Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany †
Abstract
:1. Introduction
1.1. Greenhouse Gas in Germany’s Transport Sector
1.2. EU Policies Regarding CO2 Emissions
1.3. Applied Methodology and Research Question
1.4. Structure of the Paper
2. Barriers of Social Acceptance
2.1. Energy Storage
2.2. Insecurity in Dealing with Accidents
2.3. Driving Range of Current Electric Vehicles
2.4. Charging Time of Modern Electric Vehicles
2.5. Charging Infrastructure
2.5.1. Charging Infrastructure—Current State
Germany
Worldwide
2.5.2. Geographic Characteristics
- Conformity with road traffic law.
- Consideration of monument zones.
- Visibility, busy, and well-signposted roads.
- Publicly accessible locations at all times.
- Accessible locations in all seasons (especially in winter).
- Safe locations with night-time lighting.
- Access to low voltage or medium voltage network depending on charger type.
- Wherever possible, charging stations approachable from both directions, no one-way streets.
- Preference for major roads to protect residential areas.
- Reliable mobile network or LAN cable for connection to a backend system.
2.5.3. Target Group
- Citizens, inbound commuter, and local companies:
- Tourists:
- Through traffic:
2.5.4. Charging Station
Conductive Charging
Inductive Charging
Cost Comparison of Charging Stations
2.5.5. Access and Payment
- RFID card:
- Smartphone (App/SMS):
- Giro/credit card:
- Cash:
2.5.6. Pricing
2.5.7. Backend and Roaming
2.5.8. Authorization Process
3. Development in the Social Acceptance of Electric Vehicles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanellos, F.D.; Grigoroudis, E.; Hope, C.; Kouikoglou, V.S.; Phillis, Y.A. Optimal GHG Emission Abatement and Aggregate Economic Damages of Global Warming. IEEE Syst. J. 2014, 11, 2784–2793. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Greenhouse Gas Emissions from Transport. Available online: https://www.eea.europa.eu/themes/transport (accessed on 26 August 2020).
- Federal Ministry for the Environment. Nature Consenservation and Nuclear Safety. Klimawandel in Zahlen: Fakten, Trends und Impulse Deutscher Klimapolitik. Climate Action in Figures: Facts, Trends and Incentives for German Climate Policy. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/klimaschutz_zahlen_2019_broschuere_bf.pdf (accessed on 26 August 2020).
- Burkert, A.; Schmuelling, B. Challenges of Conceiving a Charging Infrastructure for Electric Vehicles—An Overview. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–5. [Google Scholar]
- IRENA. Global Energy Transformation: A Roadmap to 2050. Internation Renewable Energy Agency. Available online: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 26 August 2020).
- Federal Motor Transport Authority. Pkw-Bestand in Deutschland nach Kraftstoffarten. Car Population in Germany by Fuel Type. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/bestand_node.html (accessed on 17 August 2020).
- Wolfram, P.; Lutsey, N. Electric Vehicles: Literature Review of Technology Costs and Carbon Emissions; The International Council on Clean Transportation: Washington, DC, USA, 2016. [Google Scholar]
- Nissan. Nissan Vehicles: Juke, Leaf and Micra. Available online: https://www.nissan.de/ (accessed on 17 August 2020).
- Lajunen, A. Evaluation of energy consumption and carbon dioxide emissions for electric vehicles in Nordic climate conditions. In Proceedings of the 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 10–12 April 2018; pp. 1–7. [Google Scholar]
- VuMA. Autofahrer in Deutschland nach Selbstgefahrenen Kilometern pro Jahr von 2015 bis 2019 Drivers in Germany by Self-Driving Kilometres Per Year from 2015 to 2019; VuMA: Hamburg, Germany, 2020. [Google Scholar]
- Hein, P.; Peter, F.; Graichen, P. Die Energiewende im Stromsektor: Stand der Dinge 2019. Energy Transition in Electricity Sector: Status in 2019. AGORA Energiewende. Available online: https://www.agora-energiewende.de/fileadmin2/Projekte/2019/Jahresauswertung_2019/171_A-EW_Jahresauswertung_2019_WEB.pdf (accessed on 26 August 2020).
- The International Council on Clean Transportation. European Electric Vehicle Factbook 2019/2020. Available online: https://theicct.org/sites/default/files/publications/EV-EU-Factbook-2020.pdf (accessed on 2 December 2020).
- Federal Motor Transport Authority. Durchschnittliche CO2-Emissionen der neu Zugelassenen Pkw in Deutschland von 1998 bis 2019. Average CO2 Emissions of Newly Registered Passenger Cars in Germany from 1998 to 2019. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Umwelt/n_umwelt_inhalt.html (accessed on 17 August 2020).
- Federal Motor Transport Authority. Neuzulassungsbarometer 2019 New Vehicle Registration Barometer 2017, 2018, 2019. Available online: https://wwwkbade/DE/Statistik/Fahrzeuge/Neuzulassungen/neuzulassungen_nodehtml (accessed on 17 August 2020).
- EU631/2019. CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC); European Parliament: Brussels, Belgium, 2019. [Google Scholar]
- Uthirakumar, A.; Manickam, I. Barriers of growth analysis for Electric Vehicles by non-linear polarized scale method. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020; pp. 14–16. [Google Scholar] [CrossRef]
- Ziefle, M.; Beul-Leusmann, S.; Kasugai, K.; Schwalm, M. Public Perception and Acceptance of Electric Vehicles: Exploring Users’ Perceived Benefits and Drawbacks. In Proceedings of the Mining Data for Financial Applications; Springer: Cham, Switzerland, 2014; pp. 628–639. [Google Scholar]
- Adhikari, M.; Ghimire, L.P.; Kim, Y.; Aryal, P.; Khadka, S.B. Identification and Analysis of Barriers against Electric Vehicle Use. Sustainability 2020, 12, 4850. [Google Scholar] [CrossRef]
- Statharas, S.; Moysoglou, Y.; Siskos, P.; Zazias, G.; Capros, P. Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment. Energies 2019, 12, 2739. [Google Scholar] [CrossRef] [Green Version]
- Hosseinpour, S.; Chen, H.; Tang, H. Barriers to the wide adoption of electric vehicles: A literature review based discussion. In Proceedings of the 2015 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, 2–6 August 2015; pp. 2329–2336. [Google Scholar] [CrossRef]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Kroher, T. Kostenvergleich Elektro, Benzin oder Diesel: Lohnt es sich Umzusteigen? Cost Comparison of Electric, Petrol or Diesel: Is It Worth Changing? ADAC: Munich, Bavaria, 2020. [Google Scholar]
- Tsiropoulos, T.; Tarvydas, D.; Lebedeva, N. Li-Ion Batteries for Mobility and Stationary Storage Applications: Scenarios for Costs and Market Growth; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Mathis, W. Cheaper Batteries, More Chargers for Electric Car Buyers in 2020. Available online: https://www.bloomberg.com/news/articles/2020-01-13/cheaper-batteries-more-chargers-for-electric-car-buyers-in-2020 (accessed on 30 November 2020).
- Zuccari, F.; Orecchini, F.; Santiangeli, A.; Suppa, T.; Ortenzi, F.; Genovese, A.; Pede, G. Well to wheel analysis and comparison between conventional, hybrid and electric powertrain in real conditions of use. In Proceedings of the Second International Conference on Material Science, Smart Structures and Applications: ICMSS-2019; AIP Publishing LLC.: Melville, NY, USA, 2019; Volume 2191, p. 020158. [Google Scholar]
- Lou, P.; Xu, G.-H.; Yue, L.-P.; Cao, Y.-C.; Cheng, S.; Deng, H. Current Fire Safety challenges on Lithium Ion Battery for Grid Power Storage System. In Proceedings of the 2019 4th International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, 21–23 September 2019; pp. 300–304. [Google Scholar]
- Finegan, D.P.; Darcy, E.; Keyser, M.; Tjaden, B.; Heenan, T.M.M.; Jervis, R.; Bailey, J.J.; Malik, R.; Vo, N.T.; Magdysyuk, O.V.; et al. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. Energy Environ. Sci. 2017, 10, 1377–1388. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.; Sundaram, S.M.; Diwakar, V. Development of sensor and optimal placement for smoke detection in an electric vehicle battery pack. In Proceedings of the 2015 IEEE International Transportation Electrification Conference (ITEC), Chennai, India, 27–29 August 2015; pp. 1–3. [Google Scholar]
- Sun, P.; Biscchop, R.; Niu, H.; Huang, X. A review of battery fires in electric vehicles. Fire Technol. 2020, 1–5. [Google Scholar] [CrossRef]
- Deloitte. New Market. New Entrants. New Challenges. Battery Electric Vehicles. Available online: https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/manufacturing/deloitte-uk-battery-electric-vehicles.pdf (accessed on 26 August 2020).
- AAA Foundation for Traffic Safety. American Driving Survey, 2015–2016. Available online: https://aaafoundation.org/wp-content/uploads/2018/01/19-0226_AAAFTS-2018-ADAS-Research-Brief-Update_v1.pdf (accessed on 26 August 2020).
- Nobis, C.; Kuhnimhof, T. Mobilität in Deutschland—MID Ergebnisbericht Mobility in Germany—MID Results Report. Available online: http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_Ergebnisbericht.pdf (accessed on 26 August 2020).
- International Energy Agency. Global EV Outlook 2019: Scaling-Up the Transition to Electric Mobility. Available online: https://www.oecd-ilibrary.org/docserver/35fb60bd-en.pdf?expires=1612944671&id=id&accname=ocid177160&checksum=83A0529C89705E916AFEEDA74DBAA39A (accessed on 26 August 2020).
- European Alternative Fuels Observatory. Market Share New Registrations. December 2020. Available online: https://www.eafo.eu/vehicles-and-fleet/m1 (accessed on 15 January 2021).
- Association des Constructeurs Européens d’Automobiles. Passenger Car Registrations: −25.5% 11 Months into 2020; 12.0% in November. 17 December 2020. Available online: https://www.acea.be/press-releases/article/passenger-car-registrations-25.5-11-months-into-2020-12.0-in-november (accessed on 15 January 2021).
- Federal Motor Transport Authority. Vehicle Registration in December 2020—Annual Report—Fahrzeugzulassungen im Dezember 2020—Jahresbilanz. 31 December 2020. Available online: https://www.kba.de/SharedDocs/Pressemitteilungen/DE/2021/pm_02_2021_fahrzeugzulassungen_12_2020_pdf (accessed on 15 January 2021).
- Cleantechnica. Record Electric Vehicle Sales in Europe. 29 December 2020. Available online: https://cleantechnica.com/2020/12/29/record-electric-vehicle-sales-in-europe/ (accessed on 15 January 2021).
- Bloch, C.; Newcomb, J.; Shiledar, S.; Tyson, M. Breakthrough Batteries—Power the Era of Clean Electrification. Available online: https://rmi.org/wp-content/uploads/2019/10/rmi_breakthrough_batteries.pdf (accessed on 2 December 2020).
- De Cauwer, C.; Van Mierlo, J.; Coosemans, T. Energy Consumption Prediction for Electric Vehicles Based on Real-World Data. Energies 2015, 8, 8573–8593. [Google Scholar] [CrossRef]
- International Energy Agency. Global EV Outlook 2018. Available online: https://www.iea.org/reports/global-ev-outlook-2018 (accessed on 26 August 2020).
- Küpper, D.; Kuhlmann, K.; Wolf, S.; Pieper, C.; Xu, G.; Ahmad, J. The Future of Battery Production for Electric Vehicles. Available online: https://www.bcg.com/de-de/publications/2018/future-battery-production-electric-vehicles (accessed on 26 August 2020).
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Baes, K.; Kolk, M.; Merhaba, A.; Carlot, F.; Ito, Y. Future of Batteries: Winner Takes All? Available online: https://www.adlittle.com/sites/default/files/viewpoints/adl_future_of_batteries-min.pdf (accessed on 26 August 2020).
- European Commission. Future Brief: Towards the Battery of the Future. Available online: https://ec.europa.eu/environment/integration/research/newsalert/pdf/towards_the_battery_of_the_future_FB20_en.pdf (accessed on 26 August 2020).
- Frith, J. Lithium-Ion Batteries: The Incumbent Technology. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/6.1_frith_energy_storage.pdf (accessed on 26 August 2020).
- Barcellona, S.; De Simone, D.; Piegari, L. Control strategy to improve EV range by exploiting hybrid storage units. IET Electr. Syst. Transp. 2019, 9, 237–243. [Google Scholar] [CrossRef]
- Sautermeister, S.; Thorgeirsson, A.T.; Vaillant, M.; Gauterin, F. A Stochastic Range Estimation Algorithm for Electric Vehicles Using Traffic Phase Classification. IEEE Trans. Veh. Technol. 2019, 68, 6414–6428. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1. [Google Scholar] [CrossRef]
- Nilsson, M. Electric Vehicle: The Phenomenon of Range Anxiety. Available online: http://e-mobility-nsr.eu/fileadmin/user_upload/downloads/info-pool/the_phenomenon_of_range_anxiety_elvire.pdf (accessed on 26 August 2020).
- Mitsubishi Motors. 2012 Mitsubishi i-MiEV Product Brief. Available online: http://manitobaev.ca/wp-content/uploads/2011/11/i-Miev-product-brief.pdf (accessed on 26 August 2020).
- Pevec, D.; Babic, J.; Carvalho, A.; Ghiassi-Farrokhfal, Y.; Ketter, W.; Podobnik, V. Electric Vehicle Range Anxiety: An Obstacle for the Personal Transportation (R)evolution? In Proceedings of the 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatiab, 18–21 June 2019. [Google Scholar]
- Faraj, M.; Fidan, B.; Gaudet, V. Multi-Module Range Anxiety Reduction Scheme for Battery-Powered Vehicles. 2018 IEEE Intell. Veh. Symp. (IV) 2018, 904–909. [Google Scholar] [CrossRef]
- Franke, T. Nachhaltige Mobilität mit Begrenzten Ressourcen: Erleben und Verhalten im Umgang mit der Reichweite von Elektrofahrzeugen; TU Chemnitz: Qucosa, Saxony, 2013. [Google Scholar]
- Sautermeister, S.; Falk, M.; Baker, B.; Gauterin, F.; Vaillant, M. Influence of Measurement and Prediction Uncertainties on Range Estimation for Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2615–2626. [Google Scholar] [CrossRef]
- Rauh, N.; Franke, T.; Krems, J.F. Understanding the Impact of Electric Vehicle Driving Experience on Range Anxiety. Hum. Factors J. Hum. Factors Ergon. Soc. 2014, 57, 177–187. [Google Scholar] [CrossRef]
- Fechtner, H.; Teschner, T.; Schmuelling, B.; Heiko, F. Range prediction for electric vehicles: Real-time payload detection by tire pressure monitoring. 2015 IEEE Intell. Veh. Symp. (IV) 2015, 767–772. [Google Scholar] [CrossRef]
- Fechtner, H. Fahrzeugmasseüberwachung Mittels Intelligentem Reifendruckkontrollsystem im Kontext der Reichweitenproblematik von Elektrofahrzeugen; University of Wuppertal: Wuppertal, Germany; Shaker Verlag: Aachen, Germany, 2019. [Google Scholar]
- Clarke, I.; Athena, P. Range extenders: An innovative approach to range anxiety in electric vehicles. Int. J. Automot. Technol. Manag. 2019, 19, 104–124. [Google Scholar] [CrossRef]
- Fukushima, A.; Yano, T.; Imahara, S.; Aisu, H.; Shimokawa, Y.; Shibata, Y. Prediction of energy consumption for new electric vehicle models by machine learning. IET Intell. Transp. Syst. 2018, 12, 1174–1180. [Google Scholar] [CrossRef]
- Varga, B.O.; Sagoian, A.; Mariasiu, F. Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges. Energies 2019, 12, 946. [Google Scholar] [CrossRef] [Green Version]
- Knutsen, D.; Willén, O. A Study of Electric Vehicle Charging Patterns and Range Anxiety; Uppsala University: Uppsala, Sweden, 2013. [Google Scholar]
- Apostolaki-Iosifidou, E.; Codani, P.; Kempton, W. Measurement of power loss during electric vehicle charging and discharging. Energy 2017, 127, 730–742. [Google Scholar] [CrossRef]
- Mussa, A.S.; Liivat, A.; Marzano, F.; Klett, M.; Philippe, B.; Tengstedt, C.; Lindbergh, G.; Adström, K.; Lindström, R.W.; Svens, P. Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells. J. Power Sources 2019, 175–184. [Google Scholar] [CrossRef]
- Porsche. The New Taycan 4S—Press Kit. Available online: https://newsroom.porsche.com/de/produkte/taycan.html (accessed on 17 August 2020).
- Speers, P. Hydrogen Mobility Europe (H2ME): Vehicle and Hydrogen Refuelling Station Deployment Results. World Electr. Veh. J. 2018, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.C.X.; Jiang, T.J.T.; Bi, M.B.M.; Wang, Y.W.Y.; Gao, H.G.H. A review of condition assessment of charging infrastructure for electrical vehicles. In Proceedings of the IET International Conference on Intelligent and Connected Vehicles (ICV 2016), Chongqing, China, 22–23 September 2016. [Google Scholar]
- Hirsch, H.; Jeschke, S.; Wei, L.; Trautmann, M.; Barenfanger, J.; Maarleveld, M.; Heyen, J.; Darrat, A. Latest development of the national and international EMC-standards for electric vehicles and their charging infrastructure. In Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, 16–22 August 2015; pp. 708–713. [Google Scholar]
- House, M.; Wright, D. Funding an electric vehicle charging infrastructure from associated health benefits. In Proceedings of the 2016 IEEE Electrical Power and Energy Conference (EPEC), Ottawa, ON, Canada, 12–14 October 2016; pp. 1–5. [Google Scholar]
- Ma, T.; Mohammed, O.A. Optimal charging of plug-in electric vehicles for a car-park infrastructure. IEEE Trans. Ind. Appl. 2014, Volume 50, 2323–2330. [Google Scholar]
- Ferguson, B.; Nagaraj, V.; Kara, E.C.; Alizadeh, M. Optimal Planning of Workplace Electric Vehicle Charging Infrastructure with Smart Charging Opportunities. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1149–1154. [Google Scholar]
- Porru, M.; Serpi, A.; Mureddu, M.; Damiano, A. A Combined Planning and Design Approach of a Public Charging Infrastructure for Electric Vehicles. In Proceedings of the 2018 IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar]
- Van Montfort, K.; Van Der Poel, G.; Visser, J.; Hoed, R.V.D. Prediction of necessary public charging infrastructure of electric vehicles. In Proceedings of the 6th Hybrid and Electric Vehicles Conference (HEVC 2016), London, UK, 2–3 November 2016. [Google Scholar]
- Schuler, D.; Gabba, G.; Küng, L.; Peter, V. How a city prepares to e-mobility in terms of public charging infrastructure case study the city of Zurich. 2013 World Electr. Veh. Symp. Exhib. (EVS27) 2013, EVS27, 1–7. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles. In Proceedings of the 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 7 March 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Auf der Maur, A.; Brueggeshemke, N.; Kutschera, M. Development of the Publicly Accessible Charging Infrastructure for Electric Mobility and Comparison of Charging Rates in Germany; EnBW: Karlsruhe, Germany, 2020. [Google Scholar]
- 2014/94/EU. On the Deployment of Alternative Fuels Infrastructure: 2014/94/EU; European Parliament: Brussels, Belgium, 2014. [Google Scholar]
- Federal Ministry of Transport and Digital Infrastructure. Förderrichtlinie Ladeinfrastruktur für Elektrofahrzeuge in Deutschland Funding Guideline for Charging Infrastructure for Electric Vehicles in Germany; BMVI: Berlin, Germany, 2017. [Google Scholar]
- German Federal Government. Masterplan Ladeinfrastruktur der Bundesregierung—Ziele und Maßnahmen für den LADEINFRASTRUKTURAUFBAU bis 2030 Master Plan for Charging Infrastructure of Federal Government—Aims and Measures for Design Configuration of Charging Infrastructure until 2030; BReg: Berlin, Germany, 2019.
- Wolter, A. Zahl der Woche: 65 Prozent der Deutschen Würden ihr E-Auto vor Allem Zuhause Laden Number ot the Week: 65 Percent of Germans Would Charge Their Electric Vehicle at Home. Available online: https://www.bdew.de/energie/elektromobilitaet-dossier/private-ladeinfrastruktur-foerdern/ (accessed on 26 August 2020).
- NOW GmbH. 900 euros for Private Charging Stations: List of Models Eligible for Funding Published. NOW. Available online: www.now-gmbh.de/en/news/pressreleases/900-euros-for-private-charging-stations-list-of-models-eligible-for-funding-published/ (accessed on 30 November 2020).
- EERE. Electric Vehicle Charging Station Locations. Available online: https://afdc.energy.gov/fuels/electricity_locations.html#/find/nearest?fuel=ELEC&ev_levels=all (accessed on 26 August 2020).
- Nicholas, M.; Hall, D.; Lutsey, N. Quantifying the Electric Vehicle Charging Infrastructure Gap across U.S. Markets. Available online: https://theicct.org/publications/charging-gap-US (accessed on 26 August 2020).
- Wood, E.W.; Rames, C.L.; Bedir, A.; Crisostomo, N.; Allen, J. California Plug-in Electric Vehicle Infrastructure Projections: 2017–2025—Future Infrastructure Needs for Reaching the State’s Zero Emission-Vehicle Deployment Goals; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2018. [Google Scholar]
- Todts, W. European Federation for Transport and Environment AISBL. Available online: https://www.transportenvironment.org/sites/te/files/publications/01%202020%20Draft%20TE%20Infrastructure%20Report%20Final.pdf (accessed on 26 August 2020).
- Statistics Norway. Number of Registered Vehicles in Norway in 2019, by Type, SSB. Available online: www.ssb.no/en/statbank/table/01960/?rxid=dc650bf9-dd86-49ea-bc7c-bbabecdda1b9 (accessed on 27 November 2020).
- Norsk Elbilforening. Norwegian EV Market, elbil. Available online: www.elbil.no/english/norwegian-ev-market/ (accessed on 27 November 2020).
- European Alternative Fuels Observatory. EAFO: The Netherlands. Available online: www.eafo.eu/countries/netherlands/1746/summary (accessed on 27 November 2020).
- Holteng, P.; te Riele, D. E-Mobility in Norway, Opportunity Report by the Embassy of the Kingdom of the Netherlands in Norway; Embassy of the Kingdom of the Netherlands in Norway: Norway, The Netherlands, 2019. [Google Scholar]
- RVO. Statistics Electric Vehicles in the Netherlands; Netherlands Enterprise Agency: The Hague, The Netherlands; Available online: https://www.rvo.nl/sites/default/files/2020/08/Statistics%20Electric%20Vehicles%20and%20Charging%20in%20The%20Netherlands%20up%20to%20and%20including%20July%202020.pdf (accessed on 10 February 2021).
- German Federal Motor Transport Authority. Annual Balance Sheet of the Vehicle Stock on January 2019. Available online: www.kba.de/DE/Statistik/Fahrzeuge/Bestand/b_jahresbilanz (accessed on 27 November 2020).
- NRDC. Scaling Up Electric Vehicles Charging Infrastructure: Lessons from China and the United States for the Indian Context; Natural Resources Defense Council: New York, NY, USA, 2020. [Google Scholar]
- Straka, M.; De Falco, P.; Ferruzzi, G.; Proto, D.; Van Der Poel, G.; Khormali, S.; Buzna, L. Predicting Popularity of Electric Vehicle Charging Infrastructure in Urban Context. IEEE Access 2020, 8, 11315–11327. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Li, H. The study on city general planning and management information system based on GIS. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010. [Google Scholar]
- Bonan, M.; Daenner, S.; Mayer, C.; Warnecke, T. Approval Process of Charging Infrastructure in Municipalities: Strategic and Legal Issues; Federal Ministry of Transport and Digital Infrastructure: Berlin, Germany, 2014. [Google Scholar]
- Gehrlein, T.; Schultes, B. Praxishandbuch Ladesäulen-Infrastruktur, Handbook Charging Station Infrastructure; Thorsten Gehrlein: Bonn, Germany, 2017. [Google Scholar]
- Dai, Y.; Liu, M. An electricity demand-based planning of electric vehicle charging infrastructure. Wuhan Univ. J. Nat. Sci. 2017, 22, 449–454. [Google Scholar] [CrossRef]
- Ibrahim, H.E.-D. Car Parking Problem in Urban Areas, Causes and Solutions. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- NPE. Die Deutsche Normungs-Roadmap Elektromobilität 2020: 7AG) 4—Normung, Standardisierung und Zertifizierung German Standardization Roadmap Electric Mobility 2020: 7AG 4—Standardization and Certification; Nationale Plattform Elektromobilität: Berlin, Germany, 2020. [Google Scholar]
- Habib, S.; Khan, M.M.; Hashmi, K.; Ali, M.; Tang, H. A Comparative Study of Electric Vehicles Concerning Charging Infrastructure and Power Levels. In Proceedings of the 2017 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 18–20 December 2017; pp. 327–332. [Google Scholar]
- Hutchinson, L.; Waterson, B.; Anvari, B.; Naberezhnykh, D. Potential of wireless power transfer for dynamic charging of electric vehicles. IET Intell. Transp. Syst. 2019, 13, 3–12. [Google Scholar] [CrossRef] [Green Version]
- IEC61851-3. Electric Vehicle Conductive Charging System; IEC: Geneva, Switzerland, 2017. [Google Scholar]
- IEC62196. Plugs, Socket-Outlets, Vehicle Connectors and Vehicle Inlets—Conductive Charging of Electric Vehicles; IEC: Geneva, Switzerland, 2014. [Google Scholar]
- ISO15118. Road Vehicles—Vehicle to Grid Communication Interface; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- IEC62752. In-Cable Control and Protection Device for Mode 2 Charging of Electric Road Vehicles (IC-CPD); IEC: Geneva, Switzerland, 2016. [Google Scholar]
- IEC62893. Charging Cables for Electric Vehicles for Rated Voltages up to and Including 0.6/1 kV; IEC: Geneva, Switzerland, 2017. [Google Scholar]
- ISO17409. Electrically Propelled Road Vehicles—Conductive Power Transfer—Safety Requirement; ISO: Geneva, Switzerland, 2020. [Google Scholar]
- IEC60364-7-722. Low-Voltage Electrical Installations—Part 7-722: Requirements for Special Installations or Locations—Supplies for Electric Vehicles; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Gao, Y.; Farley, K.B.; Tse, Z.T.H. Investigating safety issues related to Electric Vehicle wireless charging technology. In Proceedings of the 2014 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 15–18 June 2014; pp. 1–4. [Google Scholar]
- Kluth, R.; Ziegner, J. Inductive charging—Simplifying the charge to enable mass adoption. World Electr. Veh. J. 2012, 5, 714–721. [Google Scholar] [CrossRef] [Green Version]
- MAGMENT. 2020. Available online: https://www.magment.de/en-dynamic-wireless-charging (accessed on 13 January 2021).
- European Green Vehicles Initiative. February 2014. Available online: https://egvi.eu/project-highlight/unplugged-inductive-charging-for-electric-vehicles-february-2014/ (accessed on 13 January 2021).
- ISO19363. Electrically Propelled Road Vehicles—Magnetic Field Wireless Power Transfer—Safety and Interoperability Requirements; ISO: Geneva, Switzerland, 2020. [Google Scholar]
- IEC61980. Electric Vehicle Wireless Power Transfer (WPT) Systems; IEC: Geneva, Switzerland, 2015. [Google Scholar]
- CISPR11. Industrial Scientific and Medical Equipment—Radio-Frequency Disturbance Characteristics—Limits and Methods of Measurement; CISPR: Ispra, Italy, 2019. [Google Scholar]
- IEC62764. Measurement Procedures of Magnetic Field Levels Generated by Electronic and Electrical Equipment in the Automotive Environment with Respect to Human Exposure; IEC: Geneva, Switzerland, 2019. [Google Scholar]
- BMW Group. Charging even Easier than Refuelling. BMW. Available online: www.press.bmwgroup.com/deutschland/article/detail/T0281369DE/laden-noch-einfacher-als-tanken?language=de (accessed on 1 December 2020).
- Kvisle, H.H.; Myklebust, B.A. Development of Charging Station Data Services for New User Groups. 2013 World Electric Vehicle Symposium and Exhibition (EVS27) 2013, EVS27, 1–6. [Google Scholar] [CrossRef]
- Hollenbach, M. Bautzen Soon Parks without Change. Available online: www.saechsische.de/plus/bautzen-parkt-bald-ohne-kleingeld-5035673.html (accessed on 30 November 2020).
- Playfair Parking. What Does A Parking Ticket Machine Cost? Available online: www.playfair-parking.de/blog/was-kostet-ein-parkscheinautomat/ (accessed on 30 November 2020).
- Divyapriya, S.; Amutha; Vijayakumar, R. Design of Residential Plug-in Electric Vehicle Charging Station with Time of Use Tariff and IoT Technology. In Proceedings of the 2018 International Conference on Soft-computing and Network Security (ICSNS), Coimbatore, India, 14–16 February 2018; pp. 1–5. [Google Scholar]
- Gagnol, P.; Jochem, P.; Pierre, M.; Fichtner, W. CROME: The French and German field demonstration of the interoperable mobility with EVs. 2013 World Electr. Veh. Symp. Exhib. (EVS27) 2013, EVS27, 1–8. [Google Scholar] [CrossRef]
- German Associtation of the Automotive Industry. Position—Recommendations for a Successful Ramp-up of the Charging Infrastructure for Electric Vehicles by 2030. VDA. Available online: www.vda.de/de/services/Publikationen/positionspapier-ladeinfrastruktur (accessed on 27 November 2020).
- Buehler, J.; Goebelt, R.; Shahd, M. Mobility Study 2020; Technical Inspection Association: Stuttgart, Germany, 2020. [Google Scholar]
- Globisch, J.; Schneider, U.; Duetschke, E. Acceptance of electric vehicles by commercial users in the electric mobility pilot regions in Germany. In ECEEE Summer Study Proceedings; ECEEE: Stockholm, Sweden, 2013; pp. 973–983. [Google Scholar]
- Cocron, P.; Bühler, F.; Neumann, I.; Franke, T.; Krems, J.F.; Schwalm, M.; Keinath, A. Methods of Evaluating Electric Vehicles from a User’s Perspective—The MINI E Field Trial in Berlin. IET Intell. Transp. Syst. 2011, 5, 127–133. [Google Scholar] [CrossRef] [Green Version]
Annual Mileage [km] | Electricity Mix of 2019 | Renewable Power | ||
---|---|---|---|---|
Nissan Micra [a] | Nissan Juke [a] | Nissan Micra [a] | Nissan Juke [a] | |
5001–10,000 | 16.5–33 | 6.5–13 | 4–8 | 2.5–5 |
10,001–15,000 | 11–16.5 | 4.3–6.5 | 2.7–4 | 1.7–2.5 |
15,001–20,000 | 8.3–11 | 3.3–4.3 | 2–2.7 | 1.3–1.7 |
Annual Mileage [km] | Percentage of Population [%] |
---|---|
0–5000 | 12.97 |
5001–10,000 | 29.06 |
10,001–15,000 | 29.53 |
15,001–20,000 | 15.06 |
more than 20,000 | 13.37 |
Vehicle Model | Sales Volume | Battery Capacity [kWh] |
---|---|---|
Renault Zoe | 83,356 | 41 |
Tesla Model 3 | 63,086 | 55 |
Hyundai Kona EV | 37,202 | 64 |
VW e-Golf | 31,326 | 35.8 |
Audio e-tron 55 Sportback quattro | 30,181 | 86.5 |
VW ID.3 | 28,839 | 62 |
Peugeot 208 EV | 28,137 | 50 |
Kia Niro EV | 27,049 | 64 |
Nissan Leaf | 26,366 | 40 |
BMW i3 | 20,647 | 42.2 |
VW e-Up! | 18,176 | 36.8 |
smart EQ fortwo | 16,226 | 17.6 |
Category | Price Range [€] | Average Driving Range [km] |
---|---|---|
1 | 20,000–29,999 | 245 |
2 | 30,000–39,999 | 374 |
3 | >40,000 | 438 |
Charging Current | DC | AC | |||
---|---|---|---|---|---|
Charging capacity [kW] | 50 | 22 | 11 | 3.7 | 2.3 |
Charging time [h] | 0.67 | 6.5 | 11.5 | 11.5 | 17.4 |
Standard | Content |
---|---|
IEC 1 61851 [102] | EV 3 conductive charging system - Part 1: General requirements - Part 21-1: EV on-board charger EMC requirements for conductive connection to AC/DC supply - Part 21-2: EV requirements for conductive connection to an AC/DC supply - EMC requirements for off-board EV charging systems - Part 23: DC electric vehicle charging station |
IEC 62196 [103] | Plugs, socket-outlets vehicle connectors and vehicle inlets—Conductive charging of EVs - Part 1: General requirements - Part 2: Dimensional compatibility and interchangeability requirements for AC pin and contact-tube accessories - Part 3: Dimensional compatibility and interchangeability requirements for DC and AC/DC pin and contact-tube vehicle couplers |
IEC 62752 [105] | In-cable control and protection device for mode 2 charging of electric road vehicles |
IEC 62893 [106] | Charging cables for EVs for rated voltages up to and including 0.6/1 kV |
ISO 2 15118 [104] | Road vehicles - Vehicle to grid communication interface |
ISO 17409 [107] | Electrically propelled road vehicles - Conductive power transfer - Safety requirements |
IEC 60364 [108] | Low-voltage electrical installations - Part 7-722: Requirements for special installations or locations—Supplies for EVs |
Standard | Content |
---|---|
ISO 1 19363 [113] | Electrically propelled road vehicles - Magnetic field wireless power transfer - Safety and interoperability requirements |
IEC 2 61980 [114] | EV 4 wireless power transfer systems - Part 1: General requirements - Part 2: Specific requirements for communication between electric road vehicle and infrastructure - Part 3: Specific requirements for the magnetic field wireless power transfer systems |
IEC 62764 [116] | Measurement procedures of magnetic field levels generated by electronic and electrical equipment in the automotive environment with respect to human exposure - Part 1: Low-frequency magnetic fields |
CISPR 3 11 [115] | Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement |
ISO 15118 [104] | Road vehicles - Vehicle to grid communication interface - Part 1: General information and use-case definition - Part 2: Network and application protocol requirements - Part 8: Physical layer and data link layer requirements for wireless communication |
WCS 1 | Wallbox | AC Charger | DC Charger | ||
---|---|---|---|---|---|
Charging capacity [kW] | 3.7 | >3.7 | 11 to 22 | 50 | 150 |
Charging points | 1 | 1 | 2 | 2 | 8 |
Hardware [€] | 3205 | 450 to 1200 | 2500 to 8000 | 15,000 to 30,000 | n.a. |
Grid connection costs [€] | up to 2000 | up to 2000 | up to 2000 | 5000 to 15,000 | n.a. |
Approval [€] | up to 1000 | up to 1000 | 500 to 1000 | 1500 to 15,000 | n.a. |
Installation/Signage [€] | up to 1000 | up to 1000 | 1500 to 3000 | 3500 to 20,000 | n.a. |
Investment (CAPEX 2) [€] | 7205 | 4450 to 5200 | 6500 to 14,000 | 25,000 to 80,000 | 500,000 to 650,000 |
Service/Backend (OPEX 3) [€/a] | 1000 | 1000 | 1500 | 3000 | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkert, A.; Fechtner, H.; Schmuelling, B. Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany. World Electr. Veh. J. 2021, 12, 25. https://doi.org/10.3390/wevj12010025
Burkert A, Fechtner H, Schmuelling B. Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany. World Electric Vehicle Journal. 2021; 12(1):25. https://doi.org/10.3390/wevj12010025
Chicago/Turabian StyleBurkert, Amelie, Heiko Fechtner, and Benedikt Schmuelling. 2021. "Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany" World Electric Vehicle Journal 12, no. 1: 25. https://doi.org/10.3390/wevj12010025
APA StyleBurkert, A., Fechtner, H., & Schmuelling, B. (2021). Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany. World Electric Vehicle Journal, 12(1), 25. https://doi.org/10.3390/wevj12010025