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Abstract: As part of the integration process of the auxiliary power systems of electric vehicles,
plug-in hybrid vehicles and fuel cell vehicles, this study proposes a method to control two different
voltage types using two control factors of the rectangular alternating waveforms contained in DC/DC
converters, namely the duty cycle and frequency. A prototype circuit consisting of an H-bridge
inverter, a transformer, two series resonant filters and two diode bridge circuits was constructed.
The H-bridge inverter was connected to the primary side of the transformer and the diode bridge
rectifier circuit was connected to the secondary side in parallel. Series resonant filters were inserted
between one of the diode bridge circuits and the transformer. Thereafter, the proposed control method
was applied to the transformer voltage of the prototype circuit. Although the circuit operation became
complex owing to the circulating current flowing between the ground (GND) of the two output
circuits, it exhibited ideal static and dynamic characteristics, thereby confirming the possibility of
controlling two voltages with the duty cycle and frequency control factors. The results of the efficiency
evaluation and loss analysis demonstrated a minimum efficiency of 68.3% and a maximum efficiency
of 88.9%. As the output power of the circuit containing the resonant filters increased, the current peak
value increased and the circuit became less efficient.

Keywords: dual output; DC/DC converter; pulse width and frequency control; auxiliary power
source; duty cycle; frequency

1. Introduction

1.1. Research Motivations

Considering that the transportation field is estimated to be responsible for 26% of all CO2

emissions globally [1], the reduction of CO2 emissions from vehicles is an effective measure to curb
global warming. In an attempt to reduce CO2 emissions, the vehicle market is switching from gasoline
cars to electric vehicles (EVs), plug-in hybrid vehicles (PHVs) and fuel cell vehicles (FCVs), which are
equipped with high-voltage sources that enable motor driving. The market for such vehicles is
expected to grow continually in the coming years [2]. The auxiliary power sources of EVs, PHVs and
FCVs use isolated DC/DC converters with input that provides high-voltage power for driving [3,4].
With the electrification of conventional functions (drive by wire) and the sophistication of internal
environments, the number and types of auxiliary loads are increasing continually. That is, the power
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capacity required for the auxiliary power supply is increasing and, depending on the use conditions
of the car, the power consumption of the auxiliary load may have a significant impact on the total
vehicle power consumption [5,6]. One factor that increases the power consumption is the additional
conduction losses caused by the large current that flows when a heavy load is driven with a 12 V
power supply. An option for reducing these conduction losses is to set the power supply voltage
of the auxiliary system to 48 V and to reduce the current value [7,8]. However, owing to the costs,
part supplies and maintenance service involved, it is difficult to make all loads for a 12 V power supply
compatible with a 48 V power supply and, as a result, the demand for loads requiring a 12 V power
supply remains. For this reason, the auxiliary power supply requires a dual system that supports both
48 V and 12 V.

The configuration known as the 48-V mild hybrid, standardized as LV148 in Europe, supplies a
dual system of 48 V and 12 V by generating a direct current of 48 V in the alternator of engine-powered
vehicles and producing a 12 V power supply with a non-isolated bidirectional DC/DC converter of
48 V and 12 V [9]. However, the fact that two power conversions are required to generate 12 V makes
this system inefficient. Moreover, the system contains two sets of power supply equipment, making it
expensive and bulky.

1.2. Literature Review

To overcome these issues, numerous studies have been conducted on single-input, dual-output
DC/DC converters that input high voltages for driving and output 48 V and 12 V, as well as bidirectional
multiport converters that make use of a power supply from renewable energy sources installed in cars
and V2X [10–16]. On the other hand, studies have been carried out on mastering GaN devices since
GaN devices provide a high switching speed that enable operations at higher frequencies than those of
conventional Si and SiC devices, which makes power converters more compact and efficient [17–21].

The studies of the auxiliary power sources of cars have exhibited functions such as bidirectional
power transmission and four or more inputs/outputs. However, as a result of the multiple functions,
the number of switching devices sending control signals has increased, thereby increasing the total
wiring length of the control signals. As control signals are vulnerable to noise, they are incompatible with
the high frequencies resulting from the use of GaN devices or increases in the power capacity of auxiliary
equipment. Furthermore, when the total wiring length of the control signal increases, the layout
becomes more complex to prevent induction noise from the power section. However, few studies have
focused on the issue.

1.3. Contribution

To attenuate this problem, the authors have proposed a method for controlling single-input,
dual-output DC/DC converters as integrated auxiliary power sources for EVs, PHVs and FCVs,
with fewer control signals and a shorter wiring length [16]. The method has novel characteristics
switching devices on input port are able to control two output voltages, which is not shared by
References [10–15]. However, Reference [16] only had demonstrated the efficacy of the method with
simulation. In this paper, therefore, the validity of the method is verified using an actual circuit with
1 kW output.

2. Overview of Proposed Control Method and Main Circuit Configuration

2.1. Overview of Proposed Control Method and Main Circuit Configuration

Figure 1 presents the concept of the proposed control method. The two output voltages Vout1

and Vout2 are controlled by two control factors, namely the duty cycle and frequency (period) with
rectangular alternating voltage. This control method requires the main circuit to contain waveforms
with a duty cycle and frequency, as well as elements with output voltages that vary according to
the changes in the duty cycle and frequency. Therefore, in this study, the isolated DC/DC converter
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depicted in Figure 2 was adopted as a simple main circuit to validate the proposed control method.
The isolation approach used consists of a transformer, the primary side of which is an input capacitor
(Cin) and an H-bridge inverter that is formed by the switching devices S1, S2, S3 and S4. The gate
signals G1, G2, G3 and G4 are input to each switch, respectively. G1 to G4 generate a rectangular
alternating voltage with the duty cycle and frequency control factors and this voltage is applied to
the primary side of the transformer. On the secondary side of the transformer, a rectifier circuit of
output voltage Vout1 consisting of diodes D11, D12, D13, D14, Lout1 and Cout1 and, similarly, a rectifier
circuit of output voltage Vout2 consisting of D21, D22, D23, D24, Lout2 and Cout2 are connected in
parallel. A series of resonant filters consisting of LsrA, CsrA, LsrB and CsrB are inserted between the
latter diode bridge circuit and the transformer. This series resonant filter changes the impedance to an
arbitrary value by operating the frequency and thereby controls the output voltage. To maintain the
symmetry of the operation, the parameters of the two series resonant filters must have the same values.
Impedance changes caused by frequency affect the impedances of both the series resonant filter and
the subsequent smoothing filter. In this case, if Lsr1 = Lsr2 = Lsr and Csr1 = Csr2 = Csr, the impedance
of the series resonant filter (Zsr) to the frequency of the transformer voltage (ftx) and the impedance
following the smoothing filter of the Vout2 side (Zsm2) can respectively be expressed as

Zsr( ftx) = j
(
ωLsr −

1
ωCsr

)
, (1)

Zsm2( ftx) =
Rout2

1 + (2ω)2Rout22Cout22
+ j

(2ω)Lout2 −
(2ω)Rout2

2Cout2

1 + (2ω)2Rout22Cout22

, (2)

where ω = 2πftx and Rout2 is the load resistance value of the Vout2-side circuit. Considering that the
frequency of the waveforms doubles after the diode bridge full-wave rectification, the frequency in
Zsm2 is doubled. With these values, Zout2, which is the impedance of the Vout2-side circuit for ftx, can be
approximated as ∣∣∣Zout2( ftx)

∣∣∣ = 2|Zsr|+ |Zsm2|. (3)

If the condition is satisfied whereby |Zout2(ftx)| decreases or increases monotonically within the
operating frequency range, ftx and |Zout2| exhibit a one-to-one relationship and Vout2 can be controlled
by ftx. Moreover, as the side circuit Vout1 is a typical diode bridge rectifier circuit, Vout1 can be changed
by the duty cycle of the secondary side voltage of the transformer (Dtx). Therefore, Vout1 is mainly
controllable by Dtx and Vout2 is mainly controllable by ftx but changes in Dtx affect Vout1 as well as
Vout2, whereas changes in ftx affect Vout2 as well as Vout1. Thus, it is not possible to control Vout1 and
Vout2 independently using Dtx and ftx, respectively. However, by adding a gap in the response speed of
both output voltages, it is possible to prevent interference in the control by Dtx and ftx and to adjust
both output voltages to the target values.
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Although the proposed control method requires the incorporation of a circuit such as a series
resonant filter to link the frequency and control target, it is possible to control two output voltages
using only the switching devices necessary to generate an AC rectangular waveform voltage (that is,
without adding new switching devices for dual-output control). This reduces the layout restrictions to
prevent inductive noise from the large current part of the main circuit, resulting in greater flexibility
in the circuit design. Materials and Methods should be described with sufficient details to allow
others to replicate and build on published results. Please note that publication of your manuscript
implicates that you must make all materials, data, computer code and protocols associated with
the publication available to readers. Please disclose at the submission stage any restrictions on the
availability of materials or information. New methods and protocols should be described in detail
while well-established methods can be briefly described and appropriately cited.

2.2. Operating Principles of Proposed Control Method

Figure 3 presents a block diagram of the proposed control method. The calculation is conducted
by a Field Programmable Gate Array (FPGA) and the signals input into the FPGA are the feedback
signals Vfb1 and Vfb2, which are obtained by dividing by Vout1 and Vout2, respectively. Vfb1 and Vfb2 are
input into the FPGA via the AD converter and the differences from the respective target values Vout1*
and Vout2* are input into the PI calculation part (PI1 and PI2). The output signal from PI1 contains
the information of the phase shift amount δ (αδ) required by the pulse width control to define Dtx,
whereas the output signal from PI2 contains the information necessary to define ftx (αT). These signals
are input into the pulse width and frequency control (PWFC) section and are converted into the
switching signals G1′ to G4′, which contain the information of Dtx and ftx needed for the transformer
voltage to control Vout1 and Vout2. Thereafter, a signal with a certain dead time provided to G1′ to G4′

is output from the FPGA and it is subsequently output to the gates of S1 to S4 via the isolated gate
driver (G1 to G4).
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Figure 4 shows the PWFC principle of switching the signal generation. The output signals from
the PWFC part are G1′, with a variable frequency and a constant duty cycle of 0.5; G3′, which is
phase-shifted from G1′ by δ; and G2′ and G4′, which are inverted versions of G1′ and G3′, respectively.
A sawtooth wave with an upper limit of the crest value set by αT is generated by a counter inside the
PWFC to generate these signals. This sawtooth wave counter decreases from the upper limit defined
by αT and when the counter reaches zero it is set to the upper limit again. As the decrease ratio of
the counter corresponds to the clock period (TCLK) of the FPGA and remains constant, the period of
the sawtooth wave Tsaw (frequency fsaw) is defined by αT. This is the period Ttx (frequency ftx) that is
necessary for the control. Furthermore, ftx is the switching frequency of G1′ to G4′ and is expressed as

ftx =
1

αTTCLK
, (4)

in which the possible range for αT is

1
fMAXTCLK

≤ αT ≤
1

fminTCLK
. (5)
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In the above, fMAX and fmin are the maximum and minimum values of the switching frequency,
respectively. By turning a signal on when the counter reaches the upper limit (αT) and off when the
counter reaches half of the upper limit (αT/2), it is possible to generate rectangular waveforms with a
frequency corresponding to αT and a duty cycle of 0.5. This signal is designated as the G1′ signal.

While G1′ is generated, G3′ is generated by a comparison of αδ and the sawtooth wave counter.
By turning G3′ on when the sawtooth waves become smaller than αδ and turning it off when the same
amount of time since G1′ was turned on has elapsed, G3′ becomes a signal that is phase-shifted from
G1′ by δ. Because the range of δ where the control holds is between 0◦ and 180◦, the possible range of
αδ is

αT

2
≤ αδ ≤ αT. (6)
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The switching signals G1′ to G4′ are obtained by expressing the inverted signals of G1′ and G3′

as G2′ and G4′, respectively. As illustrated in Figure 4, Vtxp,’ which is on the primary side voltage of
the transformer generated by G1′ to G4′, Dtx and Ttx (=1/ftx) change according to the input values of
αT and αδ. However, although ftx is determined uniquely by αT, Dtx is not determined uniquely by αδ,
because the sawtooth shape determined by αT is calculated by comparison with the counter.

3. Verification of Proposed Method Using Actual Circuit

3.1. Circuit Specifications

The specifications, circuit diagram and outer appearance of the actual circuit created to verify
the proposed control method are presented in Table 1 and Figure 5, respectively. The output power
of the Vout1 and Vout2 sides are expressed as Pout1 and Pout2, respectively. The maximum value of the
total output power, Pout1 + Pout2, was set to 1 kW and the maximum value of Pout2 was set to 500 W.
The input voltage Vin was set to 300 V, whereas the target values of the output voltages Vout1 and Vout2

were set to 48 V and 12 V, respectively. The minimum and maximum switching frequencies, fmin and
fMAX, were set to 50 kHz and 100 kHz, respectively and the FPGA used was a XC7K70T-1FBG484C
with a clock frequency (fCLK) of 200 MHz (TCLK = 5 ns). When substituting the values of fmin, fMAX and
TCLK into Equation (5), αT can take values between 2000 and 4000. As αT is an integer, ftx and |Zout2|

could take 2001 possible values under the verification control conditions. Proportional gains and time
constants of PI1 and PI2 were K1 = 2.5, K2 = 0.5, τ1 =3 µs, τ2 = 8 µs, respectively.

Table 1. Specifications of experimental circuit.

Parameter Value

Pout1 + Pout2 (MAX) 1 kW
Pout2 (MAX) 500 W

Vin 300 V
Vout1 48 V
Vout2 12 V
fswmin 50 kHz

fswMAX 100 kHz
FPGA XC7K70T-1FBG484C

fCLK (TCLK) 200 MHz (5 ns)
K1 2.5
K2 0.5
τ1 3 µs
τ2 8 µs
Cin 330 µF

S1, S2, S3, S4 SCT3030AL (ROHM)
D11, D12, D13, D14, D21, D22, D23, D24 FFSH4065A (ON Semiconductor)

Transformer turn ratio N1:N2 = 20:5
Lsr 4.5 µH
Csr 560 nF

Lout1 7.3 µH
Lout2 7.0 µH
Cout1 44 µF
Cout2 188 µF

f 0 100.3 kHz
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The input capacitor Cin was an aluminum electrolytic capacitor of 330 µF, the switching devices
of the primary side H-bridge circuit (S1 to S4) were SiC MOSFET (SCT3030AL, ROHM) and the
eight diodes of the secondary side diode bridge were SiC Schottky barrier diodes (FFSH4065A,
ON Semiconductor). Because this circuit was designed to verify the proposed control method,
the breakdown voltage and current capacity of these devices were substantially larger than necessary.
The turn ratio of the transformer was 20:5. The parameters of the elements of the series resonant filter,
Lsr and Csr, were 4.5 µH and 560 nF, respectively. The output smoothing inductors were Lout1 = 7.3 µH
and Lout2 = 7.0 µH, the output capacitor Cout1 was 88 µF with four ceramic capacitors of 22 µF in
parallel and Cout2 was 188 µF with four ceramic capacitors of 47 µF in parallel. The values of Cin,
Cout1 and Cout2 are nominal values and the values of Lsr, Lout1 and Lout2 are calculated by using the
following equation:

L =
di
dt
V

. (7)

In the above, di/dt is the rate of current change and V is the voltage across the inductor. Both di/dt
and V are obtained by the experimental measurement. The data range both parameters are constant is
used for the calculation.

The resonant frequency of the series resonant filter, f 0, could be calculated as 100.3 kHz according
to the following equation:

f0 =
1

2π
√

LsrCsr
. (8)

Each value of Table 1 was substituted into Equations (1) and (2) to calculate Zsr and Zsm, which were
then substituted into Equation (3). The result is presented in Figure 6. In this case, it was assumed that
Rout2→∞. As indicated in Figure 6, the resonant frequency of the Vout2-side circuit was approximately
100 kHz. It can be observed that this value was the resonant frequency of the resonant filter and it
was not affected by the output smoothing LC filter. This is because the resonant frequency of the
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output smoothing LC filter (Lout2, Cout2) was approximately 4.4 kHz, which was far from 100.3 kHz.
Moreover, the Q value of the output smoothing LC filter was less than 10% of the Q value of the series
resonant filter (assuming that both filters had the same line resistance). As the resonant frequency
required for control was approximately 100 kHz, in the operating frequency range between 50 kHz
and 100 kHz, the impedance of the Vout2-side circuit decreased monotonically as the frequency of the
transformer voltage (ftx) increased, which enabled Vout2 to be controlled by ftx, as mentioned previously.
The reason for the monotonic decrease instead of an increase is that the volume of Lout1 and Lout2 could
be reduced with higher frequency when a large current passed (Zout2 was small).
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Figure 6. Zout2–f characteristics of Vout2-side circuit.

As described above, the change rate of impedance by the frequency change and resonant frequency
can be calculated using Equation (3) and Figure 6. The resonant frequency is the upper or lower
limit of the operating frequency. Furthermore, the number of possible frequency values is defined
by Equation (5). If the operating frequency is too high, the core losses and switching losses increase,
whereas if it is too low, the volume of the magnetic core increases. Moreover, if the change rate of the
impedance relative to the frequency change is excessively high and an FPGA without a high clock
frequency is used, the impedance values that it can take are not continuous and the control resolution
decreases. However, if the change rate of the impedance relative to the frequency change is excessively
small, the control resolution increases but if the operating frequency range is not expanded, the power
range that can be controlled by the Vout2-side circuit becomes narrower. Therefore, for the proposed
control method to work as intended, it is necessary to select the most appropriate resonant frequency,
operating frequency range, frequency–impedance characteristics and FPGA.

3.2. Static Characteristics

Figure 7 presents the output voltages Vout1 and Vout2 and output currents Iout1 and Iout2, with a
total output of 1,037 W (Pout1 = 461 W and Pout2 = 576 W), from power-up until reaching a steady state.
The measurement devices used in the actual verification are listed in Table 2.
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Table 2. Measuring instruments.

Instrument Model Number

Oscilloscope HDO6104A-MS (TELEDYNE)
Voltage differential probe 700924 (YOKOGAWA)

Current probe (<30 A) TCP312A (Tektronix)
Current probe (>30 A) TCP303 (Tektronix)

Deskew calibration source DCS025 (TELEDYNE)

The voltage and current of both outputs were adjusted to constant values and steady operation
was established within 0.5 s following power-up. The averages of the adjusted voltages Vout1 and Vout2

were 48.0 V and 12.0 V, respectively, as per the target values. The ripple voltages in the steady state,
Vout1 and Vout2, were both ±0.6 V, whereas the ripple currents, Iout1 and Iout2, were ±0.2 A and ±0.8 A,
respectively. The ripple current Iout2 was larger because the resolution of TCP303 used to measure Iout2

was lower than that of the TCP312A used to measure Iout1. These results indicate that the proposed
control method can produce an output of 1 kW in an actual circuit.

The manner in which the voltage and current increased in this experiment was not a result of
the proposed control method but rather, because of the voltage increase slew rate of the DC power
supply ZX-1600H used in the verification. Furthermore, the control parameters of the proposed
method (proportional gain of the time constant of the PI calculation part) were only optimized for
the disturbance response, which is detailed later. This is because, if this circuit is used as designed,
load changes will occur more frequently than power increases. The control of a circuit with a power
supply voltage applied from the start is a topic for future research.

3.3. Operation Points

The circuit operation points used in the simulation and verification are illustrated in Figure 8.
Six operation points of 154 W, 285 W, 456 W, 568 W, 740 W and 853 W were prepared on the Pout1 side
using inductive resistance, whereas four operation points of 142 W, 268 W, 394 W and 499 W were
prepared on the Pout2 side using non-inductive resistance. The tests and analysis were conducted at a
total of 18 locations where the total output power Ptotal (Pout1 + Pout2) was less than 1000 W, which were
defined as operation points. In the Section 3.4, Section 3.5, Section 3.6, Section 4.2, and Section 4.3,
the numbers indicated in Figure 8 are used to denote the operation points.
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3.4. Analysis of Steady Operation

In the simulation, the waveform of each part of the circuit in steady operation was calculated
and an analysis was performed on each operation point. PSIM (v. 12.04) was used for the simulation.
Table 3 lists the specifications of simulation circuit. The values displayed in Table 3 were same as the
experimental specifications listed in Table 1 except for the switching devices. All of the switching devices
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and the transformer were ideal and there were no parasitic resistance, inductance and capacitance in
the simulation circuit.

Table 3. Specifications of simulation circuit.

Parameter Value

Vin 300 V
Vout1 48 V
Vout2 12 V
fswmin 50 kHz

fswMAX 100 kHz

fCLK (TCLK) 200 MHz (5 ns)
K1 2.5
K2 0.5
τ1 3 µs
τ2 8 µs
Cin 330 µF

S1, S2, S3, S4 Ideal devices
D11, D12, D13, D14, D21, D22, D23, D24 Ideal devices

Transformer turn ratio N1:N2 = 20:5
Lsr 4.5 µH
Csr 560 nF

Lout1 7.3 µH
Lout2 7.0 µH
Cout1 44 µF
Cout2 188 µF

These analysis results refer to the operation mode of the secondary side circuit when Pout2 was
maintained constant and Pout1 was changed (operation points #01, #02, #03, #04, #05 and #06) and
when Pout1 was maintained constant and Pout2 was changed (operation points #01, #07, #12 and #16).

Figure 9 indicates the voltage and current direction of each part used to define the operation
modes, whereas Table 4 lists the operation modes of the secondary side circuit in the half cycle in a
steady state based on the voltage and current directions of Figure 9. As shown in Table 4, the operation
modes were defined by the secondary side voltage and current of the transformer (Vtxs and Itxs),
the current from the transformer to the diode bridge on the Vout1-side circuit (IrecA and IrecB), the current
of Lout1 (ILout1), the return current of the Vout1-side circuit (Iret1), the currents of the series resonant
filters (IsrA and IsrB), the current of Lout2 (ILout2), the return current of the Vout2-side circuit (Iret2) and the
circulating current (Icir) that flowed between the GND of both outputs. In Table 4, “+” represents the
positive direction, “−” denotes the negative direction and “0” is the condition of no voltage applied or
no current flowing.
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Table 4. Definition of operation modes.

Voltage/Current 1 2 3 4 5 6 7 8 9 10 11

Vtxs + + + + + 0 0 0 0 0 0
Itxs + + + + + + + + − − −

IrecA + + + + + + + + + + +
IrecB − − − − − − − − − − 0

ILout1 + + + + + + + + + + +
Iret1 + + + + + + + + + + 0
IsrA + + + + − + − − − − −

IsrB − − + + + + + + + + +
ILout2 + + + + + + + + + + +
Iret2 + + + 0 + + + + + + +
Icir − + + + + + + − + − −

There were a total of 11 operation modes for the operation points of the analysis. Table 5 lists the
possible operation modes for each operation point as indicated in Table 5, for each operation point,
several modes were used and others were not, which created a large variety of current paths. As an
example, Figure 10 depicts the simulation waveform of Vtxs and each current at operation points #04
and #12. The both waveforms of #04 and #12 are divided into 8 modes based on the definition of
Table 4, respectively. The operation modes 3, 6 and 9 were not used at operation point #04 and the
modes 4, 5 and 8 were not used at #12 as shown in Table 5. Therefore, it is difficult to explain the
circuit operation by the 11 operation modes. However, by focusing on the charging condition of Lout1,
the 11 operation modes could be categorized into three groups (A, B and C). The changes in Dtx and ftx
caused by the changes in the operation points can be explained by these three operation modes.

Table 5. Operation modes and measurement points.

Operation Point
Operation Mode

1 2 3 4 5 6 7 8 9 10 11

#01 # # # # #
#02 # # # # # # #
#03 # # # # # #
#04 # # # # # # # #
#05 # # # # # # # #
#06 # # # # # # # #
#07 # # # # # # #
#12 # # # # # # # #
#16 # # # # # # #

• Group A: Lout1 is charged (modes 1 to 5)

In this mode, Vtxs is positive. As an example, Figure 11a presents the current path in mode 2.
The transformer voltage works as the voltage source and Lout1 is charged by the following path:
Transformer→ D11→ Zsm1→ D14→ Transformer.

• Group B: Lout1 discharges (modes 6 to 10)

In this mode, Vtxs is zero and Iret1 is flowing. As an example, the current path in mode 7 is
illustrated in Figure 11b. When Lout1 is discharged, its discharge current returns along the following
path: Zsm1→ D14→ Transformer→ D11→Zsm1.
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• Group C: The charge/discharge of Lout1 depends on the resonant filter voltage (mode 10)

Figure 11c depicts the current path of mode 10. In this mode, Iret1 and IrecB are zero. The return
current from Zsm1 becomes a circulating current (Icir) and moves around the return current of the Vout2

side (Iret2). This circulating current Icir flows because the GND of the Vout1-side and Vout2-side circuits
are common and the return path of the Vout2-side circuit contains ZsrA or ZsrB. The circulating current
of this mode flows according to the state of ZsrA and ZsrB. The current path involved in Lout1 is Zsm1

→ D22→ZsrA → D11→Zsm1. When the both-end voltage of ZsrA (VsrA) exhibits the relationship of
VsrA > Vout1, Lout1 is charged by ZsrA and when VsrA < Vout1, Lout1 discharges.

Figure 12 presents the occupancy time and corresponding frequencies of these three modes at each
operation point. When Pout2 was constant and Pout1 changed (Figure 12a), the time occupied by mode
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A increased (Dtx increased) and ftx decreased (Ttx increased) as Pout1 increased. The increase in Dtx was
caused by the increase in Pout1 and the decrease in ftx occurred to prevent an increase in the power
supply to the Vout2-side circuit caused by the increase in Dtx. However, when Pout1 was constant and
Pout2 changed (Figure 12b), Pout2 increased as Ttx decreased (ftx increased) but few changes occurred
in the percentages of the three operation modes (changes in Dtx), regardless of the changes in Pout2.
This indicates that the impedance change of the Vout2-side circuit caused by the frequency change
played a dominant role in the changes in Pout2.World Electric Vehicle Journal 2020, 11, x 13 of 21 
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Figure 12. Occupied time and frequency of three operation modes: (a) Pout1 changes from 154 W to
853 W (Pout2 = 142 W); (b) Pout2 changes from 140 W to 581 W (Pout2 = 154 W).

3.5. Comparative Evaluation of Simulation and Measured Results

Figure 13 depicts the measured and simulation waveforms of each part at operation points #01,
#06 and #16 in steady operation. From the top, Figure 13 presents the voltages of the primary and
secondary sides of the transformer (Vtxp and Vtxs), the currents of the primary and secondary sides
of the transformer (Itxp and Itxs), the both-end voltages of D11 and D12 (Vd11 and Vd12), the Lout1

current and output current (ILout1 and Iout1), the series resonant filter currents (IsrA and IsrB), the series
resonant filter voltages (VsrA and VsrB), the both-end voltages of D21 and D22 (Vd21 and Vd22), the Lout2

current and output current (ILout2 and Iout2) and the circulating current (Icir). According to Figure 13,
the measured and simulation waveforms of #01, #06 and #16 were all very close, which confirms that
the verification circuit operated as designed. The errors in Dtx and ftx, the voltage surge that only
appeared in the measured waveforms and the ringing resulting from it were all caused by wiring
resistance, parasitic inductance and floating capacitance, which were not included in the simulation.

Figures 14 and 15 present the relationships between Dtx and Pout1 and ftx and Pout2, respectively,
in steady operation for the measurement and simulation. In addition, the difference between the
experimental results and the simulation results for Figures 14 and 15 are depicted in Figure 16.
Figures 14–16 indicate the experimental tests are operated by larger Dtx and lower ftx than the
simulation tests under all load conditions. The reason for the larger Dtx is that Dtx compensates for
Vout1 decreased by the conduction losses of parasitic resistance in the actual circuit and the reason for
the lower ftx is that ftx controls increasing Vout2 with increasing Dtx. Although these errors appeared,
it can be observed that the values of Dtx and ftx at all operation points in steady operation were
close to the simulation results. Therefore, the verification circuit also operated as per the simulation
analysis at other operation points that are not shown in the waveforms of Figure 13. This is a further
demonstration of the efficacy of the proposed control method.
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Figure 13. Waveforms of proposed circuit: (a) Experimental results; (b) Simulation results.
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Figure 14. Results of Dtx for each measurement point: (a) Experimental results; (b) Simulation results.
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Figure 15. Results of ftx for each measurement point: (a) Experimental results; (b) Simulation results.
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Figure 16. Results of subtract the simulation results from the experimental results for each measurement
point: (a) results of Dtx; (b) results of ftx.

3.6. Dynamic Characteristics

Figures 17 and 18 present the output voltage, measured current waveform and simulation results
when Pout2 was maintained constant at 140 W and Pout1 was switched between 285 W and 568 W
(#02 and #04 were switched) and when Pout1 was maintained constant at 286 W and Pout2 was switched
between 270 W and 393 W (#08 and #13 were switched), respectively. Under any condition of Figures 17
and 18, within 8 ms after the output power was switched, both of the output voltages were adjusted
to their respective values prior to the switch. In the measured waveforms of Figure 17, an overshoot
with a peak value of around 2 V appeared in both output voltages Vout1 and Vout2 and an error of
approximately 0.5 V occurred in the steady value of Vout1 in the measured waveform of Figure 18.
However, overall, the measured and simulation waveforms were very close, confirming that the
dynamic characteristics of the proposed control method were valid.
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4. Evaluation of Efficiency and Losses

4.1. Measurement Method

To evaluate the efficiency and losses of the verification circuit, the input/output power (Pin, Pout1 and
Pout2) was measured with a WT1800 power analyzer. Furthermore, the voltage and current of the
transformer primary side (Vtxp, Itxp), the voltage and current of the transformer secondary side (Vtxs, Itxs)
and the voltage and current of the resonant filter of each series (VsrA, VsrB, IsrA, IsrB) were measured
using the instruments listed in Table 2. The points of measurement are illustrated in Figure 19.
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The efficiency η of the measured power was calculated according to the following equation:

η =
Pout1 + Pout2

Pin
. (9)

For the measured voltage and current, the power of the primary side of the transformer (Ptxp),
power of the secondary side of the transformer (Ptxs) and power of the resonant filters (PsrA and PsrB)
were calculated using the following equation:

P =
1

40T

40T∑
0

v(t)i(t)∆T n = 6, 7, 8, 9. (10)

In the above, n is the number of cycles contained in the 100 µs measured, T is the length of a
cycle, v(t) and i(t) are the measured voltage and current, respectively and ∆T is the time interval of
the oscilloscope of 0.1 ns. Owing to the conditions of the measuring system, each series of data was
obtained with three or four measurements, which could produce errors in the measurement results.

4.2. Efficiency Characteristics

Figure 20 depicts the efficiency at each operation point with Pout1 on the x-axis. The lowest
efficiency of 68.3% was registered at point #16, where Pout1 was the minimum and Pout2 was the
maximum. Meanwhile, the maximum efficiency was 88.9% at point #06, where Pout1 was the maximum
and Pout2 was the minimum. When Pout2 was constant, the efficiency increased along with Pout1,
regardless of the value of Pout2, indicating that the load losses caused by Pout2 and other fixed losses
were larger than the load losses related to Pout1. However, when Pout1 was constant, the overall
efficiency decreased as Pout2 increased, regardless of the value of Pout1. This indicates that the load
losses related to Pout2 were larger than those caused by Pout1 and other fixed losses. Therefore, the load
losses of Pout2 had a significant impact on the efficiency of this circuit.World Electric Vehicle Journal 2020, 11, x 18 of 21 
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Figure 20. Results of efficiency measurements.

4.3. Loss Analysis

To analyze the loss points, loss separation was performed when the ratio of Pout1 to the total
output power (Pout1 + Pout2) was the maximum (#06), when the ratio of Pout2 was the maximum (#16)
and under intermediate conditions (#10). For the power at each part obtained by the measurement and
calculation, the losses at the inverter (Winv), transformer (Wtx), series resonant filter (Wsr) and rectifier
circuit (Wrec), as well as the total loss (Wtotal), were calculated using the equation shown in Table 6.
The results are illustrated in Figure 21. The left axis indicates the losses and the right axis represents
the ratio of Pout2 to the total output power.
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Table 6. Loss calculations.

Part Symbol Equation

Total loss Wtotal Pin − (Pout1 + Pout2)
Inverter loss Winv Pin − Ptxp

Transformer loss Wtx Ptxp − Ptxs
Resonant filter loss Wsr Pr1 + Pr2
Rectifier circuit loss Wrec Wtotal − (Winv + Wtx + Wsr)World Electric Vehicle Journal 2020, 11, x 19 of 21 
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As indicated in Figure 21, the Wtotal values at the operation points were 144 W (#06), 198 W
(#10) and 360 W (#16), whereas the ratios of Pout2 were 14.4% (#06), 32.5% (#10) and 76.7% (#16).
Therefore, Wtotal increased as the ratio of Pout2 increased. Figure 15 demonstrates that, as the ratio
of Pout2 increased, ftx also increased and, simultaneously, the impedance of the Vout2 side decreased
and the value of the filter current increased. As a result, the currents of the inverter, transformer and
rectifier circuit increased, as did the conduction losses of each part. Moreover, the switching losses
of the inverter and rectifier circuit increased, as did the core losses of the transformer and inductor.
Therefore, as ftx increased, the losses of all parts increased; however, the fact that the increase ratio of
Wsr and Wrec was larger than that of Winv and Wtx and the total output power decreased as the ratio of
Pout2 increased, indicates that there was little change in Winv and Wtx, whereas Wsr and Wrec increased
at the three operation points, as illustrated in Figure 21.

Given that Winv and Wtx at #06 (which exhibited the highest efficiency) accounted for more than
half of Wtotal, it is possible to increase the maximum efficiency by reducing Winv and Wtx. It is necessary
to select switching devices that suit the operation specifications to reduce Winv, whereas a core with low
loss should be selected and the core structure needs to be optimized to reduce Wtx. However, as the
efficiency was the lowest when the ratio of Pout2 was the maximum (#16), Wsr and Wrec, which were
produced when the current of the Vout2-side circuit increased, limited the efficiency of the proposed
circuit. Therefore, reducing these two values can effectively improve the overall efficiency of the circuit.
Decreasing the peak value of the resonant filter current has been suggested as a possible means of
reducing the Q value of the series resonant filter but decreasing the Q value means decreasing the
sensitivity of the impedance changes to the frequency changes. In this case, it will be necessary to
expand the operating frequency range to offset the amount of impedance change. However, if the range
is expanded to the high-frequency side, an increased loss will be caused by the higher frequencies,
as mentioned previously. Furthermore, if it is expanded to the low-frequency side, the problem of a
volume increase in the core of the transformer and inductor will occur. Therefore, it is necessary to
determine the optimal conditions.

5. Conclusions

This paper has presented a new method to control isolated single-input, dual-output DC/DC
converters that are designed to be installed in EVs, PHVs and FCVs. The proposed method involves
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dual voltage control by the duty cycle and frequency, which is realized by inserting parts with
frequency-impedance characteristics into the circuit. To verify its efficacy, the proposed control method
was applied to an actual circuit in which a series resonant filter was inserted in one of the diode bridge
smoothing circuits that were connected in parallel to the secondary side of the transformer.

The results of the static characteristics indicate that two output voltages were adjusted to their
respective target values 48 V and 12 V for the maximum output power 1037 W (Pout1 = 461 W,
Pout2 = 576 W). The dynamic characteristics results show that when switching each output power,
it recovered to a steady state within 8 ms after the switching of the operation point. The circuit
behaviors at the different load conditions are analyzed by the simulation of the ideal circuit and the
simulation waveforms were close to the experimental waveforms. These results demonstrated the
validity of the proposed control method.

The efficiency of the circuit varied between 68.3% and 88.9%. The loss separation analysis indicated
that the losses in the series resonant filter and diode bridge smoothing circuit account for 71% of
the total loss and restricted the efficiency. The maximum efficiency of the circuit can be effectively
increased by reducing the losses in the inverter and transformer because these losses constitute 66% of
the total loss.

Our goal for future research is to examine the following points that were not covered in this study:
controlling the circuit with a power supply voltage applied; improving the efficiency by considering
modifications in the main circuit; and selecting the parts and designing the layout with the aim
of miniaturization.
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