Techno-Economic Analysis and Environmental Impact of Electric Buses
Abstract
:1. Introduction
2. Methodology
2.1. Bus Selection
2.2. Techno-Economic Analysis
2.2.1. Acquisition Cost
2.2.2. Operating Cost
2.2.3. Maintenance Cost
2.2.4. Disposal Cost
2.2.5. Life Cycle Cost
2.3. Sensitivity Analysis
2.4. Environmental Impact Analysis
3. Results and Discussions
3.1. Data Requirement
3.2. Techno-Economic Analysis
3.3. Sensitivity Analysis
3.4. Environmental Impact Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gallet, M.; Massier, T.; Hamacher, T. Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks. Appl. Energy 2018, 230, 344–356. [Google Scholar] [CrossRef]
- Pojani, D.; Stead, D. Sustainable Urban Transport in the Developing World: Beyond Megacities. Sustainability 2015, 7, 7784–7805. [Google Scholar] [CrossRef] [Green Version]
- Fossil Fuel Free Streets Declaration. Available online: https://www.c40.org/other/green-and-healthy-streets (accessed on 8 May 2020).
- Abas, A.E.P.; Mahlia, T.M.I. Development of energy labels based on consumer perspective: Room air conditioners as a case study in Brunei Darussalam. Energy Rep. 2018, 4, 671–681. [Google Scholar] [CrossRef]
- Mahlia, T.; Syazmi, Z.; Mofijur, M.; Abas, A.P.; Bilad, M.; Ong, H.C.; Silitonga, A. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020, 118, 109526. [Google Scholar] [CrossRef]
- Ezzat, M.; Dincer, I. Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle. Energy Convers. Manag. 2016, 129, 284–292. [Google Scholar] [CrossRef]
- Turoń, K. Hydrogen-powered vehicles in urban transport systems—Current state and development. Transp. Res. Procedia 2020, 45, 835–841. [Google Scholar] [CrossRef]
- Technology Roadmap—Biofuel for Transport; International Energy Agency: Paris, France, 2011.
- Ehrenberger, S.; Dunn, J.B.; Jungmeier, G.; Hewu, W. An international dialogue about electric vehicle deployment to bring energy and greenhouse gas benefits through 2030 on a well-to-wheels basis. Transp. Res. Part D Transp. Environ. 2019, 74, 245–254. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, F.; Ke, X.; Liu, Z.; Yuan, C. Predictive modeling of energy consumption and greenhouse gas emissions from autonomous electric vehicle operations. Appl. Energy 2019, 254, 113597. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chung, C.-L. Greenhouse gas mitigation policies in Taiwan’s road transportation sectors. Energy Policy 2018, 123, 299–307. [Google Scholar] [CrossRef]
- Rahman, S.M.; Khondaker, A.N.; Hasan, M.A.; Reza, I. Greenhouse gas emissions from road transportation in Saudi Arabia—A challenging frontier. Renew. Sustain. Energy Rev. 2017, 69, 812–821. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, Z.; La Clair, T.J.; Liu, C.; Li, J.-M.; Birky, A.K.; Ward, J. Battery capacity and recharging needs for electric buses in city transit service. Energy 2017, 122, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, O.; Kouro, S.; Pérez, M.; Cheein, F.A. Mechatronized maximum power point tracking for electric field energy harvesting sensor. AEU Int. J. Electron. Commun. 2019, 110, 152830. [Google Scholar] [CrossRef]
- Iqbal, M.; Nauman, M.M.; Khan, F.U.; Abas, E.; Cheok, Q.; Iqbal, A.; Aïssa, B. Multimodal Hybrid Piezoelectric-Electromagnetic Insole Energy Harvester Using PVDF Generators. Electronics 2020, 9, 635. [Google Scholar] [CrossRef] [Green Version]
- Patella, D.; Perchel, A.; Jaques, I.; Lee-Brown, J.; Baker, M.; Joy, O.; Armato, C.; Steinmetz, R.; Van der Ploeg, R.; Breen, E.; et al. Electric Mobility and Development: An Engagement Paper from the World Bank and the International Association of Public Transport; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2018; p. 71. [Google Scholar]
- Electric Buses in Cities: Driving Towards Cleaner Air and Lower CO2; Bloomberg New Energy Finance: New York, NY, USA, 2018; p. 63.
- Xylia, M.; LeDuc, S.; Patrizio, P.; Kraxner, F.; Silveira, S. Locating charging infrastructure for electric buses in Stockholm. Transp. Res. Part C Emerg. Technol. 2017, 78, 183–200. [Google Scholar] [CrossRef]
- Ambrose, H.; Pappas, N.; Alissa, K.P. Exploring the Costs of Electrification for California’s Transit Agencies. ITS Rep. 2017, 2017, 3. [Google Scholar]
- Aber, J. Electric Bus Analysis for New York City Transit; Columbia University: New York, NY, USA, 2016. [Google Scholar]
- Tong, F.; Hendrickson, C.; Biehler, A.; Jaramillo, P.; Seki, S. Life cycle ownership cost and environmental externality of alternative fuel options for transit buses. Transp. Res. Part D Transp. Environ. 2017, 57, 287–302. [Google Scholar] [CrossRef]
- Potkány, M.; Hlatká, M.; Debnár, M.; Hanzl, J. Comparison of the lifecycle cost structure of electric and diesel buses. Nase More 2018, 65, 270–275. [Google Scholar] [CrossRef]
- Stowell, D.; Plumbley, M.D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2014, 2, e488. [Google Scholar] [CrossRef] [Green Version]
- Sheth, A.; Sarkar, D. Life Cycle Cost Analysis for Electric vs Diesel Bus Tansit in an Indian Scenario. Life 2019, 10, 105–115. [Google Scholar]
- Teoh, L.E.; Khoo, H.L.; Goh, S.Y.; Chong, L.M. Scenario-based electric bus operation: A case study of Putrajaya, Malaysia. Int. J. Transp. Sci. Technol. 2018, 7, 10–25. [Google Scholar] [CrossRef]
- Mathieu, L. Electric Buses Arrive on Time—Marketplace, Economic, Technology, Environmental and Policy Perspectives for Fully Electric Buses in the EU; European Federation for Transport and Environment: Brussels, Belgium, 2018. [Google Scholar]
- Peer Review on Energy Report for the APEC Energy Working Group; Asia-Pacific Economic Cooperation: Canberra, Australia, 2013.
- Low-Carbon Transport for Development; Islamic Development Bank: Jeddah, Saudi Arabia, 2018.
- Land Transport White Paper; Ministry of Communications: Bandar Seri Begawan, Brunei, 2012.
- A Study of Long-Term Transport Action Plan for ASEAN; Association of Southeast Asian Nations: Jakarta, Indonesia, 2014.
- TransportBN. Available online: https://www.gov.bn (accessed on 8 May 2020).
- Review to Formulate a Roadmap and Draft National Masterplan for a Sustainable Land Transportation System for Brunei Darussalam; Centre for Strategic and Policy Studies: Bandar Seri Begawan, Brunei, 2014; Volume 5, p. 97.
- Abas, P.E.; Mahlia, T.M.I. Techno-Economic and Sensitivity Analysis of Rainwater Harvesting System as Alternative Water Source. Sustainability 2019, 11, 2365. [Google Scholar] [CrossRef] [Green Version]
- SBT—Global Car Exporter. Available online: https://www.sbtjapan.com/ (accessed on 8 May 2020).
- Mahlia, T.M.I.; Tohno, S.; Tezuka, T. A review on fuel economy test procedure for automobiles: Implementation possibilities in Malaysia and lessons for other countries. Renew. Sustain. Energy Rev. 2012, 16, 4029–4046. [Google Scholar] [CrossRef]
- Eudy, L.; Jeffers, M. Zero-Emission Bus Evaluation Results: County Metro Battery Electric Buses; FTA Report No. 0118; National Renewable Energy Laboratory: Golden, CO, USA, 2018. [Google Scholar]
- Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, J.; Bhatia, P. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; World Resources Institute: Washington, DC, USA, 2004. [Google Scholar]
- Alonzo, R.J. Electrical Transmission and Distribution Systems. In Electrical Codes, Standards, Recommended Practices and Regulations; William Andrew Publishing: Boston, MA, USA, 2010; Chapter 12; pp. 405–467. [Google Scholar]
- An Updated Overview of Electric Buses in Europe; ZeEUS eBus Report #2; Zero Emission Urban Bus System: Brussels, Belgium, 2018.
- LiFePO4—Lithium Iron Phosphate Technical Specification. Available online: https://power.tenergy.com/battery-packs/lifep04-packs/ (accessed on 8 May 2020).
- Miller, I.; Arbabzadeh, M.; Gençer, E. Hourly Power Grid Variations, Electric Vehicle Charging Patterns, and Operating Emissions. Environ. Sci. Technol. 2020, 54, 16071–16085. [Google Scholar] [CrossRef]
- Amtu, J. Charge Station by Induction on the Street; Tecnocampus: Barcelona, Spain, 2015; pp. 1–23. [Google Scholar]
- Yang, F.; Xie, Y.; Deng, Y.; Yuan, C. Predictive modeling of battery degradation and greenhouse gas emissions from U.S. state-level electric vehicle operation. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Elin, K. Charging Infrastructure for Electric City Buses; KTH Skolan för Elektrooch Systemteknik: Stockholm, Sweden, 2016. [Google Scholar]
- Göhlich, D.; Fay, T.-A.; Jefferies, D.; Lauth, E.; Kunith, A.; Zhang, X. Design of urban electric bus systems. Des. Sci. 2018, 4, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, O.; Brouwer, A.S.; Kuramochi, T.; Broek, M.V.D.; Faaij, A. Energy use, cost and CO2 emissions of electric cars. J. Power Sources 2011, 196, 2298–2310. [Google Scholar] [CrossRef] [Green Version]
- Electricity Prices. Available online: https://www.globalpetrolprices.com/electricity_prices/ (accessed on 8 May 2020).
- AAA. Gas Prices. Available online: https://gasprices.aaa.com/ (accessed on 9 May 2020).
- Wang, N.; Tang, L.; Pan, H. A global comparison and assessment of incentive policy on electric vehicle promotion. Sustain. Cities Soc. 2019, 44, 597–603. [Google Scholar] [CrossRef]
- Yan, S. The economic and environmental impacts of tax incentives for battery electric vehicles in Europe. Energy Policy 2018, 123, 53–63. [Google Scholar] [CrossRef]
- Palmer, K.; Tate, J.E.; Wadud, Z.; Nellthorp, J. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Appl. Energy 2018, 209, 108–119. [Google Scholar] [CrossRef]
- Emission Factors for Greenhouse Gas Inventories; United States Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–5.
- Abas, E.; Yong, J.; Mahlia, T.M.I.; Hannan, M.A. Techno-Economic Analysis and Environmental Impact of Electric Vehicle. IEEE Access 2019, 7, 98565–98578. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Lim, J.Y.; Aditya, L.; Riayatsyah, T.M.I.; Abas, E. Methodology for implementing power plant efficiency standards for power generation: Potential emission reduction. Clean Technol. Environ. Policy 2017, 20, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Mahlia, T.M.I.; Syaheed, H.; Abas, A.E.P.; Kusumo, F.; Shamsuddin, A.H.; Ong, H.C.; Bilad, M.R. Organic Rankine Cycle (ORC) System Applications for Solar Energy: Recent Technological Advances. Energies 2019, 12, 2930. [Google Scholar] [CrossRef] [Green Version]
- Al-Shetwi, A.Q.; Hannan, M.A.; Jern, K.P.; Alkahtani, A.A.; Abas, E. Power Quality Assessment of Grid-Connected PV System in Compliance with the Recent Integration Requirements. Electronics 2020, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Malik, A. Assessment of the potential of renewables for Brunei Darussalam. Renew. Sustain. Energy Rev. 2011, 15, 427–437. [Google Scholar] [CrossRef]
- Tola, V.; Pettinau, A. Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies. Appl. Energy 2014, 113, 1461–1474. [Google Scholar] [CrossRef]
Mechanical Specifications | Diesel Bus (Coaster) | Electric Bus (Urbino) |
---|---|---|
Maximum Speed | 60–80 km/h (local bus speed limits) | 50 km/h |
Passenger capacity | 22 | 21–29 |
Length | 6990 mm | 8950 mm |
Width | 2080 mm | 2400 mm |
Height | 2635 mm | 3400 mm |
Traction batteries | - | LiFePO4 Lithium ion (LFP) |
Charging system | - | Plug-in and Pantograph (optional) |
Input Data | Urbino | Coaster | |
---|---|---|---|
Purchase cost | USD$ | 460,650 | 80,291.97 |
BND$ | 631,090.50 | 110,000 | |
Electricity Price | USD$/kWh | 0.036 | - |
BND$/kWh | 0.05 | - | |
Fuel Efficiency | L/km | - | 0.157 |
Diesel Price | USD$/L | - | 0.23 |
BND$/L | - | 0.31 | |
Ann. road tax fee | USD$ | 204.38 | 204.38 |
BND$ | 280 | 280 | |
Ann. Insurance fee | USD$ | 1459.85 | 1459.85 |
BND$ | 2000 | 2000 | |
Ann. battery Replacement | USD$ | - | 175.18 |
BND$ | - | 240 | |
LFP Battery Price | USD$/kWh | 477.30 | - |
BND$/kWh | 653.90 | - | |
LFP Battery Capacity | kWh | 160 | - |
LFP Battery Lifetime | 3300 Cycles within 5 years | - | |
Oil tank volume | L | - | 10 |
Motor oil price | USD$/L | - | 10.22 |
BND$/L | - | 14 | |
Oil change freq | Times/yr | - | 24 |
Price per tyre | USD$ | 131.39 | 131.39 |
BND$ | 180 | 180 | |
Tyre count | 6 | 6 | |
Tyre change freq. | Times/yr | 9 | 9 |
Scheduled maintenance rate | USD$/km | 0.13 | 0.14 |
BND$/km | 0.18 | 0.20 | |
Unscheduled maintenance rate | USD$/km | 0.50 | 0.56 |
BND$/km | 0.68 | 0.77 | |
Scrap value for battery | USD$/kg | 0.29 | 0.29 |
BND$/kg | 0.4 | 0.4 | |
Scrap value for bus | USD$/kg | 0.04 | 0.04 |
BND$/kg | 0.05 | 0.05 |
Plug-in Fast Charger | Pantograph | |
---|---|---|
Charger price (USD$) | 110,000 | 230,000 |
Charger power (kW) | 80 | 240 |
Charger Efficiency (%) | 0.97 | 0.97 |
Min Dist | Max Dist | ||||
---|---|---|---|---|---|
Urbino 8.9 | Coaster | Urbino 8.9 | Coaster | ||
AC | USD$ | 460,650 | 80,292 | 460,650 | 80,292 |
% LCC | 49.4% | 14.4% | 34.2% | 7.8% | |
OC | USD$ | 33,308 | 32,050 | 55,047 | 54,285 |
% LCC | 3.6% | 5.7% | 4.1% | 5.3% | |
MC | USD$ | 439,291 | 446,329 | 832,136 | 989,538 |
% LCC | 47.1% | 79.9% | 61.8% | 86.9% | |
DC | USD$ | 489 | 123 | 489 | 123 |
% LCC | −0.05% | −0.02% | −0.04% | −0.01% | |
LCC | USD$ | 932,760 | 558,547 | 1,347,343 | 1,023,993 |
Heating Value | CO2 Factor | CH4 Factor | N2O Factor | |
---|---|---|---|---|
Natural Gas | 0.001026 mmBtu/scf | 53.06 kg CO2/mmbtu | 1 g CH4/mmbtu | 0.1 g N2O/mmbtu |
Diesel Fuel | 2.697 kg CO2 per unit | 0.0051 g/mile | 0.0048 g/mile |
Min Dist Route | Max Dist Route | |||
---|---|---|---|---|
Urbino | Coaster | Urbino | Coaster | |
Annual Fuel Consumption | 724,532 scf of natural gas | 11,031 L of diesel fuel | 1,580,796 scf of natural gas | 24,068 L of diesel fuel |
Annual CO2 emission (kg/yr) | 39,444 | 29,753 | 86,059 | 64,916 |
Annual CH4 emission (kg/yr) | 0.746 | 0.223 | 1.628 | 0.486 |
Annual N20 emission (kg/yr) | 0.0725 | 0.210 | 0.158 | 0.457 |
Annual CO2 equi. (kg/yr) | 39,482 | 29,823 | 86,142 | 65,069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusof, N.K.; Abas, P.E.; Mahlia, T.M.I.; Hannan, M.A. Techno-Economic Analysis and Environmental Impact of Electric Buses. World Electr. Veh. J. 2021, 12, 31. https://doi.org/10.3390/wevj12010031
Yusof NK, Abas PE, Mahlia TMI, Hannan MA. Techno-Economic Analysis and Environmental Impact of Electric Buses. World Electric Vehicle Journal. 2021; 12(1):31. https://doi.org/10.3390/wevj12010031
Chicago/Turabian StyleYusof, Nurizyan Khairiah, Pg Emeroylariffion Abas, T. M. I. Mahlia, and M. A. Hannan. 2021. "Techno-Economic Analysis and Environmental Impact of Electric Buses" World Electric Vehicle Journal 12, no. 1: 31. https://doi.org/10.3390/wevj12010031
APA StyleYusof, N. K., Abas, P. E., Mahlia, T. M. I., & Hannan, M. A. (2021). Techno-Economic Analysis and Environmental Impact of Electric Buses. World Electric Vehicle Journal, 12(1), 31. https://doi.org/10.3390/wevj12010031