.J. Encyclopedia of Research Design; Sage: Thousand Oaks, CA, USA, 2010; Volume 2.
55. Yong, A.G.; Pearce, S. A beginner’s guide to factor analysis: Focusing on exploratory factor analysis.

Tutor. Quant. Methods Psychol. 2013, 9, 79–94. [CrossRef]
56. Schmitt, T.A.; Sass, D.A. Rotation criteria and hypothesis testing for exploratory factor analysis: Implications

for factor pattern loadings and interfactor correlations. Educ. Psychol. Meas. 2011, 71, 95–113. [CrossRef]
57. Osborne, J.W.; Costello, A.B.; Kellow, J.T. Best practices in exploratory factor analysis. In Best Practices in

Quantitative Methods; Sage: Thousand Oaks, CA, USA, 2008; pp. 86–99.
58. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R.

Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [CrossRef]
59. Grömping, U. Estimators of relative importance in linear regression based on variance decomposition.

Am. Stat. 2007, 61, 139–147. [CrossRef]
60. Tonidandel, S.; LeBreton, J.M.; Johnson, J.W. Determining the statistical significance of relative weights.

Psychol. Methods 2009, 14, 387. [CrossRef]
61. Tonidandel, S.; LeBreton, J.M. Relative importance analysis: A useful supplement to regression analysis.

J. Bus. Psychol. 2011, 26, 1–9. [CrossRef]
62. Boston, D.; Werthman, A. Plug-in vehicle behaviors: An analysis of charging and driving behavior of ford

plug-in electric vehicles in the real world. World Electr. Veh. J. 2016, 8, 926–935. [CrossRef]
63. EPA, U.S. Title 40-Protection of Environment. Fuel Economy and Greenhouse Gas Exhaust Emissions of

Motor Vehicles. Special procedures related to electric vehicles and hybrid electric vehicles. In 40 CFR §
600.116-12; Title 40, Subchapter Q, Part 600; EPA: Washington, DC, USA, 2019; Chapter I.

64. California Air Resources Board (CARB). California Air Resources Board Zero Emission Vehicle Program; CARB:
Sacramento, CA, USA, 2016.

65. Bureau of Transportation Statistics (BTS). Long Distance Transportation Patterns: Mode Choice. Available
online: https://www.bts.gov/statistical-products/surveys/national-household-travel-survey-summer-travel-
quick-facts (accessed on 15 July 2018).

66. Wesseling, J.; Niesten, E.; Faber, J.; Hekkert, M. Business strategies of incumbents in the market for electric
vehicles: Opportunities and incentives for sustainable innovation. Bus. Strategy Environ. 2015, 24, 518–531.
[CrossRef]

67. Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151.
[CrossRef]

68. Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for
the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [CrossRef] [PubMed]

69. Fritz, M.S.; MacKinnon, D.P. Required sample size to detect the mediated effect. Psychol. Sci. 2007, 18,
233–239. [CrossRef]

70. Champoux, J.E.; Peters, W.S. Form, effect size and power in moderated regression analysis. J. Occup. Psychol.
1987, 60, 243–255. [CrossRef]

71. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988.
72. Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun.

2002, 145, 280–297. [CrossRef]

https://www.fueleconomy.gov/feg/download.shtml
http://dx.doi.org/10.1177/001316447403400115
http://dx.doi.org/10.1007/BF02291817
http://dx.doi.org/10.1207/s15327906mbr0403_8
http://www.ncbi.nlm.nih.gov/pubmed/26745847
http://dx.doi.org/10.1207/s15327906mbr1201_3
http://www.ncbi.nlm.nih.gov/pubmed/26804143
http://dx.doi.org/10.1007/BF02291575
http://dx.doi.org/10.20982/tqmp.09.2.p079
http://dx.doi.org/10.1177/0013164410387348
http://dx.doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.1198/000313007X188252
http://dx.doi.org/10.1037/a0017735
http://dx.doi.org/10.1007/s10869-010-9204-3
http://dx.doi.org/10.3390/wevj8040926
https://www.bts.gov/statistical-products/surveys/national-household-travel-survey-summer-travel-quick-facts
https://www.bts.gov/statistical-products/surveys/national-household-travel-survey-summer-travel-quick-facts
http://dx.doi.org/10.1002/bse.1834
http://dx.doi.org/10.1177/001316446002000116
http://dx.doi.org/10.3758/BF03193146
http://www.ncbi.nlm.nih.gov/pubmed/17695343
http://dx.doi.org/10.1111/j.1467-9280.2007.01882.x
http://dx.doi.org/10.1111/j.2044-8325.1987.tb00257.x
http://dx.doi.org/10.1016/S0010-4655(02)00280-1


World Electric Vehicle Journal 2020, 11, 6 30 of 30

73. Federal Highway Administration (FHWA). National Highway System Length; FHWA: Washington, DC,
USA, 2018.

74. U.S. Department of Transportation (DOT). Transportation and Health Tool; DOT: Washington, DC, USA, 2016.
75. Santos, A.; McGuckin, N.; Nakamoto, H.Y.; Gray, D.; Liss, S. Summary of Travel Trends: 2009 National

Household Travel Survey. 2011. Available online: http://nhts.ornl.gov/2009/pub/stt.pdf (accessed on 15
July 2018).

76. Tal, G.; Dunckley, J. Plug-In Electric Vehicle Multi-State Market and Charging Survey; 3002007495; EPRI (Electric
Power Research Institute): Palo Alto, CA, USA, 2016.

77. Tal, G.; Nicholas, M.A.; Woodjack, J.; Scrivano, D. Who is Buying Electric Cars in California? Exploring Household
and Vehicle Fleet Characteristics of New Plug-In Vehicle Owners; UCD-ITS-RR-13-02; UC Davis: Davis, CA,
USA, 2013.

78. Leard, B.; Linn, J.; Munnings, C. Explaining the evolution of passenger vehicle miles traveled in the United
States. Energy J. 2019, 40. [CrossRef]

79. Gillingham, K.; Kotchen, M.J.; Rapson, D.S.; Wagner, G. Energy policy: The rebound effect is overplayed.
Nature 2013, 493, 475. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://nhts.ornl.gov/2009/pub/stt.pdf
http://dx.doi.org/10.5547/01956574.40.1.blea
http://dx.doi.org/10.1038/493475a
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Driving and Charging Data 
	Quantitative Methods 
	Validity and Suitability of the Data for PCA 
	OLS Model Development 


	Analysis and Results 
	Descriptive Comparisons 
	Observed UF and Expected UF 
	Observed Driving Styles and EPA Dynamometer Test Cycles 
	Daily VMT Comparisons among the Observed PHEV Models 
	Charging Frequency and Travel Day Starting SOC 
	Charging Location Distance from Home 

	Principle Components Analysis(PCA) of Driving and Charging Behavior 
	OLS Regression Model Results 
	Assessing the Relative Importance of Influential Driving and Charging Traits 
	Examining the Interaction Effects 


	Discussion 
	Conclusions and Future Research Directions 
	
	References

