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Abstract: The objective of the present work is to evaluate the performance of a low-cost tractor
equipped with a parallel hybrid engine, which was simulated using AMESim software. The tractor
was evaluated with three different farming implements attached to the tractor, and each implement
requires a different type of power. The first simulation was executed without any implements attached.
The tractor was able to run for 170 s with the electric motor only, which resulted in fuel savings
during this period. The first implement, a moldboard plow, was attached for the second round
of evaluation, and the electric motor ran by itself for 150 s, which also led to fuel savings during
operation. During the third simulation, the tractor was attached to a Bette Harvest, which has a very
high-power demand. The obtained results show that both engines were engaged to provide the
required energy. During the final round of evaluation, simulations were run for a straw tub grinder.
In this simulation, the electric motor ran alone until the battery was fully discharged. Thereafter,
the combustion engine was activated in order to facilitate operations and to charge the battery.
The results show that the parallel hybrid architecture employed for the low-cost tractor significantly
decreased the CO2 emissions and minimized the consumption of fuel.
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1. Introduction

The continuing increase in the global population requires an adequate increase in crop production
to accommodate it [1]. Moreover, as the population grows, global meat consumption and the demand
for bioenergy and raw materials are projected to increase [2,3]. Farm mechanization is particularly
essential towards providing increased crop production, now and probably even more so in the
future [4]. In addition, agricultural mechanization is generally a necessary first step in the general
mechanization of a nation so that it can shift from poverty to security and prosperity. Tractors represent
the largest segment of the agricultural machinery industry and play a central role in the mechanization
of agriculture [5]. Global annual tractor sales are estimated at approximately 1.8 million units, with a
sales volume of USD 45 billion in 2017 [6].

The Traction farming tasks is predominantly carried out by tractors with the several power [7].
The efficiency of a tractor is measured by the amount of work performed versus the cost of this work.
Hitching work is affected by the traction and travel speed of the tractor used [5,8].

Because of the energy density of diesel fuel, it is commonly assumed that diesel engines will
be predominantly used in the agricultural sector in the coming decades [9,10]. However, the U.S.
Environmental Protection Agency (EPA) estimates that if off-road vehicle emissions are not controlled,
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then these vehicles will contribute 33% of hydrocarbon (HC) emissions, 9% of carbon monoxide (CO),
9% of nitrogen oxides (NOx), and 2% of particulate matter (PM) emissions in the United States over
the coming years [11].

The automotive industry has already started to move towards the construction of green,
environmentally friendly vehicles. This approach focuses mainly on the three areas: emissions,
noise, and fuel consumption. This strategy aims to significantly reduce vehicle emissions and increase
the fuel economy of vehicles, both of which are beneficial for the environment [12].

From this point of view, tractor hybridization is a valid mechanism to ensure that the environment
has a cleaner future and that the costs of the agricultural industry are minimized, as scientifically
demonstrated in a previous work [13].

In the present work, the behavior of a hybrid powertrain of a low-cost tractor was evaluated using
the AMESim simulation tool with a moldboard plow, Bette Harvest, or straw tub grinder attached to it.

2. State of the Art

Hybrid technology is an advanced technology for improving fuel efficiency in the automotive
industry. It has improved fuel efficiency in automobiles by 25% and has also contributed to improving
the fuel efficiency of construction machinery [14].

In order to improve construction machinery, Komatsu developed a model (HB205) using hybrid
technology based on excavator rotation that requires high power, which has reduced fuel consumption
by 25% compared with its non-hybrid model [15]. Caterpillar also developed a hybrid bulldozer
(D7E Hybrid) and increased fuel efficiency by 20 percent compared with its predecessor [16]. In contrast
to the automotive industry, the construction machinery industry has applied hybrid technologies to
workpieces such as boom and bucket systems, and most studies have focused on using excavators [17].

In particular, various studies on hydraulic pressure control strategies for motor operating parts
have been carried out to improve work efficiency. For example, Wang and Wang (2014) developed a
pressure compensation system to improve the energy efficiency of a hybrid hydraulic system and
performed an evaluation using a bench test. They reported that 26–33% of the energy that would
have otherwise been used by this system was recovered [18]. Shen, Jiang, Su, and Karimi (2015)
proposed optimal control of the variable trajectory of hybrid excavators to reduce the fuel consumption
of off-road vehicles, and Lin, Wang, Hu, and Gong (2010) improved the efficiency of hybrid excavators
by 17% through the development and simulation of energy regeneration systems [19,20].

Choi, Kim, Yu, and Yi (2011) developed an optimal control system for hybrid excavators.
Additionally, Yoon, Truong, and Ahn (2013) developed a parallel hybrid excavator by applying an

electro-hydraulic actuator, which reduced the energy usage of the machine by 60% [21,22].
In other studies, hybrid technologies have been applied to the driving components of construction

machines. Zeng, Yang, Peng, Zhang, and Wang (2014) applied several energy management strategies
for wheel loaders and obtained significant increases in fuel efficiency through optimal control of the
power drive [23]. Hui and Jungqing (2010) developed a parallel hybrid hydraulic system to reduce
energy consumption during frequent wheel loader stop/start phases and demonstrated improved work
efficiency and fuel savings through simulations [24]. Dagci, Peng, and Grizzle (2015) applied a hybrid
power distribution system with two single planetary gears (SPGs) in light-duty trucks, and Keulen,
Mullem, Jager, Kessels, and Steinbuch (2012) proposed an optimal control strategy that was adaptable to
different truck masses and road elevations and applied hybrid technology to heavy-duty trucks [25,26].

In the agricultural machinery industry, John Deere has developed a mild hybrid tractor
(Model 7030E) that operates the engine compressor cooling and air conditioning systems with one
engine, which has significantly increased fuel efficiency. The efficient use of power in the drive section
is important because tractors require high traction force when operating with towing implements and
performing soil loading; however, there have been no studies on the use of hybrid technologies in the
drive section. Thus, this study was conducted to develop a hybrid tractor. The objectives of this study
were (1) to build a parallel hybrid tractor using components of a hybrid drive system, (2) to establish
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power management strategies for the hybrid tractor, and (3) to evaluate the performance of the hybrid
tractor by comparison with a conventional tractor through field testing [27].

3. Hybrid Architecture Adopted

The parallel hybrid architecture used in this study, which is shown in Figure 1, consists of a direct
mechanical connection between the hybrid power unit and the wheels. It is equipped with an electric
traction motor that drives the wheels and can recover some of the braking energy to charge the batteries
(regenerative braking) or to assist the internal combustion engine during acceleration.World Electric Vehicle Journal 2020, 11, x 4 of 35 
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Furthermore, the internal combustion engine and the electric motor are coupled by a
mechanical device.

The electric motor can then be designed with reduced capacity, i.e., lower cost and volume.
There are several configurations of the mechanical device used for the combination, depending on

the structure between the internal combustion engine and the electric motor. There can be a coupling
with a single- or two-shaft configuration, speed coupling with a planetary gearbox, or a fusion of
the two [28,29].

The appropriate operating mode is programmed or manually switched on [13]:

• At high speeds, the combustion engine is used as the drive.
• At low speeds, the electric motor is activated to optimize fuel efficiency and consumption;

the electric motor does not run at a standstill to save the battery.
• When the driver strongly accelerates, both the electric and combustion engines work

simultaneously to transmit more power.

When the driver lifts his or her foot while driving or braking, the electric motor works as a
generator and recovers energy. The combustion engine is then decoupled from the transmission and
thus, generates few losses.

The low-cost tractor is an agricultural tractor that weighs 4.5 t and is equipped with a four-stroke
V8 combustion engine with a total displacement of 12 L and a power of 120 kW. The appropriate
selection of the electric part of the hybrid vehicle is a major element of the successful marriage between
the thermal and electric engines. The permanent magnet synchronous motor (MSAP) appears to be
an optimal solution for automotive traction because of its technical performance and, in particular,
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its compactness and efficiency. This type of motor is used by Toyota in the Prius for its high efficiency
and good dynamic performance, which is attributed to the low stator inductances due to the large
width of the apparent air gap, large magnetic field in the air gap, and lack of a DC voltage source for
excitation. The low-cost tractor in this study is equipped with 20 kW synchronous motors. The outputs
of the two engines are linked by a planetary gear train. The output power is adapted by a manual
gearbox with four gears. In addition, it is equipped with a generator that can recover the electric
energy from the combustion engine and store it in a lithium battery.

4. Mathematical Model

In the present work, we examined a model of a parallel hybrid tractor using AMESim software.
The main notation used in this paper is shown in the Table 1. We produced the 1D sketch shown in
Figure 2 and then determined the appropriate mission for each attached implement in order to evaluate
the tractor’s behavior during the mission.

Table 1. Main notation used in this paper.

Symbol Description

ρair Air density
Sx Active area of the vehicle for air resistance
Cx Coefficient of drag for longitudinal axis translation
Cz Coefficient of drag for translation on the vertical axis
Wx Stirring coefficient for the translation on the longitudinal axis
Wz Stirring coefficient for translation on the vertical axis
T1 Front-wheel torque
T2 Rear-wheel torque
rad1 Front-wheel radius
rad2 Rear-wheel radius
Mcar Mass of the vehicle
g Gravity
αslope Slope angle in rad
α Angle of slope in %
Vcar Longitudinal speed of the vehicle
rvehi Viscous coefficient of friction
Froll Rolling resistance force
Rroll Coefficients of rolling friction
Wz Vertical wind coefficient
Vwind Wind speed
Ftrailer Resistive force from the connected tool
Mtrail Trail mass capture
rin1 Rear-wheel inertia
rin2 Front-wheel inertia
Fengine Driving force
Braketorq Braking torque required by the driver [Nm]
Torbrakdrv Driver brake control [Nm]
Maxtorqveh Maximum braking torque of the vehicle [Nm]
Sommetorq Torque required by the driver [Nm]
Torvehdrv Driver acceleration control [W or Nm]
tmaxMel Maximum engine torque [Nm]
Braketorq Braking torque required by the driver [Nm]
sensorMErev Speed of the electric motor [rpm]
Tpull Torque of the electric motor for lifting [Nm]
sensorME Speed of the electric motor [rad/s]
Gearratio Transmission ratio between the electric motor and the vehicle
torME Torque control of the electric motor [Nm]
Gainaccel Gain on acceleration control
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Table 1. Cont.

Symbol Description

tmaxMel Maximum engine torque [Nm]
Gearatio Transmission ratio between the electric motor and the vehicle
Torbrak Brake control
Gainbrakes Gain on brake control
Maxtorqveh Maximum braking torque of the vehicle [Nm]
tminMel Minimum engine torque
tmaxMth Maximum engine torque [Nm]
throttleMT Thermal engine load
Gainacce Gain on acceleration control
Clutchsig Clutch control
starteng Firing: engine on/off
torME Torque control of the electric motor [Nm]
torbrak Brake control
maxtorqveh Maximum braking torque of the vehicle [Nm]
sensorME Rotational speed of the electric motor [rad/s]
gainaccel Gain on acceleration control
ωpa Rotational speed of the driven axle
paratio Drive axle transmission ratio
ratio Transmission ratio of the engaged gear
ωp Speed of rotation of the input shaft
ωs Speed of rotation of the secondary shaft
Tslip Maximum Coulomb friction torque
ωrel Relative rotational speed
dvel Speed threshold of the rotating stick
Ts Secondary shaft torque
nu Efficiency of the engaged gear
Tloss Loss of torque
ratio The transmission ratio of the engaged gear
paratio Drive axle transmission ratio
Ts Torque transmitted by the secondary shaft
vis Coefficient of viscous friction on the flywheel
ωp Flywheel rotation speed
powerPr Input shaft power (Tp − ωp)
powerPa Power to the drive axle (Tpa − ωpa)
BMEP Average effective brake pressure [bar]
PMF Mean effective friction pressure [bar]
Tout Engine output torque [Nm]
T f ric Engine friction torque [Nm]
V Swept volume of the engine [L]
Tmaxc et Tminc Maximum and minimum corrected torques
Tmax Maximum engine torque read from the file [Nm]
ρre f Reference ambient air density [kg/m3]
Tamb Ambient air temperature [K]
Tref Reference ambient temperature [degC]
Tmax Maximum engine torque [Nm]
T f ric, Thot Frictional torque at high engine temperature [Nm]
T f ric, Temp Frictional torque at the current temperature [Nm]
Thot “Hot engine temperature” parameter [degC]
Temp Current engine or oil temperature [degC]
contre Actual fuel consumption
cons f ile Value read from the fuel file
kstart Overconsumption when starting the engine
exp f cons Effect of cold temperature (user-defined expression)
ϕ Current equivalency report
ϕ f ile Value read from the data file
expeqratio Effect of cold temperature (user-defined expression)
dmexh Exhaust gas mass flow rate [g/s]
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Table 1. Cont.

Symbol Description

cons Fuel consumption [g/s]
AFsto Stoichiometric air/fuel ratio [null]
w Motor speed [rpm]
idlespeed Engine idling speed [rpm]
f low0 Fresh air mass flow rate at idle [g/s]
Teng Motor temperature [degC]
Thigh High threshold for motor temperature parameter [degC]
Tlow Low threshold for motor temperature parameter [degC]
coe f coldCO Correction coefficient for cold CO emission
coe f stCO Coefficient of CO when enriching the fuel when starting the engine
kstart Overconsumption when starting the engine
emiCO f ile Value of CO
Fichier FMEP Average effective friction pressure read in the [bar] file
exp f mepcor Temperature effect correction (user-defined expression)
Texhaust f ile Exhaust gas temperature read in the [degC] file
expexhtemp Temperature effect correction (user-defined expression)
coe f heatwall Combustion heat ratio for wall heating
cons Fuel consumption [kg/s]
pci Specific calorific value of the fuel [J/kg]
exphlosses Correction of the effect of temperature
cons Fuel consumption [kg/s]
emiHC HC emissions [kg/s]
emiCO CO emissions [kg/s]
pci Specific calorific value of the fuel [J/kg]
dmBG Burnt exhaust gas
dmunburnedair Exhaust unburned air mass flow rate (when ϕ ≤ 1)
Unburned fuel Exhaust unburned fuel mass flow rate (when ϕ ≥ 1)
CpBG Thermal capacity of the flue gas set by the user [J/K/kg] for ϕ = 1
Cpcarb Heating capacity of the fuel set by the user [J/K/kg]
Paire Thermal capacity of fresh air and gas set at 1040.0 [J/K/kg]
ncyl Total number of engine cylinders
ncyldeac Number of deactivated cylinders
ncylac Number of activated cylinders
BMEPmax Maximum BMEP read from the file and corrected for temperature effects
FMEP FMEP read from the file at current load and corrected for temperature effects
FMEP0 FMEP at zero load
Tmin and Tmax Negative and positive torque corresponding to defined parameters
Tm Couple [Nm]
ω Speed of rotation [rad/s]
Pelec Electrical power [W]
SOC State of charge
DOD Depth of discharge
CPVO Open-circuit voltage
V2 Potential at negative pole [V]
fixedvoltage Fixed battery voltage [V]
fixedcellvoltage Fixed cell voltage [V].
Seal Number of cells in series
CPVObat Open-circuit voltage read from the file/expression for the whole battery [V]
OCVcell Open-circuit voltage read from the file/expression for a cell [V]
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Table 1. Cont.

Symbol Description

Rbat Internal resistance read from the file/expression for the whole drum set [Ohm]
Rcell Internal resistance read from the file/expression for a cell [Ohm]
I3 Battery current at the positive pole [A]
Icell Cellular current [A]
Cell Number of cells in series
Cell Number of parallel cells
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The duty cycles of agricultural tractors are very different from the cycles known to the automotive
industry. The hybrid tractor operates according to the maximum speeds for each implement, as shown
in Table 2 [30].
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4.1. Definition of the Sub-Models Composing the Sketch

4.1.1. Tractor

The tractor sub-model is a 1D vehicle load sub-model and is used to calculate longitudinal
acceleration. The speed and displacement are defined for a vehicle with two axles, taking into
consideration the rolling friction and road gradient [31].

The acceleration is calculated based on the following forces:
Engine force:

Fengine =
T1

rad1
+

T2
rad2

(1)

Slope strength [32]:
Fslope = Mcar.g.sin

(
αslope

)
(2)

Rolling frictional force [33]:

F f riction = rvehi.Vcar + Froll.sign(Vcar) (3)

Froll= Rroll
(
Mbecause.g.cos

(
αslope

)
−Wz.Vc

)
(4)

Vc = (Vcar + Vwind). |Vcar + Vwind| (5)

Aerodynamic force [33]:
Faero = Wx.Vc (6)

according to Newton’s second law.
The sum of all forces applied to the vehicle is divided by the body mass, including wheel inertias

and trailer mass, to obtain vehicle acceleration.

Acar =
1

Mvehi + Mtrail +
rin1

(rad1)2 +
rin2

(rad2)2

.(Fengine − Faero − Fslope − F f riction−Ftrailer) (7)

Then, this acceleration is integrated twice to obtain the speed and position of the vehicle.

4.1.2. Control Unit

The control unit receives information from the driver (acceleration, braking controls, and gearbox
ratio), the electric motor (maximum/minimum speed and torque), the combustion engine
(maximum speed and torque), the battery (state of charge), and the vehicle speed and the gearbox
(input shaft speed). The unit analyzes these values in order to minimize battery consumption.
The electric motor can be used as a generator to charge the battery when the driver brakes.

In this approach, the electric motor and the combustion engine are connected to the manual
gearbox. The control unit manages the power required by the engine and the electric motor. If the
battery needs to be regenerated, then the motor is used to move the vehicle forward, and if the power
demand is less than its optimum power (depending on its speed), then the difference is transmitted to
the electric motor/generator to charge the battery.

The strategy consists of four modes:

Mode 1: The battery must not be charged; the combustion engine is not used.
Mode 2: The battery does not need to be charged; the combustion engine is used.
Mode 3: The battery is fully charged; the engine is not used.
Mode 4: The battery is not fully charged; the engine is used.

There are two transient modes when the engine starts:
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1. If the engine speed is less than idle speed/2, then the clutch is engaged and the engine does
not start.

2. When the engine reaches idle speed/2, the clutch remains closed and the engine starts [34].

The braking torque required by the driver is calculated following the selected brake command,
as defined in Table 3.

Table 3. Brake command.

Brake Command: Signal [0.1] Brake Command: Wheel Torque (Nm)

braketorq torbrakdrv ·maxtorqveh torbrakdrv

Mode 1: The battery is fully charged; the combustion engine is not used.

In this mode, the electric motor is used to drive the vehicle, the combustion engine is stopped,
and the clutch is opened.

The mode changes if one or both of the following conditions apply:

1. The battery charge state is below the lower limit (parameter) and the engine can start (the rotation
speed of the gearbox input shaft is higher than the engine idling speed).

2. The vehicle speed is above the speed limit (parameter).

The torque required by the driver is calculated as defined in Tables 4 and 5.

Table 4. Torque command.

Sommetorq

Acceleration signal command [0.1] torvehdrv · tmaxMel− braketorq

Acceleration control: wheel power [W]

if |sensorMErev| < 1.0 in torvehdrv > 0
tpull

if |sensorMErev| < 1.0 in torvehdrv ≤ 0
−braketorq

if |sensorMErev| ≥ 1.0
torvehdrv/|sensorME|/gearatio− braketorq

Acceleration control: wheel torque [Nm] torvehdrv
gearatio − braketorq

Table 5. Torque required.

TorME Torbrak

Torque requested by the driver is
positive (acceleration requested)

MIN(sommetorq.
gainaccel,
tmaxMel)

0

Torque requested by the driver is
negative or null (brake requested) and

no gear is selected
0

(torME.gearati− sommetorq).
gainbrakes

maxtorqueh

Torque requested by the driver is
negative or null (brake requested) and

no gear is selected

MAX(
sommetorq
gearation ,

tminMel)

torMe.gearatiosommetorq
gainbrakes
maxtorqveh .

Mode 2: The battery is not fully charged; the combustion engine is used.

In this mode, the engine is used to drive the vehicle (only during acceleration), and the clutch
is closed.

The mode changes if one or both of the following conditions apply:

1. The battery charge status is below the lower limit (parameter).
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2. Vehicle speed is below the speed limit (parameter).

The torque required by the driver is calculated as defined in Table 6.

Table 6. Motor control.

Sommetorq

Acceleration command: signal [0.1] Torvehdrv.tmaxMth− braketorq

Acceleration command: wheel power [W]

Si |sensorMErev| < 5.0 and torvehdrv > 0
tpull.gearatio

Si |sensorMErev| < 5.0 en torvehdrv ≤ 0
−braketorq

Si |sensorMErev| ≥ 5.0
torvehdrv/|sensorME|/gearatio− braketorq

Acceleration command: wheel power [Nm] torvehdrv
gearatio ∗ braketorq

The motor control is calculated according to Table 7.

Table 7. Motor control.

ThrottleMT Clutchsig Starteng

Torque requested by the
driver is positive

(acceleration requested).

MIN(sommetorq.gainaccel,tmaxMth)
tmaxMth

1 1

Torque requested by the
driver is negative or null
(acceleration requested).

0 0 0 or 1 function of
engdecel parameter

The torque control of the electric motor and the braking control of the vehicle is calculated as
shown in Table 8.

Table 8. Torque required.

TorME Torbrak

Torque requested by the driver is
positive (acceleration requested). 0 0

Torque requested by the driver is
negative or null (brake requested)

and no gear is selected.
0 (torME.gearatio −sommetorq) gainbrakes

maxtorqueh

Torque requested by the driver is
negative or null (brake requested)

and the gear is selected.
MAX

(
sommetorq
gearratio , tminMel

)
(torME.gearratio −sommetorq). gainbrakes

maxtorquveh

Mode 3: The battery is fully charged; the engine is not used.

In this mode, the electric motor is used to drive the vehicle, the combustion engine is stopped,
and the clutch is opened. However, we account for the fact that the engine must be started to regenerate
the battery.

The mode will change if one or more of the following conditions apply:

1. The battery’s state of charge is above the upper limit (parameter).
2. Vehicle speed is above the speed limit (parameter).
3. The engine can be started (the rotation speed of the gearbox input shaft is higher than the engine

idle speed).

The torque required by the driver is calculated as shown in Table 9.
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Table 9. Torque required by the driver.

Sommetorq

Acceleration command: signal [0.1] Torveh.tmaxMel− braketorq

Acceleration command: wheel power [W]

if |sensorMErev| < 1.0 and torvehdrv > 0
tpull

if |sensorMErev| < 1.0 and torvehdrv ≤ 0
−braketorq

if |sensorMErev| ≥ 1.0
torvehdrv/|sensorME|/gearatio− braketorq

Acceleration command: wheel torque [Nm] torvehdrv
gearatio − braketorq

The torque control of the electric motor and the braking control of the vehicle are calculated
according to Table 10.

Table 10. Torque required.

TorME Torbrak

Torque requested by the driver is
positive (acceleration requested)

MIN(sommetorq.
gainaccel, tmaxMel) 0

Torque requested by the driver is
negative or null (brake requested)

and no gear is selected
0

(torqME.gearatio −sommetarq).
gainbrakes
maxtorqveh

Torque requested by the driver is
negative or null (brake requested)

and no gear is selected

MAX(
sommetorq

gearatio ,
tminMel)

(torqME.gearatio −sommetarq)
. gainbrakes
maxtorqveh

Mode 4: The battery is not fully charged; the engine is used.

In this mode, the electric motor is used to charge the battery, and the engine is used to drive the
vehicle and charge the battery (only during acceleration).

The mode changes if one or both of the following conditions apply:

1. The battery’s state of charge is above the upper limit (parameter).
2. The engine cannot be used (the speed of rotation of the gearbox input shaft is lower than the

engine idle speed).

The torque required by the driver is calculated as shown in Table 11.

Table 11. Torque required.

Sommetorq

Acceleration command: signal [0.1]. Torvehdrv.
tmaxMth− braketorq

Acceleration command: wheel power [W]

if |sensorMErev| < 1.0 and torvehdrv > 0
tpull

if |sensorMErev| < 1.0 and torvehdrv ≤ 0
−braketorq

if |sensorMErev| ≥ 1.0
Acceleration command: wheel torque [Nm] torvehdrv

gearatio − braketorq

The torque control of the electric motor and the braking control of the vehicle is calculated as
according to Table 12.
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Table 12. Torque control.

TorME Torbrak

Torque requested by the driver is
positive (acceleration requested) and
the torque requested for the engine is

lower than the optimum torque.

MAX(sommetorq.
gainaccel,
tmiMel)

0

Torque requested by the driver is
positive (acceleration requested) and

torque requested for the engine is
higher than the optimum torque.

0 0

Torque requested by the driver is
negative or null (brake requested) and

the gear is selected.
0 (torqME.gearatio −sommetarq). gainbrakes

maxtorqveh

Engine control is calculated as defined in Table 13 [35].

Table 13. Engine control.

Throttlemt Clutchsig Starteng

Torque requested by the
driver is positive

(acceleration requested)
and the torque requested

for the engine is lower
than the optimum torque.

MIN(sommetorq.gainaccel−torME,tmaxMth)
tmaxMth

1

Torque requested by the
driver is positive

(acceleration requested)
and the torque requested
for the engine is higher

than the optimum torque.

MIN(sommetorq.gainaccel−torME,tmaxMth)
tmaxMth

1

Torque requested by the
driver is negative or null

(brake requested).
0 0 1 or 1 function of

engdecel parameter

4.1.3. Gearbox

This model can be used to perform simple dynamic modeling of an n-speed manual gearbox
(forward and reverse). The transmission losses are the same for each gear. The inertia of the input
shaft and the drive axle are taken into account.

This gearbox is composed of an input shaft, flywheel, gears, clutch/synchronizer, and drive
axle [36].

The gearbox is illustrated in Figure 3.
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Torque loss

The torque loss set by the user must always be positive. A pre-treatment is carried out to ensure
that the torque is always resistant to movement.

No further pre- or post-processing is carried out by the component.
The value read from the file is applied to the torque of the secondary shaft [37].

Tp · ratio = −Ts + Tloss (8)

Input shaft speed

The input shaft speed ωp is calculated from the motor torque at port 3, T3, and the input shaft
torque, Tp (see below for the calculation of Tp).

The output rotation speed ω3 is determined as follows [38]:

ω3 = −ωp (9)

Rotational speed of the secondary shaft

The rotational speed of the secondary shaft ωs is calculated as follows [39]:

ωs = −ωpa · paratio (10)

Torque transmitted by the secondary shaft

The relative speed (ωrel) between the primary and secondary shafts must first be calculated [40]:

ωrel =
ωp

ratio
+ωs (11)

The torque on the secondary shaft Ts is the torque transmitted by the synchronizer; its calculation
depends on the chosen friction model.

Hyperbolic tangent:

Ts = Tslip · tanh
(
2 · −

ωrel
dvel

)
(12)

Torque transmitted by the drive shaft

The torque calculation Tp of the input shaft depends on the definition of the selected speed loss [41].

Tp =
1

nu
·
−Ts

ratio Tp
=
−Ts + Tloss

ratio

Torque transmitted by the drive axle

We assume the efficiency of the drive axle to be 1.0 (no loss).
The torque transmitted by the drive axle Tpa (= T2) is calculated as follows [42]:

Tpa = −Ts · paratio (13)

Power Losses

There are three sources of power loss: the viscous friction of the flywheel, clutch slippage, and the
efficiency of the machines.

In the event of a loss of power, the power lost from the gearbox is calculated as follows [43]:

powerlost = vis ·ωp
2 +

∣∣∣powerPr− powerPa
∣∣∣ (14)
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4.1.4. Internal Combustion Engine

The internal combustion engine (ICE) is a sub-model with different application cases.
To apply corrections and dependencies for engine starting, cold and hot temperatures are provided

and can be used.
This engine component must be used whenever information on engine performance during a

cycle is required. The prediction of fuel consumption or emissions during driving cycles is accurate
and has a low CPU cost (compatible with a fixed time step).

Mean effective pressures (BMEP, FMEP) and couples are related by the following relationships for
a four-stroke engine [13]:

BMEP = 4 ·π · Tout · 0.01V (15)

FMEP = 4 ·π · T f ric · 0.01V (16)

Torque calculation

The engine output torque is calculated from the engine control unit (ECU) load demand
as follows [44]:

Tout = Tmaxc · load + Tminc · (1− load) (17)

Several corrections can be activated/applied to the torque values read from the file.
These corrections are maintained simultaneously when they are all activated.

Dynamic Correction

Tmaxc = Tmax f ile ·
ρair
ρre f

·

√
Tamb

273.15 + Tre f
(18)

Impact of temperature

If the “use temperature influence correction for FMEP” (with torque impact) option is enabled,
any variation in FMEP due to a temperature that differs from the hot reference temperature will impact
the engine’s torque performance.

The correction is as follows [45]:

Tmaxc = Tmax f ile− ∆T f ric avec ∆T f ric =
{

T f ric, Temp− T f ric, Thot If the correction is activated
0 otherwise

(19)

Fuel consumption

The engine’s fuel consumption is read and corrected if necessary.
These corrections are maintained simultaneously when all of them are activated, and they can be

applied to the value read from the:

â Impact of temperature;
â Overconsumption when starting the engine;
â Deactivation of cylinders.

The actual fuel consumption is calculated as follows [46]:

cons = cons f ile · (1 + kstart) · exp f cons (20)

The coefficient expfcons is set to 1 when the temperature influence option is not activated.
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Engine Emissions

Equivalence report

The equivalence ratio is used to determine the total exhaust mass flow rate and is calculated as
follows [47]:

φ = φ f ile · (1 + kstart) · expeqratio (21)

Note: The expeqratio coefficient is set to 1 when the temperature influence option is not activated.

Exhaust gas mass flow rate

The exhaust flow rate is calculated from the fuel consumption and the equivalence ratio, as defined
in Table 14.

Table 14. Exhaust flow.

Positive Charge Engine Brake

dmexh = cons ·
(

AFsto
φ + 1

)
dmexh = f low0 w

idlespeed + cons

Pollutant emissions

Pollutant emissions are read from related data files and corrected if necessary [48].

emiCO = emiCO f ile · (αt + βt · coe f coldCO)︸                      ︷︷                      ︸
If temperature
influence activated

· (1 + kstart · coe f stCO)︸                      ︷︷                      ︸
If start influence
activated

(22)

αt =
Teng− Tlow
Thigh− Tlow

ad βt = 1− αt (23)

When the engine temperature is below the “high engine temperature threshold”, a linear
interpolation between the low and high temperature thresholds is performed to correct the emissions
read from the user-defined data tables.

Exhaust gas temperature

Texhaust = Texhaust f ile · expexhtemp (24)

The coefficient expexhtemp is set to 1 when the temperature influence option is not activated [49].

Heat loss from engines

Friction mean effective pressure:

FMEP = FMEP f ile · exp f mepcor (25)

The coefficient expfmepcor is set to 1 when the temperature influence option is not activated or if
the FMEP file includes an engine temperature axis.

The frictional power losses [W] are obtained from the friction torque [W]. T f ric [Nm] and engine
speed w [rad/s] are determined as follows [50]:

P f ric = T f ric ·ω (26)
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Losses of combustion heat

The combustion heat losses (Pcomb power [W]) are calculated using the heat loss coefficient read
from the table heatwall_i.data and the quantity of fuel injected [51].

Pcomb = cons · pci · coe f heatwall · exphlosses (27)

Energy balance

In custom mode, it is possible to activate the energy balance function. The energy balance can be
used to determine exhaust gas temperature or combustion heat losses.

The energy balance is established as follows [52]:

φcomb = Pwork + P f ric + Ppump + Pevap + Pcomb + Pexh (28)

The heat of combustion ϕcomb [W] indicates released energy. This energy takes into account the
production of CO and HC (instead of only CO2 and H2O for complete combustion) [53].

φcomb =
(
cons− emiHC−

emiCO
4

)
· pci (29)

The fuel evaporation energy Pevap [W] is deduced from the fuel consumption and the latent heat
of evaporation Hevap [J/kg] and is equal to [54]:

Pevap = cons ·Hevap (30)

The motor output power and friction losses Pwork, Pfric [W] are equal to [55]:

Pwork = Tout ·w and P f ric = T f ric ·w (31)

The motor pumping losses (when available) Ppump [W] are deduced from the value read in the
pump PMEP file [bar] as follows [56]:

Ppump = Tpump ·w (32)

The exhaust power of the engine Pexh [W] is equal to [57]:

Pexh = (dmBG ·CpBG + dmunburnedair ·Cpair + dmunburned f uel ·Cpcarb)·(Texhaust− Tamb) (33)

Deactivation of cylinders

The engine component receives the number of deactivated cylinder(s) at port 4 and the activation
(or not) of specific corrections.

When the input signal to port 4 applies the data, correction is set to 0.0 (option 1), and no correction
is applied to the supplied data file.

When the input signal to port 4 applies the data, correction is set to 1.0 (option 2), and corrections
are applied to the value read from the data file.

When option 2 is selected, the corrections are as follows [58]:

FMEPc = FMEP ·
ncylac

ncyl
+ FMEP0 · ncyldeacncyl (34)

BMEPmaxc = BMEPmax ·
ncylac

ncyl
− FMEP0 ·

ncyldeac

ncyl
(35)

Note: The minimum BMEP is not affected by cylinder deactivation.
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An equivalent BMEP (BMEPeq) is calculated and used to read the data file. This is the BMEP that
the engine will produce with all cylinders activated and with the same ECU load demand.

It is calculated as follows [58]:

BMEPeq = load ·
1

ncylac
· (ncyl · BMEPmax + ncyldeac · FMEP0) + (1− load)·BMEPmin (36)

The engine’s fuel consumption and emission variables are also corrected if the cylinder is
deactivated with option 2 selected [13].

cons = consstd ·
ncylac

ncyl
(37)

emiCO = emiCOstd ·
ncylac

ncyl
(38)

The equivalence ratio and exhaust gas temperature variables are not affected by
cylinder deactivation.

Displacement variation

As with cylinder deactivation, the data file for combustion mode, n, with displacement variation
must be completed using the BMEP calculated with the standard displacement. In this case, the standard
displacement (engine parameter) is the largest available engine displacement.

The variation in the displacement vdis (≤1) is an input signal. The correction is made as follows:

BMEPeq =
BMEPeq

vdis
(39)

The BMEPeq is used to read the data files [59].

4.1.5. Electric Motor/Generator

The following is a sub-model of an electric motor/generator with its converter. It is bi-directional
(motor/generator) and independent of the technology of the motor and its converter.

Torque

From the input torque demand Tset, the couple Tlim is limited as follows:

Tmin ≤ Tlim ≤ Tmax (40)

The output torque Tm is determined from the limited torque Tlim using a first-order offset [60]:

Tm = 11 + tr · s · Tlim (41)

where tr is the user-defined time constant [s].

Power balance

The mechanical power Pmec [W] is calculated as follows [61]:

Pmec = Tm ·ω (42)

The power loss Plost [W] is calculated from the efficiency η:

Plost = (1− η) · |Pmec| (43)

Two modes can then be defined:
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Pelec > Pmec Motor mode.
Pelec < Pmec Generator mode.

The different modes of operation of the electric motor/generator are illustrated in Figure 4.
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Therefore, the relationship between mechanical power and electrical power, taking the below
conditions into account, is as follows [62].

Pelec = Pmec− Plost (44)

with

Pmec < 0 in engine mode.
Pmec > 0 in generator mode.
Plost > 0.

The efficiency of the motor/generator, either user-defined or derived from Plost, corresponds to
the following.

Motor mode [63]:

η = 2−
Pelec
Pmec

(45)

Generator mode:
η = PelecPmec (46)

Limitation

It is the responsibility of the user to ensure that the power loss is less than the input power, i.e.,

Plost < Pelec in engine mode.
Plost < Pmec in generator mode.
Electric current

The output current I5 [A] is calculated as follows [63]:

I5 =
Pmec− Plost

U
(47)
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where U is the input voltage [V] and given by [64]

U = V5 −V6 (48)

4.1.6. Battery

The following describes a battery sub-model, which includes an internal resistance model in
the case of a variable voltage. Experimental data are required to define the open-circuit voltage and
internal resistance. Furthermore, thermal effects can be taken into account. The open-circuit voltage
and internal resistance can be temperature-dependent.

This battery is a concatenation of cells in series and in parallel.
Output potential:
If the voltage is fixed, then the potential at the positive pole is calculated as follows [65]:

V3 = f ixedvoltage + V2 (49)

where
V3 = f ixedcellvoltage · Scell + V2 (50)

If the voltage is variable, then the potential at the positive pole is calculated as follows [66]:

Vtarget = OCVbat−Rbat · I3 (51)

Vtarget = Scell · (OCVcell−Rcell · Icell) (52)

Icell =
I3

Pcell
(53)

The voltage is calculated using the target V [67]:

dV
dt

=
Vtarget−V

tau
(54)

where
dV
dt

= I3−
Vtarget−OCVbat

Rbat
C f bat

(55)

where
dV
dt

= I3−
Vtarget−OCVbat

Rbat

C f cell. Pcell
Scell

(56)

and, finally,
V3 = V + V2 (57)

State of charge (SOC)

The SOC [%] of the battery is a variable state whose derivative is calculated as follows [68]:

dSOC
dt

= −
dq
dt
·

100
Cnom

where Cnom is the nominal capacity [As]. This derivative is limited so that the state of charge remains
within a range of [0;100%].

The DOD [%] is used as an input to read the open-circuit voltage and internal resistance data files.
It is derived as follows:

DOD = 100− SOC (58)

Charge used by the load
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The charge used by charge q [As] (or the charge removed from the battery) is calculated as follows:

dq
dt

= −I3 (59)

where I3 is the battery current at port 3 [A].
Note that with the TM software conditions, the battery will discharge when the battery current at

port 3, I3, is negative.

Output power at port 1

The output power P [W] at port 1 is calculated as follows [67,68]:

P = Rbat · I2
3 (60)

where
P = Rcell · Icell2 · Scell · Pcell (61)

5. Results and Discussion

The simulations were carried out for a low-cost tractor. The driving cycle adopted was 300 s.
Additionally, the maximum working speed was specific for each tool attached to the tractor, as shown
in Table 2. According to the optimal torque distribution, we found that the hybrid tractor had the
following main features. The electric motor starts the tractor up to a certain power, or the combustion
engine is switched on to provide traction and simultaneously recharge the battery via a generator. At a
certain stabilized and low tractor power, the traction is in pure electric mode. All decelerations of the
vehicle are provided by the electric motor, thus recovering the braking energy.

5.1. Tractor without Attached Tools

In this simulation, the tractor did not have any tools attached to it and had a variable speed,
as shown in Figure 5 below. The maximum speed was 30 km/h.

World Electric Vehicle Journal 2020, 11, x 21 of 35 

𝐷𝑂𝐷 = 100 − 𝑆𝑂𝐶 (58) 

Charge used by the load 

The charge used by charge q [As] (or the charge removed from the battery) is calculated as 
follows: 𝑑𝑞𝑑𝑡 = −𝐼3 (59) 

where I3 is the battery current at port 3 [A]. 
Note that with the TM software conditions, the battery will discharge when the battery current 

at port 3, I3, is negative. 

Output power at port 1 

The output power P [W] at port 1 is calculated as follows [67,68]: 𝑃 = 𝑅𝑏𝑎𝑡 ⋅ 𝐼ଷଶ (60) 

where 𝑃 = 𝑅𝑐𝑒𝑙𝑙 ⋅ 𝐼𝑐𝑒𝑙𝑙ଶ ⋅ 𝑆𝑐𝑒𝑙𝑙 ⋅ 𝑃𝑐𝑒𝑙𝑙 (61) 

5. Results and Discussion 

The simulations were carried out for a low-cost tractor. The driving cycle adopted was 300 s. 
Additionally, the maximum working speed was specific for each tool attached to the tractor, as shown 
in Table 2. According to the optimal torque distribution, we found that the hybrid tractor had the 
following main features. The electric motor starts the tractor up to a certain power, or the combustion 
engine is switched on to provide traction and simultaneously recharge the battery via a generator. At 
a certain stabilized and low tractor power, the traction is in pure electric mode. All decelerations of 
the vehicle are provided by the electric motor, thus recovering the braking energy. 

5.1. Tractor without Attached Tools 

In this simulation, the tractor did not have any tools attached to it and had a variable speed, as 
shown in Figure 5 below. The maximum speed was 30 km/h. 

 
Figure 5. Tractor driving cycle without any attached implements. 

Figure 6 shows the torque engine variation during the driving cycle described in Figure 5 when 
there are no implements attached to the tractor. 

Figure 5. Tractor driving cycle without any attached implements.

Figure 6 shows the torque engine variation during the driving cycle described in Figure 5 when
there are no implements attached to the tractor.
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Figure 7 shows the variation in the torque of the electric motor during the driving cycle described
in Figure 5 when there are no implements attached to the tractor.
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The states of the vehicle’s engines confirm the results of the simulation. As illustrated in Figure 7,
the electric motor continuously contributes throughout the driving cycle. Additionally, Figure 6 reveals
a load for the internal combustion engine only after 180 s at high power demands. The generator is
activated when the internal combustion engine is running to store energy in the battery. The role of the
battery is to supply power to the electric motor. It should be noted that the addition of the electric
motor significantly reduces the use of the internal combustion engine, and it is even possible to realize
an all-electric operation.

Figure 8 shows the variation in the battery’s state of charge during the driving cycle shown in
Figure 5 when there are no implements attached to the tractor.
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Figure 8 shows the battery’s state of charge (%) during the mission profile. The SOC begins at
100%, and the operating range is between 100% and 75%.

Figure 9 shows the total fuel consumption during the driving cycle shown in Figure 5 when there
are no implements attached to the tractor.
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Figure 9. Fuel consumption.

Thus, fuel is not consumed until after 170 s of operation, as shown in Figure 9.
The downward trend in the curve reflects the nature of the discharge during the simulation period.

The fluctuating SOC is caused by the battery being powered by the recuperative generator. Because the
battery’s operating limit is at a low SOC level, the tractor reaches a point at which the engine must
start. Therefore, the all-electric mode time in this driving cycle is 170 s (Thermal Engine Status).

Figure 10 illustrates the variation in the CO2 released during the adopted mission profile.
The curve shows an emission of 0 g for 170 s of operation; this is the result of the 100% electric operation,
which minimizes the emissions rate.
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5.2. Tractor with a Moldboard Plow

In this simulation, the moldboard plow tool was attached to the tractor. The speed was variable
and had a maximum of 7 km/h, as shown in Figure 11 below.
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Figure 11. Tractor driving cycle with a moldboard plow attached.

Figure 12 shows the variation in the torque of the internal combustion engine during the driving
cycle described in Figure 11 when a moldboard plow is attached to the tractor.

Figure 13 shows the variation in the torque of the electric motor during the driving cycle in
Figure 11 when a moldboard plow is attached to the tractor.

The simulation results in Figure 13 show that the electric motor continuously contributes
throughout the driving cycle, and it operates alone for 150 s. Figure 12 reveals a load for the internal
combustion engine only at high power demands. With the generator functioning during operation,
the internal combustion engine ensures that energy is stored in the battery, which is responsible for
supplying power to the electric motor. The addition of the electric motor significantly reduces the use
of the internal combustion engine.
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Figure 13. Electric motor torque.

Figure 14 shows the variation in the battery’s state of charge during the driving cycle in Figure 11
when a moldboard plow is attached to the tractor.

Figure 14 shows the variation in total fuel consumption during the driving cycle in Figure 11
when a moldboard plow is attached to the tractor.

Figure 14 shows the battery’s state of charge (%) during the mission profile. The SOC starts at
100%. The operating range is between 100% and 10% and then increases because of the contribution of
the combustion engine. Thus, fuel is consumed only after 170 s of operation, as shown in Figure 15.
The downward trend in the curve reflects the nature of the discharge during the simulation period.
The fluctuating SOC is caused by the battery being powered by the recuperative generator. Because the
battery’s operating limit is at a low SOC level, the tractor reaches a point at which the engine must
start. Therefore, the all-electric mode lasts for 150 s in this driving cycle (Thermal Engine Status).
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Figure 16 illustrates the variation in the CO2 released during the mission profile illustrated in
Figure 11. The curve shows an emission of 0 g for 170 s of operation; this is the result of the 100%
electric operation, which minimizes the emissions rate.
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5.3. Tractor with the Bette Harvest

In this simulation, the Bette Harvest variable-speed implement was attached to the tractor,
as shown in Figure 17. The maximum speed was 9 km/h.
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Figure 17. Tractor driving cycle with a Bette Harvest attached.

Figure 18 shows the variation in the torque of the internal combustion engine during the driving
cycle described in Figure 17 when a Bette Harvest is attached to the tractor.

Figure 19 shows the variation in the torque of the electric motor during the driving cycle described
in Figure 17 when a Bette Harvest is attached to the tractor.
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Figure 19. Electric motor torque.

The simulation results in Figure 19 show that the electric motor contributes little power during the
driving cycle due to the high power demand of the tool. Figure 18 reveals that the internal combustion
engine contributes in this cycle. With the generator functioning during the operation of the combustion
engine, energy is stored in the battery, which supplies power to the electric motor. These results show
that the addition of the electric motor significantly reduces the use of the combustion engine.

Figure 20 shows the variation in the battery’s state of charge during the driving cycle described in
Figure 17 when a Bette Harvest is attached to the tractor.
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Figure 21 shows the variation in total fuel consumption during the driving cycle described in
Figure 17 when a Bette harvest is attached to the tractor.
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Figure 20 shows the battery’s state of charge (%) during the mission profile. The SOC starts at
100%, and the operating range is higher than the highest engine contribution. The fuel consumption
of the internal combustion engine is very high because of the high-power requirement, as shown
in Figure 21.

Figure 22 illustrates the variation in CO2 emissions during the adopted mission profile. The curve
illustrates continuous and high CO2 emissions, which is explained by the considerable intervention of
the combustion engine.
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5.4. Tractor with a Straw Tub grinder

In this simulation, the straw tub grinder tool was attached to the tractor. The tool does not require
any movement, as shown in Figure 23.
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Figure 23. Tractor driving cycle with a straw tub grinder attached.

Figure 24 shows the variation in the torque of the internal combustion engine during the driving
cycle described in Figure 23 when a straw tub grinder is attached to the tractor.

Figure 25 shows the variation in the torque of the electric motor during the driving cycle described
in Figure 23 when a straw tub grinder is attached to the tractor.
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Figure 25. Electric motor torque.

The simulation results in Figure 25 show that the electric motor contributes substantially during
the driving cycle because of the low power demand of the tool. However, the combustion engine
contributes after 570 s, which is after the battery is discharged, as shown in Figure 24.

Figure 26 shows the battery’s state of charge (%) during the mission profile. The SOC starts at
100%. The operating range decreases because of the large contribution of the electric motor. Fuel is not
consumed until 570 s, when the battery is discharged and the internal combustion engine starts to
operate, as shown in Figure 27.

Figure 28 illustrates the variation in CO2 emissions during the adopted mission profile. The curve
shows that CO2 is not emitted until 570 s, which is when the combustion engine starts to operate and
the battery is discharged.
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6. Conclusions

Agriculture is one of the most important industries in the world, and the tractor is regarded as the
main axial machine used in this sector.
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The present work reports an evaluation of a low-cost tractor that is equipped with a parallel
hybrid engine. Simulations were carried out with AMESim software with three different implements
attached to the tractor. Each implement requires a different type of power.

First, without any attached implements, the tractor was able to run for 170 s with the electric
motor only. This saved fuel during this period.

The second simulation was carried out with a moldboard plow attached to the tractor,
which requires draft power. The simulation showed that the tractor worked with the electric
motor for 150 s, which reflects notable fuel savings.

In the third simulation, the tractor was attached to a Bette Harvest, which requires draft power
and PTO at the same time. Thus, very high power was required, and it could only be provided by
placing a demand on both engines.

In the final simulation, the straw tub grinder was used, which only needs PTO. During the
operation, the electric motor ran alone until the battery was discharged. Thereafter, the combustion
engine started to operate and charged the battery.

Finally, the parallel hybrid architecture can minimize fuel consumption through the participation
of the electric motor. H. Fathollahzadeh et al. found that when working the soil with a conventional
tractor attached to a moldboard plow, the average fuel consumption was 30 L/ha, whereas the average
fuel consumption by our low-cost tractor was 17 L/ha while performing the same work. This represents
a significant decrease in consumption and emissions [69]. This improvement is the result of the power
obtained by recovering energy from the combustion engine. The possibility of integrating renewable
energy into our architecture will be the subject of our future work.
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