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Abstract: The extended-range electric vehicle (E-REV) can solve the problems of short driving
range and long charging time of pure electric vehicles, but it is necessary to control the engine
working points and allocate the power of the energy sources reasonably. In order to improve
the fuel economy of the vehicle, an energy management strategy (EMS) that can adapt to the
daily driving characteristics of the driver and adjust the control parameters online is proposed
in this paper. Firstly, through principal component analysis (PCA) and iterative self-organizing
data analysis techniques algorithm (ISODATA) of historical driving data, a typical driving cycle
which can describe driving characteristics of the driver is constructed. Then offline optimization of
control parameters by adaptive simulated annealing under each typical driving cycle and online
recognition of driving cycles by extreme learning machine (ELM) are applied to the adaptive
multi-workpoints energy management strategy (A-MEMS) of E-REV. In the end, compared with
traditional rule-based control strategies, A-MEMS achieves good fuel-saving and emission-reduction
result by simulation verification, and it explores a new and feasible solution for the continuous
upgrade of the EMS.

Keywords: extended-range electric vehicle; extreme learning machine; driving cycle;
adaptive simulated annealing; energy management strategy

1. Introduction

In recent years, problems caused by energy shortage and environmental pollution are serious and
need to be solved by energy-saving, emission-reduction and a low-carbon lifestyle. The hybrid electric
vehicle is a transition model of a traditional internal combustion engine vehicle to a pure electric
vehicle. After years of development, hybrid technology has become quite mature. Extended-range
electric vehicle (E-REV), a type of hybrid electric vehicle, has an extra range extender, which includes
an engine and a generator [1]. Since E-REV has two energy sources and each energy source has its own
high-efficient range, the fuel-consumption performance of E-REV is sensitive to driving conditions [2].
In order to improve the vehicle economy and reduce emissions, its energy management strategy (EMS)
needs to consider the real driving condition, and be constructed based on driving cycle recognition [3].

A driving cycle is a speed-time profile for a vehicle driving under a specified condition [4],
usually represented by small fragments segmented from driving data, which are used as samples
to build the driving condition database. Many researchers extracted different characteristics of the
data to describe the driving cycle and attempted to reduce the dimension of feature vector [5–7].
Classical machine learning algorithm, like k-means [8], hidden Markov models [9], fuzzy c-means [10]
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is widely used in driving data analysis and driving cycle clustering. Recently with the development
of deep learning, a neural network has been wildly applied in the field of pattern recognition and
achieved good performances [11]. Lorenzo Berzi divided driving data into nine categories and
built a GUI for generating driving cycle for electrical vehicles in the city of Florence according to
different requirements [12]. Countries also have corresponding driving cycles for vehicle testing [4].
Donateo et al. [13] built a driving cycle for EU6d Emission Regulation and studied the effect of speed
and acceleration on emission. In 2019, China Light-duty vehicles Test Cycle-Passenger (CLTC-P) were
introduced [14,15].

In order to make the vehicle adapt to the complex and changeable driving conditions,
the energy management problem of E-REV has attracted the attention of researchers in the past
decade [16]. EMS can be divided into two categories: rule-based control and optimization-based
control. Rule-based control includes thermostat control strategy, power following control strategy,
and multi-workpoints control strategy [17], which build control rules by experiments and engineering
experience. These strategies have a wide range of applications, but are poorly targeted.

The optimization-based energy management strategy is divided into global optimization
and real-time optimization. Global optimization includes Dynamic Programming (DP) [18] and
Pontryagin’s Minimum Principle (PMP) [19]. DP can obtain the multi-stage optimization decision
under the situation where the global driving cycle is known, but its calculation is too difficult
to be applied in real-time control. Meanwhile, the distribution of engine working points by DP
is scattered, but most studies did not consider transient fuel consumption and its error with the
steady-state fuel consumption model could reach 58% [20]. Therefore, single-point control is often
used in practical applications, such as Nissan e-power [21] which can avoid the impact of transient
fuel consumption. For real-time optimal control strategy, the equivalent consumption minimum
strategy (ECMS) and model predictive control (MPC) are the two most common strategies. MPC
predicts the power demand of the vehicle in the future by real-time driving data, and optimizes the
power distribution ratio between engine and battery to achieve low fuel consumption [22]. ECMS
minimizes the equivalent fuel consumption at each time which simplifies the dynamic optimization
problem to an instantaneous optimization problem [23]. Nowadays, deep reinforcement learning
(RL) has become a popular research topic [24–26]. Learning-based strategy has a good capability
of generalization to complex driving conditions by continuous learning and achieves almost the
same performance as DP. The proposed energy management strategy based on Deep Q-network in
Ref [24] achieves 16.3% energy savings on a typical commute trip. However, though RL-based optimal
and predictive control strategy is model-free, it is fully data-driven and needs a large number of
training samples. Some EMS optimizes the control parameters offline by genetic algorithms (GA)
[27] and simulated annealing (SA), which can also be applied in real-time control to improve the fuel
economy. Lei optimized parameters of powertrain components and thermostat control strategy by
simulated annealing particle swarm optimization under 23 typical driving cycles, and reduced the fuel
consumption by 11.68% [28].

The optimization of control parameters based on driving cycle recognition is necessary for
fuel economy [28]. However, the existing driving cycles are difficult to reflect personal driving
characteristics and daily commute routes. Few papers analyzed how to optimize control parameters
based on personal historical driving data. In this paper, ISODATA is used to cluster personal driving
data to construct typical driving cycles for a specific driver, and the control parameters are optimized
for each typical driving cycle by adaptive simulated annealing. In addition, the selection of control
parameters is based on the engine multi-point control strategy, which can better adapt to different
power requirements than the single-point control used in Nissan e-power [29].

The sections of this paper are organized as follows. In Section 2, constructing the typical
driving cycle of a specific driver by data preprocessing, principal component analysis and clustering.
In Section 3, establishing a novel energy management strategy by control parameter offline
optimization under typical driving cycles and driving cycle online recognition. Meanwhile, the
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result of fuel consumption and emissions is verified by simulation compared with other control
strategies, which is followed by the conclusion in Section 4.

2. Driving Cycles Clustering and Recognition

The real driving conditions are complex and changeable, in order to construct an effective EMS
which can improve the fuel economy of an extended-range electric vehicle, it is necessary to construct
typical driving cycles that can accurately and reliably characterize the driver’s driving condition [30].

As shown in Figure 1, the typical driving cycle construction method for a specific driver can be
divided into following four steps:

1. Collection and preprocessing driver’s driving data.
2. Selection and principal component analysis of driving characteristics.
3. Cluster analysis and verification of driving characteristics.
4. Construction typical driving cycles for the driver.

Reasonable ?

Determine experimental methods

Collect the driving data of a driver

 Driving data preprocessing 

Dividing  driving fragments

Calculate characteristics of fragment
and correlation analysis

Principal component analysis of 
driving  characteristics 

ISODATA clustering analysis of  
driving fragments

Evaluating the rationality of 
clustering results     

NO

Extract the driving fragments 
by clustering results

Construct the driver's typical 
driving cycles

YES

Collection and preprocessing 
of driving data

Principal component analysis 
of driving cycles

Clustering analysis of 
 driving cycles

Construct typical driving cycles

Figure 1. Construction process for typical driving cycles.

2.1. Driving Data Preprocessing

In this work, the experimental vehicle is driven by a specific driver who basically follows a fixed
commute route on weekdays. The vehicle is equipped with a Global Positioning System (GPS) receiver
HOLUX RCV-3000 with MT3333 chipset and 4 MB flash memory for 250,000 log data recording such
as speed, time, longitude, latitude and altitude. The acquisition time is 1 s. The collected real-time
vehicle driving data was stored in the driving database and can be exported by its supporting software.
However, errors will inevitably be encountered during the measurement process, thus the collected
driving data needs to be preprocessed. The causes of errors include data loss, data anomalies and
noise data.

The data loss due to discontinuity-time caused by a short-time failure of the GPS receiver can be
complemented by interpolation; the data loss caused by factors such as long-term failure of the GPS
or external building occlusion can be directly eliminated. Data anomalies commonly include speed
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or acceleration/deceleration anomalies, which can use linear interpolation to solve; and if it is the
anomaly of latitude and longitude or long-term idle speed, it can be eliminated.

The acquired signal often contains noise. If these noise signals are not removed, the result may be
affected or even the wrong conclusion may be drawn. Wavelet noise reduction uses wavelet transform
to eliminate the noise contained in the original signal. It can not only effectively remove noise, but also
retain the characteristics of the original signal to the greatest extent [31]. The application of wavelet
analysis has been used not only in the field of mathematics, but also in the fields of signal analysis,
image processing, medicine, and computers.

The vehicle speed data is a non-stationary random signal, which is a continuous quantity in time
and amplitude [32]. Taking it at a certain time interval can obtain a series of one-dimensional discrete
signals f (t) arranged in time, whose discrete wavelet transform is shown as Equation (1).

W f (a, b) = 2−a/2
N−1

∑
t=0

f (t)ψ̂(
t− b

2a ), (1)

where a and b respectively represent the expansion factor and translation factor. ψ̂ is the
fourier transform.

In order to realize finite discrete wavelet transform calculation, the numerical calculation often
uses the multi-resolution signal decomposition algorithm proposed [33]. W f (a, b) can be represented
as a pair of H = hk and G = gk filters (k ∈ Z). h̃k and g̃k represent the corresponding image filter. If the
discrete sampling signal of f (t) is expressed as {C(n)}, n is the sampling point. Driving speed time
series v(0)n is regarded as the original signal of scale 0. Then the orthogonal wavelet decomposition can
be written as Equations (2) and (3).

vj(n) = ∑
k∈Z

h̃(k− 2n)vj−1(k) (2)

Dj(n) = ∑
k∈Z

g̃(k− 2n)Dj−1(k), (3)

where vj(n) and Dj(n) are discrete approximation and discrete detail at 2j resolution, which indicate
the wavelet transform coefficient at this resolution. j = 0, 1, · · · , J, J is the highest decomposition level.

Decompose the original signal v(0) into two parts, namely discrete approximation v(1) and
discrete detail D(1), and then further decompose the discrete approximation signal to obtain the
decomposition results {v(J), D(J), D(J−1), · · · , D(1)}. The threshold of wavelet transform changes with
the decomposing scale. We retain the detail with absolute values greater than or equal to the threshold
at each scale. Conversely, due to the orthogonality of the decomposition, the original signal v(0) can be
reconstructed from {v(J), D(1), D(2), · · · , D(J)} shown as Equation (4).

vj−1(n) = ∑
k∈Z

h(n− 2k)vj(k) + ∑
k∈Z

g(n− 2k)Dj(k). (4)

According to the above principle, the vehicle speed signal, denoised by wavelet, can be obtained.
Common indexes for evaluating the effect of wavelet denoising include root mean square error (MSE),
signal-to-noise ratio (SNR) and smoothness [34]. MSE reflects the similarity between the original signal
and the denoised signal. The smaller value of MSE, the more the original signal information is retained.

MSE =
1
n

n

∑
i=1

(v(i)− v̂(i))2, (5)

where v(i) is the original signal and v̂(i) is the denoised signal. n is the length of the signal.
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SNR is the ratio of the signal energy to the noise energy. The greater value of SNR, the better the
denoising effect.

SNR = 10 · lg(
n

∑
i=1

(v(i)2/
n

∑
i=1

(v(i)− v̂(i))2). (6)

Smoothness is an important indicator to judge the effect of abnormal data processing. The smaller
the smoothness, the better the effect of abnormal data processing.

Smoothness =
n−1

∑
i=1

(v̂(i + 1)− v̂(i))2/
n−1

∑
i=1

(v(i + 1)− v(i))2. (7)

The daubechies wavelets at different scales are used to decompose the driving data. The SNR,
MSE and smoothness at each decomposition scale are shown in Table 1. It can be seen from the table
that the MSE is greatly increased and the SNR is greatly reduced at the seven-scale. Therefore, in order
to make the obtained speed signal smoother while ensuring a better denoising effect, the decomposition
scale is chosen to be 6.

Table 1. Indexes of wavelet denoising at different decomposition scales.

Decomposition Scale SNR MSE Smoothness

3 30.683 0.6210 0.9705

4 30.649 0.6239 0.9247

5 30.587 0.6341 0.7052

6 30.543 0.6342 0.4434

7 28.348 0.6681 0.3980

8 27.261 0.6617 0.4567

Db wavelet and six-decomposition scale are used to perform wavelet denoising on the collected
vehicle speed data. The vehicle speed and acceleration before and after noise reduction are shown in
Figure 2. It can be seen from the figure that the speed and acceleration curve of the vehicle after wavelet
denoising is smoother than before and the frequent fluctuation is reduced, which is more in line with
the actual situation. That means the ideal denoising effect is obtained by using wavelet denoising.
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Figure 2. Original and wavelet-denoised driving characteristics: (a) original and denoising speed
signal and speed noise. (b) Original and denoising acceleration signal.
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Meanwhile, the power spectral density of the original vehicle speed signal and denoising
signal is shown in Figure 3. The power spectrum of original speed signal has large fluctuations
in the high-frequency phase, indicating that there is noise in the signal. After wavelet denoising,
the fluctuation of power spectrum decreases after 0.2 Hz, and the power spectrum tends to zero after
0.4 Hz. In the low-frequency phase, the power spectrum is basically consistent with the original signal,
indicating that the information of the signal is better-remained without distortion.
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Figure 3. The power spectral density of vehicle speed.

2.2. Characteristics Selection and Principal Component Analysis

This paper divides the collected driving data into short fragments, called kinematics sequences,
and extracts the characteristics from each fragment. The kinematics sequences means the vehicle
speed interval from the start of the idling state to the start of the next idling state, including the
idling segment, acceleration segment, deceleration segment and even speed segment. Through the
extraction and analysis of a large number of kinematics sequences, the daily driving law of the driver
can be obtained, and optimizing the energy management strategy according to this law can improve
the fuel economy and the emission.

A total of 1562 kinematics sequences are extracted from the historical driving database.
The 21 characteristics in the Table 2 have different characterization capabilities for these fragments.
Among them, the acceleration phase in this paper refers to the process of vehicle acceleration greater
than 0.14 m/s2, and the deceleration phase refers to the process of vehicle deceleration greater than
0.14 m/s2. The even speed phase refers to the process where the vehicle speed is not zero and the
acceleration and deceleration are both less than 0.14 m/s2, and the idle speed phase refers to the
vehicle speed is zero.

Table 2. Characteristics of driving cycle.

Number Characteristics Unit

1 Average speed km/h

2 Maximum speed km/h

3 Standard deviation of speed km/h

4 Maximum acceleration m/s2

5 Maximum deceleration m/s2

6 Average acceleration m/s2

7 Average deceleration m/s2

8 Standard deviation of acceleration m/s2

9 Standard deviation of deceleration m/s2

10 Acceleration time ratio %
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Table 2. Cont.

Number Characteristics Unit

11 Deceleration time ratio %

12 Even speed time ratio %

13 Idle speed time ratio %

14 Mileage km

15 Proportion in speed range of 0–20 km/h %

16 Proportion in speed range of 20–40 km/h %

17 Proportion in speed range of 40–60 km/h %

18 Proportion in speed range of 60–80 km/h %

19 Accelerating time s

20 Decelerating time s

21 Even speed time s

Under the premise of ensuring that the driving information contained in kinematics sequences is
basically unchanged, screening the characteristics in Table 2 can reduce the amount of calculation and
eliminate the mutual interference between the characteristics. Meanwhile, it will improve the accuracy
of the cluster analysis, and ultimately construct a reasonable driving cycle for the specific driver.

The correlation coefficient method is applied to solve the correlation between each characteristic
of driving cycles and the correlation between the characteristics and the fuel consumption of the
vehicle which will be used as the basis for screening. The correlation coefficient is determined by
Equation (8).

Rcor =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

, (8)

where xi and yi are the i-th sample in two characteristics. x and y are the average value of the two
characteristics respectively.

The correlation coefficient between the characteristics of driving cycles and the correlation between
the characteristics and the fuel consumption of the vehicle is shown in Figure 4. It is worth pointing
out that the self-correlation coefficient of each characteristic is 1. Comprehensively considering
the influence of characteristics on fuel consumption and the correlation between characteristics,
13 characteristics of driving cycles are obtained after screening.

The 13 characteristics such as the average speed, the maximum speed and the standard deviation
of the vehicle speed are represented by x1, x2, · · · , x13. Characteristics of 1562 kinematics sequences
are represented by matrix A = (aij)1562×13. i is the index of kinematics sequences. [ai1, ai2, · · · , ai13] is
the characteristics of i-th kinematics sequences. However, if clustering analysis is carried out directly,
the amount of calculation is large due to matrix A = (aij)1562×13 is huge. Principal Component
Analysis (PCA) method can be used to reduce the dimension of feature vectors which can retain the
original information to the greatest extent [35].

Figure 5 shows the variance contribution rate of each principal component and the cumulative
variance contribution rate. It can be seen that the cumulative variance contribution rate of the first four
principal components is 89.41%. The cumulative variance contribution rate of the first four principal
components exceeds 85%, indicating that they contain most of the original driving data information [1].
That means after PCA, the dimension of the characteristics is further reduced from 13 to 4, which
achieves the purpose of reducing the amount of calculation and lays the foundation for the subsequent
cluster analysis.
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Figure 4. Correlation coefficient between characteristics of driving cycles: (a) correlation coefficient
between each characteristic. (b) Correlation coefficient between characteristics and fuel consumption.
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Figure 5. The variance contribution rate of each principal component and the cumulative variance
contribution rate of principal components.

The linear combination coefficients of the first to fourth principal component eigenvectors are
shown in the Figure 6.
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Figure 6. Linear combination coefficients of eigenvectors in the first four principal components: (a)
coefficients of 1st principal component. (b) Coefficients of 2nd principal component. (c) Coefficients of
3rd principal component. (d) Coefficients of 4th principal component.

2.3. Cluster Analysis of Driving Cycle

Four principal components obtained after dimensionality reduction are used as the parameters
reflecting the kinematics sequences. Next, the kinematics sequences need to be clustered to obtain
several typical driving cycles for the driver, which is convenient for subsequent simulation analysis of
fuel economy. Clustering is to divide the sample set into different categories according to a criterion.
The purpose is to divide the samples with greater similarity into one category, and the similarity
between different categories is as small as possible [36]. Common criteria are based on the distance
between samples, that is, the smaller distance is divided into the same category, and the larger
distance is divided into different categories. Euclidean distance is the most widely used method to
measure the distance between samples. Therefore, this paper select Euclidean distance to calculate the
distance between samples. The expression of Euclidean distance between two vectors is as shown in
Equation (9).

dxy =

√
n

∑
i=1

(xi − yi)
2. (9)

The K-means clustering method is a fast, simple and effective clustering algorithm, so it is often
used in cluster analysis. The parameter k in the K-means algorithm represents the number of categories
to be divided and is determined by man. Different classification numbers k may lead to completely
different results. The brief flow of the K-means algorithm is shown as Table 3.
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Table 3. Brief flow of K-means algorithm.

BEGIN Input clustering samples and number of cluster centers, search

clustering center C1, C2, · · · , Cn.

DO Divide each sample into the nearest cluster center.

UNTIL Cluster centers no longer change

END

The K-means algorithm is suitable for data whose category number has been determined.
For clustering data with unknown categories number and high dimensions, Iterative Self-Organizing
Data Analysis Techniques Algorithm (ISODATA) can be considered. The ISODATA algorithm is
an improved K-means algorithm which does not need to manually determine the number of
categories [37]. The flow of ISODATA is shown in the Figure 7.

Figure 7. Flow diagram of ISODATA clustering.

The ISODATA clustering algorithm introduces man–machine dialogue links by setting
initial parameters, and uses mechanisms such as merging and splitting. When the center distance



World Electric Vehicle Journal 2020, 11, 54 11 of 24

between two clusters is less than a certain threshold, they are merged into one class. When the standard
deviation of a certain type is greater than a certain threshold or when the number of samples exceeds a
certain threshold, it is split into two types, and when the number of samples of a certain type is less
than a certain threshold, it is cancelled. In this way, iterate according to the parameters such as the
initial clustering center and the threshold, and finally obtain an ideal clustering result.

K-means and the ISODATA method were respectively used to cluster the driving cycle data.
Clustering effect was evaluated using indicators such as the silhouette coefficient, Calinski–Harabaz
index (CH), and Davies–Bouldin index (DBI) which are applied when the actual category information
is unknown.

If the silhouette coefficient, whose range is [−1,1], is close to 1, it means that the clustering
effect is good. A large value of CH means the samples in the sample category are more concentrated,
and the distance between different categories is larger. The DBI is the average level that measures
the maximum similarity of each clustering result. The smaller the value is, the greater the similarity
among samples in the same category is, and the clustering effect is better.

As is shown in Table 4, silhouette coefficient and CH indexes of ISODATA method are the highest,
and the index of DBI is just higher than K-means with three categories, which means that the clustering
effect of ISODATA is better than K-means algorithms. As is shown in Figure 8, except for a small
number of samples in the first and fifth categories whose silhouette coefficients are less than 0,
the silhouette coefficients of other samples are relatively large. That also means ISODATA clustering
is reasonable.

Table 4. Evaluation index of clustering effect by K-means and ISODATA method.

Clustering Algorithm Contour Coefficient CH DBI

K-means (3 categories) 0.4859 595.12 0.9180

K-means (4 categories) 0.4612 582.02 1.0425

K-means (5 categories) 0.4771 552.93 0.9935

K-means (6 categories) 0.4883 549.37 0.9561

K-means (7 categories) 0.4400 531.24 0.9938

ISODATA 0.4907 597.11 0.9235
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Figure 8. The silhouette coefficient of ISODATA clustering.

Based on the first four principal components mentioned above, the distribution of the clustering
samples using ISODATA in the principal components space is shown in Figure 9. It can be seen from
the figure that the samples are divided into five categories and boundary separation between the
various types is obvious.
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Select the kinematics fragment closest to the cluster center in each category as the typical driving
cycle, shown in Figure 10. It can be seen from the figure that the difference between cycles is large,
indicating that the clustering effect is good.

The characteristics value of five typical driving conditions is shown in Table 5, the meaning of the
corresponding characteristic number is shown in Table 2. The collected data is the daily driving route
of a driver in the urban area, so there is no high-speed section. Types 1 and 2 are urban congested road
sections, with a frequent start and stop and low average speed. Type 2 congestion is more serious,
and the proportion of 0–20 km/h reaches 75%. Type 5 is a relatively smooth section of the urban area.
Types 3 and 4 are the city expressways where the maximum speed exceeds 60 km/h. Type 4 has an
even speed for a long time, and the average speed is high, indicating the road condition is smooth.
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Figure 9. The distribution of the clustering samples using ISODATA in the first three principal
components space.
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Figure 10. Five typical driving cycles after cluster analysis.
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Moreover, to further illustrate that the typical driving cycles constructed in this paper are more
suitable for the collected driving data than existing driving cycles, like CLTC-P, WLTC and NEDC.
The probability density function of each phase (idle, even speed, acceleration and deceleration) and
speed in each driving cycle, and a scatter plot of average speed and idle speed time ratio are shown in
Figure 11.

As is shown in Figure 11, the four phases of CLTC-P are approximately equal, which is more
similar to the collected driving data than NEDC and WLTC. However, the speed of the high-speed
section in CLTC-P is too high, which does not meet the driving conditions in the urban area. This
also shows that the driving cycle can better reflect the driving characteristics of most drivers in a
certain area, but lack of pertinence. So compared with the existing driving cycles, the probability
density function of typical driving cycle constructed for the specific driver is similar to the collected
driving data, and can reflect the daily driving condition and driving characteristics. There are still
some differences between the two mainly because some kinematics fragments are not well classified
whose silhouette coefficients are less than 0 in Figure 8. In Figure 11c, it can also be seen that the
five typical driving cycle is different from existing driving cycles in average speed and idle speed
time ratio.

Table 5. Characteristics of five typical driving cycles.

Characteristics Number 1 2 3 6 7 8 9

Type 1 15.548 45.293 12.091 0.432 −0.409 0.314 0.273

Type 2 12.289 46.993 12.563 0.404 −0.423 0.236 0.294

Type 3 27.722 78.285 20.226 0.462 −0.467 0.293 0.340

Type 4 48.732 78.209 22.735 0.389 −0.418 0.256 0.320

Type 5 27.536 58.340 16.260 0.466 −0.492 0.340 0.302

Characteristics Number 13 15 16 19 20 21

Type 1 20.8 59.5 38.5 224 238 283

Type 2 22.4 75.1 22.0 251 237 222

Type 3 7.5 39.0 32.3 320 315 310

Type 4 5.3 17.1 11.5 423 397 1323

Type 5 10.2 30.2 42.8 269 260 389
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Figure 11. Comparison between typical driving cycles for a specific driver and existing driving cycles:
(a) probability density function of phase. (b) Probability density function of speed. (c) Scatter plot of
the average speed and idle speed time ratio.

2.4. Driving Condition Recognition Based on Extreme Learning Machine

The driving cycle recognition is to analyze the characteristics of the kinematics sequences and
compare it with the characteristics of the known driving cycles, so as to identify the driving cycle of
the vehicle. Extreme Learning Machine (ELM) is a new algorithm produced for the shortcomings of
the single hidden layer feedforward neural network algorithm, which has the advantages of better
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generalization performance and faster learning speed [38]. The algorithm randomly generates the
threshold of the hidden neuron and the connection weight between the input layer and the hidden layer,
and does not need to be adjusted during the training process, only needs to set the number of hidden
layer neurons. This work will use ELM to recognize driving cycles.

The network structure of the ELM, which is similar to the traditional BP neural network, includes
three layers: the input layer, the hidden layer, and the output layer shown in the Figure 12. Each neuron
in the input layer represents the characteristics used for driving cycle recognition. The hidden layer
has only a single layer whose number of neurons can be adjusted. The number of neurons in the
output layer is the only one whose output value is equal to the type of typical driving cycle.

b1

b2

bM

x2

x3

x4

x1x1

oo

Figure 12. The structure of single-hidden layer feedforward neural network.

The input sample set of the extreme learning machine is X = [x1, x2, ..., xN ], N is the number of
samples of driving cycle. x = [x1, x2, x3, x4] is the sample feature vector whose dimension is equal to
the number of principal components obtained above, used for driving condition recognition. Therefore,
the number of neurons in the input layer is also four.

Then if there are M neurons in the hidden layer, the output of the hidden layer of the ELM can be
expressed as Equation (10).

H =


g(ω1 ·x1+b1) · · · g(ωM ·x1+bl)

... · · ·
...

g(ω1 ·xN+b1) · · · g(ωM ·xN+bl)


N×M

, (10)

where ωj = [ωj, ωj1, ωj2, ωj4] is the weight and bj is the bias of the j-th hidden layer neuron. g(x) is
the activation function of hidden layer neurons, selecting Sigmoid function in this work.

The output of the output layer can be expressed as Equation (11). β j is the the weight between the
output layer neuron of ELM and the j-th hidden layer neuron.

o =
l

∑
j=1

β jg(ωj · xi + bj), (11)

when learning using ELM, if the activation function g(x) is infinitely differentiable, the parameters of
the network do not need to be adjusted, ω and b are randomly generated during the training process,
and remain unchanged during the training process. The weight β between the hidden layer and the
output layer is obtained by solving the least square solution of the equation, shown as Equation (12)

min
β
‖Hβ− T‖ (12)

The solution β̂ is shown as Equation (13).

β̂=H+T, (13)
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where H+ is the generalized inverse matrix of the hidden layer output matrix H. T is the expected
output of the network, which is the result of the above clustering.

The driving cycle samples obtained by clustering are divided into a training set and a test set
with a 7:3 ratio, and each sample includes four principal component and the label of typical driving
cycle type. By calculating the error between the predicted value and the expected value of the
sample set, the generalization performance of the network is evaluated.

The hidden layer with different numbers of neural nodes obtains different result. It is necessary
to select the appropriate number of nodes according to actual needs. The total recognition rate
including training set and test set obtained by different numbers of neurons is shown in Figure 13.
When the number of hidden layer nodes is 80, the recognition rate reaches 91.3%, which meets actual
requirements, and also verifies that the characteristics do not lose the main information of the driving
cycle data. When the number of nodes continues to increase, the recognition rate does not increase
significantly, so 80 hidden layer nodes are selected for driving cycle recognition.
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Figure 13. Recognition rate of extreme learning machine (ELM) with different number of hidden
layer nodes.

3. Energy Management Strategy for E-REV Based on Driving Characteristics

This section proposes an optimized energy management strategy of the E-REV based on
driving characteristics. AVL Cruise is used to establish the vehicle model of E-REV and
energy management strategy. With the goal of minimum energy consumption and emissions,
off-line optimization calculation is performed for the five typical driving conditions selected above.
Then the extreme learning machine is used to classify the actual driving cycles into five typical driving
conditions, and the off-line optimization results are used for real-time energy management. Compared
with the results of traditional energy management strategies, analyzing the energy-saving effect of this
optimized energy management strategy.

3.1. Multi-Objective Optimization for Typical Driving Conditions

The basic parameters of the E-REV built in this paper shown in Table 6. According to the engine
test data, the engine external characteristic curve and the brake specific fuel consumption (BSFC) map
is shown in Figure 14a. Figure 14b is the efficiency map and maximum torque curve of the motor.

Table 6. Basic parameters of E-REV.

Vehicle Parameter Value Unit

Weight 1300 kg

Wheelbase 2.46 m

Generator maximum power 56 kW

Motor maximum power 82 kW

Battery capacity 2.88 kWh

Main reduction ratio 6.24 −
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Figure 14. Power system map of extended-range electric vehicle (E-REV). (a) The external characteristic
curve and brake specific fuel consumption (BSFC) map of the engine. (b) The maximum torque curve
and efficiency map of the motor.

Common rule-based EMS of E-REV includes the thermostat control strategy, power following
control strategy, and multi-workpoints control strategy.

1. Thermostat control: when the State of Charge (SOC) of battery is between SOCmin and SOCmax,
the engine maintains the working state; when SOC is more than SOCmax, the engine is turned off
and runs on pure electric power; when SOC is less than SOCmin, the engine works at the highest
efficiency point, and the excess energy charges the battery. This strategy can effectively avoid
engine start and stop frequently, but batteries often charge and discharge with a large current
which is extremely bad for battery life.

2. Power following control: this strategy determines the working state of the engine according to the
power demand of the vehicle and SOC of the battery. Only when SOC more than SOCmax and the
power demand is less than Pelow, the engine will turn off. Under this control strategy, the battery
can maintain the best performance state, but frequent engine fluctuations are detrimental to the
economy and fuel consumption.

3. Multi-workpoints control: the strategy is to make the engine work at different working points
according to the vehicle’s power demand and battery SOC. Too many working points will cause
the engine fluctuation to become larger, and too few working points will not avoid the power
battery work with large current. This strategy can not only ensure the life of the power battery
but also reduce the fluctuation of the engine.

The dynamics, economy, and emissions of the vehicle are important performance indexes for
evaluating EMS, but they are contradictory. Therefore, the optimization of EMS for E-REV is not a
simple single-objective optimization problem, but a multi-objective optimization problem.

The simulated annealing algorithm is a heuristic search algorithm, which simulates the solid
annealing process. Ingber [39] improved simulated annealing algorithm and proposed an adaptive
simulated annealing (ASA) algorithm, which improved the performance and calculation speed of
the algorithm. In this paper, the ASA is selected to optimize the control parameters of the EMS.

In the ASA algorithm, the solution ms
n+1 generated at the (n + 1)-th iteration is shown in

Equation (14), s is the s-th term of the solution vector.

ms
n+1 = ms

n + ys(Bs − As), (14)

where Bs, As are the upper and lower limits of ms. ys can be calculated as Equation (15) and us obeys
uniform distribution on [0,1].

ys = sgn(us − 0.5)Ts[(1 + 1/Ts)
|2us−1| − 1]. (15)
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The feature of using this method to generate new solutions is that the search interval is large when
the temperature is high, and the search interval is small when the temperature is low, which greatly
improves the speed of the algorithm to search for the optimal solution.

Cooling function in adaptive simulated annealing algorithm is shown in Equation (16). Tk is the
temperature at the k-th iteration of the outer loop and Tk is the initial temperature. S is the dimension
of solution vector and C is a constant.

Tk = T0 exp(−Ck1/S) (16)

The greater the initial temperature or the greater the number of iterations is, the higher the
probability of obtaining the optimal solution is, but the longer the calculation time requires. Therefore,
the choice of initial temperature and iteration number needs to balance both optimization time and
optimization effect. The flow of ASA is shown in Figure 15.

Figure 15. Flow of adaptive simulated annealing (ASA) algorithm.

This work selects control parameters in multi-workpoints control strategy with three working
speed of the engine to optimize, which switch according to the battery SOC and the vehicle speed.
Then, the control parameters selected for optimization and their upper and lower limits are shown in
Table 7.

Table 7. Optimization parameters of E-REV energy management strategy.

Control Parameters Symbol Value Range Unit

Battery SOC lower limit SOClow [25, 45] %

Battery SOC upper limit SOChigh [50, 80] %

Minimum switching speed vmin [20, 50] km/h

Maximum switching speed vmax [55, 80] km/h

Low engine working speed speedlow [1200, 2000] rpm

Middle engine working speed speedmid [2500, 4000] rpm

High engine working speed speedhigh [4500, 5500] rpm
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Economy is one of the most important indexes to measure the performance of the vehicle.
The economic evaluation parameters are commonly used for fuel consumption per hundred kilometers.
Compared with traditional internal combustion engine vehicles, E-REV has an additional energy
source from the battery. The conversion relationship between the fuel consumption per hundred
kilometers of the extended-range engine and the battery consumption per hundred kilometers is
shown in Equation (17).

Qe =
E · 3600

ρ · q · ηe · ηg
, (17)

where Qe represents the fuel consumption per hundred kilometers after equivalent conversion, the unit
is L. E represents power consumption per hundred kilometers, the unit is kWh. ρ is the fuel density,
the unit is g/cm3. q is the calorific value of fuel in J/g. ηe and ηg represent the average efficiency of the
engine and generator, respectively.

The purpose of this work is to improve the economy and emissions of E-REV. The economic
evaluation indexes include fuel consumption and electricity consumption per hundred kilometers.
Emissions include nitrogen oxides, CO, and hydrocarbons. So the objective function is shown as
Equation (18).

J = ω1Q f + ω2Qe + ω3ENOX + ω4ECO + ω5EHC, (18)

where Q f and Qe represent fuel consumption and electricity consumption per hundred kilometers.
ENOX , ECO and EHC represent emissions of nitrogen oxides, CO, and hydrocarbons. [ω1, ω2, ω3, ω4, ω5]

respectively represent the weight values of fuel consumption, electricity consumption and emissions,
which can be determined according to actual requirement. In this paper, weight is selected as [0.35,
0.35, 0.1, 0.1, 0.1].

At the same time, in order to ensure the dynamics of the vehicle, dynamic constraints are shown
in Table 8 need to be added.

Table 8. Dynamic index of E-REV.

Dynamic Index Value

Max speed >150 km/h

Max grade ability at 30 km/h >20%

Acceleration time from 0 to 100 km/h <15 s

The five typical driving cycles constructed above are imported into AVL Cruise software
respectively, and optimized by the ASA algorithm. Figure 16 shows the iterative optimization
process of some control parameters, including low, middle and high engine working speed, under the
Type 2 typical driving cycle. It can be seen from the figure that after 100 iterations, the parameters
have stabilized.
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Figure 16. The iterative process of the engine working speeds under the Type 2 typical driving cycle:
(a) low engine working speed. (b) Middle engine working speed. (c) High engine working speed.
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The optimization results of control parameters obtained by the ASA algorithm for five types of
typical driving cycles are shown in Table 9. It can be seen from the table that the optimal control
parameters under different driving cycles are quite different, which also shows the necessity of control
parameter optimization.

Table 9. Control parameter optimization results of five typical driving cycles.

Driving Cycle Type 1 2 3 4 5

SOClow 36 45 35 46 33

SOChigh 59 68 68 64 64

vmin 36 46 43 39 43

vmax 73 65 66 65 71

speedlow 1752 1656 1496 1741 1557

speedmid 3029 3246 3183 2920 2649

speedhigh 4891 4727 4018 4985 4840

3.2. Real-Time Energy Management Strategy Based on Driving Cycle Recognition

The control parameters of five typical working conditions have been optimized by ASA algorithm.
However, the actual driving conditions of the vehicle are various. In order to let E-REV adapt to
complex driving conditions and achieve the purpose of improving the fuel economy and emissions of
the vehicle, an adaptive multi-workpoint energy management strategy based on offline parameter
optimization and online driving cycle recognition (A-MEMS) has been proposed. Its control principle
diagram is shown in Figure 17.

Energy management strategy 
control parameter database

Control parameters

Database of 
driving cycles 

A
S
A

Driving cycle
recognition

Control parameters 
optimization of  
typical driving 

cycles  

Offline optimization

Type 1

Type 2

Type 3

Type 4

Type 5

Type 1

Type 2

Type 3

Type 4

Type 5

E-REV 

Extract  
driving cycle

Calculate 
driving

characteristics

Analysis of 
driving cycle 
fragments 

Figure 17. The principle diagram of adaptive multi-workpoints energy management strategy
(A-MEMS) based on driving cyle recognition.

The actual driving condition needs to be divided into driving fragments for recognition according
to a fixed step size, and the step length of the driving cycle recognition is selected to be 100 s.
The characteristics in each step length are calculated separately, and principal components composed
of these characteristics are input to the trained ELM. Select a section of actual driving condition,
whose cycle time is 2100 s and total mileage is 19.73 km. The final recognition result of ELM is shown
in Figure 18.

Respectively, simulation with three common rule-based energy management strategies including
thermostat control strategy, power following control strategy, and multi-workpoints control strategy,
and A-MEMS based on driving cycle recognition. There is only one engine workpoint in thermostat
control, which works or not depending on SOC. The distributions of engine working points of the
other three strategies are shown in the Figure 19.
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Figure 18. The result of driving cycle recognition by ELM.
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Figure 19. Engine working points of different EMS. (a) Power following control strategy.
(b) Multi-workpoints control strategy. (c) A-MEMS.

During thermostat control, the working point is set in the high-efficiency zone and the engine
power is selected to be 37.5 kW with a target speed of 4000 rpm and a target torque of 90 Nm. As is
shown in Figure 19, working points of the power following strategy are concentrated near the minimum
fuel consumption curve. The engine works at certain specified speeds of the multi-workpoints
and A-MEMS. Compared with multi-workpoints control, the engine working range of low and
medium speeds in A-MEMS has expanded, while the high-speed working range has slightly reduced.
Meanwhile, working points of the engine in the optimized control are more biased towards the low
fuel consumption area.

The A-MEMS categorizes actual driving fragments into the five typical driving cycles. It can be
seen in Figure 20 that SOC limit of A-MEMS varies with driving cycle type. In 150–200 s, the recognition
result is Type 2 where the vehicle speed fluctuates greatly and the average vehicle speed is low.
Then, the upper limit of SOC is increased to improve the engine load, which means that the engine will
work in a higher efficient region. Each driving cycle has its own optimal working speed of engine and
limit of SOC, which can make engine mainly work at high-efficiency area with low and medium speed.
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Figure 20. Battery SOC trajectory of different control strategies.
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The equivalent fuel consumption per hundred kilometers, emissions and dynamics of the four
energy management strategies are shown in Table 10. Compared with the other two rule-based
control strategies, the multi-workpoints control strategy has lower fuel consumption and emissions.
Under the power-following control strategy, although the engine works on the minimum fuel
consumption curve, the engine runs for a long time, and the engine’s working state changes frequently,
so the fuel consumption is greater than other strategies.

The equivalent fuel consumption of the A-MEMS based on driving cycle recognition is 8.9%
lower than multi-workpoints control without driving cycle recognition, and 17.6% lower than that
of the thermostat control strategy. The emissions of HC compounds, carbon monoxide, and nitrogen
oxides in the exhaust gas were also reduced by 7.9%, 14.0%, and 13.4%, respectively, compared with
multi-workpoints control, although the dynamics have been reduced slightly, though they still meet
vehicle dynamic targets.

Table 10. Parameter optimization results of five typical driving conditions.

Energy Management Strategy
Thermostat

Control

Power Following

Control

Multi-Workpoints

Control
A-MEMS

Equivalent fuel consumption (L/100 km) 5.44 5.68 4.92 4.48

NOX (g) 42.34 56.76 33.14 28.7

HC (g) 11.22 14.11 9.06 8.34

CO (g) 97.53 104.83 81.76 70.3

Max speed (km/h) 180 174 177 175

Max grade ability (%) 35.4 33.7 34.8 34.3

Acceleration time

from 0 to 100 km/h (s)
9.94 10.08 10.52 10.68

4. Conclusions

In this paper, an energy management strategy of E-REV that can adapt to the daily driving
characteristics of the driver and adjust the control parameters online is proposed. To this end,
we preprocess historical driving data by wavelet decomposition, and construct five typical driving
cycles for the driver by PCA and ISODATA clustering. Then, control parameters of multi-workpoints
control strategy in each typical driving cycle are optimized by ASA. Finally, combining online driving
cycle recognition by ELM, the fuel-saving effect of the A-MEMS proposed in this paper is verified
by simulation. Compared with traditional rule-based control strategies, A-MEMS achieve good fuel
economy and reduce emissions, the average fuel saving is 9%–17%. In future research, the control
strategy will be applied in the real vehicle by continuously recording driving data and regularly
updating the control parameters in the ECU to verify the performance.
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Abbreviations

The following abbreviations are used in this manuscript:

E-REV Extended-Range Electric Vehicle

EMS Energy Management Strategy

CLTC-P China Light-duty vehicles Test Cycle-Passenger

GPS Global Positioning System

MSE Mean Square Error

SNR Signal-to-Noise Ratio

PCA Principal Component Analysis

ISODATA Iterative Self-Organizing Data Analysis Techniques Algorithm

CH Calinski-Harabaz index

DBI Davies-Bouldin index

ELM Extreme Learning Machine

SOC State of Charge

ASA Adaptive Simulated Annealing

A-MEMS Adaptive Multi-workpoints Energy Management Strategy
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