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Abstract: Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted
independently. This provides advantages for its stability control. In this paper, an electric vehicle
with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle
velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase
plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles
is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman
filter is designed. The control method for vehicle yaw moment based on sliding-mode control and
the distribution method for wheel driving/braking torque are proposed. The distribution method
takes the minimum sum of the square for wheel load rate as the optimization objective. Based on
Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with
four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for
estimating the sideslip angle and the wheel torque control method are verified. The relevant research
can provide some reference for the development of the stability control for electric vehicles with four
in-wheel-motors.

Keywords: electric vehicle; in-wheel-motor; stability control; sideslip angle; phase plane; extended
Kalman filtering; sliding-mode control

1. Introduction

Unlike traditional vehicles and centralized-driving electric vehicles, electric vehicles
with in-wheel-motors (IWMs) can save the chassis space and reduce the weight of vehicle
effectively by integrating drive motors into wheel hubs and eliminating the drive shaft and
other transmission parts. This makes it possible to equip a larger energy storage system
and improve the ride comfort [1–4]. However, the use of IWMs results in a substantial
increase in the unsprung mass of the vehicle and the moment of inertia for the driving
wheels, which affects the handling and stability characteristics of the vehicle seriously. The
vehicle stability control can solve the above problems and it plays an important role in
vehicle active safety [5–7]. It is the basis for giving full play to the high performance of
electric vehicles with IWMs [8]. At the same time, in terms of vehicle stability control,
electric vehicles with four IWMs also have the following advantages: First, the driving
torque and braking torque of each IWM can be adjusted independently [9,10]. The stability
control can be achieved based on wheel torque vectoring control to improve the driving
stability and maneuverability of electric vehicles with IWMs, but traditional vehicles
and centralized-driving electric vehicles achieve the vehicle stability control mainly by
controlling the driving forces of drive unit and differential braking forces [11,12]. Second,
the adjusting speed and precision for IWM torque is better. The response delay for the
motor torque control is among 20 to 30 ms, while the response delay for the electronic
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hydraulic brake system is among 50 to 60 ms [13]. Third, the motor torque can be calculated
accurately [14,15], but the engine torque and hydraulic braking force mainly depend on the
estimation. Therefore, the electric vehicle with four IWMs has great potential in improving
the performance of vehicle stability control, such as control speed and control accuracy.

In recent years, with gradual maturity of the technology for centralized-driving electric
vehicles, stability control for electric vehicles with IWMs has attracted the attention of
scholars. The related research mainly focuses on two aspects: One is how to judge whether
a vehicle is unstable or not. This is also one of the key problems for the stability control
of centralized-driving vehicles. The other is how to use different control algorithms and
strategies to give full play to the advantages of independent adjustable torque of the
electric vehicles with IWMs. In judging whether a vehicle is unstable or not, the method
of threshold values and the method of phase plane are commonly used. The method of
threshold values uses the linear vehicle model with two degrees of freedom (2-DOF) to
obtain the reference value of the yaw rate or the sideslip angle of vehicle. When the actual
value of the yaw rate or sideslip angle exceeds its threshold value, the stability control
system will work. However, compared with the actual state of the vehicle, the 2-DOF linear
model makes a lot of simplification. Therefore, in a practical application, in order to ensure
the effectiveness of the stability control, we often use a smaller threshold value for reliability,
so as to narrow the effective working range of the stability control system. Therefore, the
method of threshold values may cause frequent start and stop of the stability control system.
The method of phase plane draws a phase trajectory according to the stability states of
vehicle and divides the stability states of vehicle according to the phase-plane theory. It can
avoid frequent start and stop of the stability control system. The non-linear vehicle model
with 2-DOF is often used to draw the phase plane, because it is simple and can express
the stability of the vehicle to a certain extent [16–18]. However, the nonlinear vehicle
model with 2-DOF ignores the wheel rotation and body movement, and this still leads to
errors between the calculated value and the actual value. The errors may cause judgment
errors under certain working conditions. In making full use of the advantages of electric
vehicles with IWMs, one of the common methods is to control the motor torque through
coordinated work of different control subsystems. In the literature [19], the appropriate
four-wheel angle and required yaw moment is obtained through the integrated control
strategy, so that the vehicle’s yaw rate and sideslip angle can track its reference value well.
Resources [20,21] took four-wheel independent driving electric vehicles as the research
object and proposed a distribution strategy for motor torque and braking torque, which
can improve the driving stability of the vehicle and reduce the demand for motor torques.
The second method commonly used is to optimize the control algorithm to improve the
accuracy and fault tolerance of the motor torque vectoring [15,22]. However, there is no
consistent conclusion on how to make full use of the torque of each wheel [23], and how
to make full use of the torque of each wheel is still the research focus of electric vehicles
with IWMs.

In view of the above problems, this paper takes an electric vehicle with four IWMs as
the research object. Firstly, the key problem in the vehicle stability control, that is, how to de-
termine the vehicle is stable or not, is studied in depth. Sideslip angle (β−

.
β) phase planes

are constructed by building a 7-DOF vehicle model, and this can improve the accuracy of
the stability judgment basis. On the premise of considering key factors such as vehicle
velocity and road adhesion coefficient, stability boundaries in phase planes are studied
in depth, and a criterion for vehicle stability based on phase planes is established. Sec-
ondly, considering the problem that the sideslip angle is difficult to measure, the extended
Kalman filter algorithm is selected to estimate the sideslip angle. The control method for
vehicle yaw moment based on sliding-mode control and the distribution method for wheel
driving/braking torque are proposed. The distribution method takes the minimum sum
of the square for wheel load rate as the optimization objective. Finally, a cosimulation
platform for an electric vehicle with four IWMs based on Carsim and Matlab/Simulink
is built. Carsim is a mature commercial software, and it contains vehicle models with
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high precision. However, the Carsim software lacks the model for electric vehicles with
IWMs. Therefore, on the basis of Carsim’ centralized-driving vehicle model and the IWM
model based on Matlab/Simulink, a cosimulation model based on MATLAB/Simulink
and Carsim is built to verify the accuracy of the proposed stability criterion, the algorithm
for estimating the sideslip angle, and the wheel torque control method.

2. Vehicle Model

In this paper, a 7-DOF vehicle model is built, which includes longitudinal motion,
lateral motion, yaw motion of vehicle body, and rotation of four wheels. The diagram of
7-DOF vehicle model is shown in Figure 1
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In formulas (1)–(4), m is the mass of vehicle. Iz is the inertia moment of vehicle. Vx is 
the longitudinal velocity of vehicle. Vy is the lateral velocity of vehicle. γ is the yaw rate. 
δf is the front-wheel angle. lf is the distance from the center of gravity to front axle. lr is the 
distance from the center of gravity to rear axle. d is the wheelbase. Fxi is the longitudinal 
forces of each wheel and Fyi is the lateral forces of each wheel. Subscripts 1, 2, 3, and 4 
indicate the left-front wheel, right-front wheel, left-rear wheel, and right-rear wheel re-
spectively. λi is the tire slip rate. 𝛼 is the sideslip angle of the tire. x1x,x2x,x3x, and x4x are 
the parameters determined by road conditions to get Fxi. x1y,x2y,x3y, and x4y are the param-
eters determined by road conditions to get Fyi. 
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Figure 1. The seven degrees of freedom (DOF) vehicle mode.

When the front wheel angle is δf, longitudinal forces, lateral forces, and the yaw
moment at the vehicle center of mass are as follows.

∑ Fx = m(
.

Vx −Vyγ) = (Fx1 + Fx2) cos δf − (Fy1 + Fy2) sin δf + Fx3 + Fx4 (1)

∑ Fy = m(
.

Vy −Vxγ) = (Fx1 + Fx2) cos δf + (Fy1 + Fy2) sin δf + Fy3 + F y4 (2)

∑ Mx = IZ
.
γ = lf[(Fy1 + Fy2) cos δf − (Fx1 + Fx2) cos δf]

−lr(Fy3 + Fy4)− d
2 [(Fy1 − Fy2(sin δf − (Fx1 − Fx2) cos δf + Fx3 − Fx4]

(3)

Among them, Fxi and Fyi are calculated according to the magic formula tire model.{
Fxi(λi) = x1x sin{ x2xarctan[x3xλi − x4x(x3xλi − arctan(x3xλi))]}
Fyi(αi) = x1y sin

{
x2yarctan

[
x3yαi − x4y(x3xαi − arctan(x3yαi))

]} (4)

In Formulas (1)–(4), m is the mass of vehicle. Iz is the inertia moment of vehicle. Vx
is the longitudinal velocity of vehicle. Vy is the lateral velocity of vehicle. γ is the yaw
rate. δf is the front-wheel angle. lf is the distance from the center of gravity to front axle.
lr is the distance from the center of gravity to rear axle. d is the wheelbase. Fxi is the
longitudinal forces of each wheel and Fyi is the lateral forces of each wheel. Subscripts 1,
2, 3, and 4 indicate the left-front wheel, right-front wheel, left-rear wheel, and right-rear
wheel respectively. λi is the tire slip rate. αi is the sideslip angle of the tire. x1x,x2x,x3x, and
x4x are the parameters determined by road conditions to get Fxi. x1y,x2y,x3y, and x4y are the
parameters determined by road conditions to get Fyi.
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The differential equation for the sideslip angle can be expressed as the following equation.

.
β =

∑ Fy

mVx
−
∫

∑ Mz

Iz
dt (5)

where β is the sideslip angle and Mz is the yaw moment. The other letters are shown above.

3. Stability Criterion Based on β −
.
β Phase Planes

Phase planes have been widely used to study the stability of nonlinear systems [24,25].
The vehicle is a typical nonlinear system, and the sideslip angle is the key parameter which
can reflect its stability. The vehicle stability is greatly affected by factors such as vehicle
velocities and road adhesion coefficients. Therefore, this paper analyzes the criterion of
vehicle stability based on β−

.
β phase planes under the premise of considering the key

factors such as vehicle velocities and road adhesion coefficients.

3.1. Boundary Equation of β−
.
β Phase Planes

According to the phase-plane theory, the β−
.
β plane is divided into two parts: stable

region and unstable region. In the stable region, any point on trajectories of vehicle motion
state can quickly converge to the stable foci. That is to say, the vehicle can return to stable
state by its own dynamic characteristics. In order to use β−

.
β phase planes as the criterion

of vehicle stability, we divide a phase plane into stable region and unstable region by using
left and right boundary lines, the equation of boundary lines is:{ .

β = −Aβ + B
.
β = −Aβ− B

(6)

Stable region of β−
.
β phase planes can be expressed by the following formula:∣∣∣ .

β + Aβ
∣∣∣ < B (7)

In Formulas (6) and (7), A and B are coefficients related to structural parameters of a
vehicle, driving states and road adhesion coefficients. Other letters are shown above. If
Formula (7) is possible, the vehicle is running stably. Otherwise, it will lose its stability.

3.2. Influence of Driving Conditions on β−
.
β Phase Planes

Phase trajectories in β−
.
β phase planes change with vehicle driving states and road

conditions, and the main influencing factors are road adhesion coefficients and vehicle
velocities. Therefore, for comparative analysis 100 groups of phase portraits are drawn
under different road adhesion coefficients from 0.1 to 1 and different vehicle velocities from
60 to 150 km/h. Taking β−

.
β phase portraits of several typical driving conditions shown in

Figure 2 as the example, the corresponding influencing factors are explained. In the figure,
−A is the inclination of the boundary line, and −B/A and B/A are the intersection points
of two boundary lines and the lateral axis, which are used to characterize the limit sideslip
angle of the vehicle which

.
β = 0. Compared with the Figure 2a–c, it can be seen that the

absolute value of −B/A and B/A decreases with the increase of the vehicle velocity and
the decrease of the road adhesion coefficient. The change of road adhesion coefficients has
a greater influence on the size of stability region. When the absolute value of −B/A and
B/A decrease, the stability region is reduced, and the vehicle is more likely to lose stability.
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Figure 2. Phase plane in different driving conditions (a) Vx = 120 km/h, µ = 0.8; (b) Vx = 80 km/h,
µ = 0.8; and (c) Vx = 80 km/h, µ = 0.5.

3.3. Parameters Determination for Boundary Lines of β−
.
β Phase Planes

Based on the 100 groups of phase-plane diagrams drawn above, the intercepts and
inclinations of 100 groups of boundary lines are obtained, and maps of the inclinations
and intercepts are shown in Figures 3 and 4. On the premise of considering the velocity
and accuracy of simulation, the parameters of boundary lines can be determined by a
two-dimensional look-up table according to the above maps and driving conditions, so as
to reasonably judge the vehicle stability, based on β−

.
β phase planes.
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4. Estimation of Sideslip Angle

Although the vehicle stability can be judged by β −
.
β phase plane effectively, the

sideslip angle is difficult to be measured directly with cost-effective sensors [26]. Therefore,
an algorithm is designed to estimate the sideslip angle based on extended Kalman filter.
The corresponding extended Kalman filter consists of two processes: a prediction step and
an update step. The prediction step is used to obtain the prediction state of the next time
based on the current system state. The update step is used to obtain the optimal estimation
of the system by weighting the results of the observation step and the prediction step.

a. The prediction step
State prediction equation:

x̂−(t + 1) = f (x̂(t), u(t), ω(t)) (8)

The estimation error covariance matrix is:

P−(t + 1) = Φ(t)P(t)Φ(t)T + Q (9)

b. The update step
Gain matrix for extended Kalman filter:

K(t) = P−(t)H(t)T [H(t)P−(t)H(t)T + R]
−1

(10)

The a-posteriori based on measured value:

x̂ = x̂−(t) + K(t)[y(t)− h(x̂−(t), 0)] (11)
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Prediction matrix for the error covariance:

P(t) = (I − K(t)H(t))P−(t) (12)

State equation and observation equation for the nonlinear system are as follows:{ .
x(t) = f (x(t), u(t), ω(t))

y(t) = h(x(t), v(t))
(13)

In Equations (8)–(13), x(t) is the state variable, u(t) is the input vector, y(t) is the output
vector, ω(t) is the process noise, v(t) is the measurement noise, Φ(t) is the state transition
matrix, H(t) is the Jacobian matrix of the partial derivatives of function h(x(t),v(t)) to state
x(t), Q is the process noise covariance matrix, R measurement noise covariance, and I is the
identity matrix.

For the research object, the following state equation is obtained based on 3 DOF
vehicle model [27]: 

.
γ =

(l2
f k f +l2

r kr)γ

IzVx
+

(l f k f−lrkr)β

Iz
− l f k f δ f

Iz.
β = (

l f k f−lrkr

mV2
x
− 1)γ +

(k f +kr)β

mVx
− k f δ f

mVx.
Vx = βγVx + ax

(14)

The system measurement equation is as follows:

ay =
(l f k f − lrkr)γ

mVx
+

(k f + kr)β

m
−

k f δ f

m
(15)

After linearizing the model, we can get:

F(t) =


(l2

f k f +l2
r kr)γ

IzVx

(l f k f−lrkr)

Iz
−

(l2
f k f +l2

r kr)γ

IzV2
x

(l f k f−lrkr)

mV2
x
− 1)

(k f +kr)

mVx
− 2(l f k f−lrkr)γ

mV3
x

− (k f +kr)β

mV2
x

+
k f δ f
mVx

βVx γVx βγ

 (16)

H =
[

(l f k f−lrkr)

mVx

(k f +kr)

m
(lrkr−l f k f )

mV2
x

]T
(17)

Φ(t) = eF(t)∗∆t ≈ I + F(t) ∗ ∆t (18)

In the Equations (14)–(18), ay is the lateral acceleration, kf is the cornering stiffness of
front axle, kr is the cornering stiffness of rear axle, F(t) is the Jacobian matrix of the partial
derivatives of function f (x(t),u(t),w(t)) to state x(t), and ∆t is the sampling time. The other
letters are shown above.

When P-(t) is given an initial value of I3×3, and x̂−(t) is given an initial value of
[0,0,0]T, the estimation of sideslip angle can be obtained by forming a circulative process
continuously of the prediction step and the update step of the extended Kalman filter.

5. Design of Stability Control System for Electric Vehicle with Four IWMs
5.1. Calculation of Yaw Moment

Control parameters and external disturbance have great influence on the stability
control system for electric vehicles with four IWMs [15]. In order to solve this problem,
this paper selects sliding-mode control algorithm with strong robustness to determine
the required yaw moment of the vehicle. Based on the influence analysis of the driving
conditions on β −

.
β phase plane, it is known that the sideslip angle under medium or

low µ road surfaces has a great impact on vehicle stability control, and the smaller the
sideslip angle is, the better the vehicle handling stability is. Therefore, the sideslip angle is
selected as the control variable under middle or low µ road surfaces. When the sideslip
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angle is introduced into the calculation of compensating yaw moment, the equation of
2-DOF vehicle is: 

.
β =

(k f +kr)β

mVx
+ (

l f k f−lrkr
mVx

− 1)γ− k f δ f
mVx

.
γ =

(k f−kr)β

Iz
+

(l f
2k f +lr2kr)γ

IzVx
− l f k f δ f

Iz
+

∆Mβ

Iz

(19)

where ∆Mβ is the yaw moment based on β−
.
β phase plane. The other letters are shown above.

The design of sliding-mode controller includes the definition of sliding surface and
selection of approaching rate. In order to reduce the chattering of control system, saturation
function should be designed to replace the original sign function sgn(sβ).

The sliding surface of the sideslip angle is defined as follows:

sβ =
.
β−

.
βd (20)

where
.
βd is the derivation of the ideal sideslip angle. In this paper, exponential approaching

rate is chosen to make the system reach a sliding surface quickly. The expression is
as follows:

.
sβ = εsgn(sβ)− ksβ (21)

where ε and k are the parameters of exponential approaching rate.
The yaw moment can be obtained by deriving the above sliding surface, combining

the exponential approaching rate and the 2-DOF vehicle equation with the yaw moment.

∆Mβ = −IZ{
(k f +kr)

mVx
[
(k f +kr)β

mVx
+

(l f k f−lrkr)

mVx
− 1)[

(l f k f−lrkr)β

IZ
+

(l2
f k f +l2

rkr)γ

IZVx
− l f k f δ f

IZ
]

− k f
.
δ f

mVx
−

.
βd + εβsgn(Sβ) + kβsβ}(

(l f k f−lrkr)

mVx
− 1)

−1 (22)

where
.
δ f is the derivative of front-wheel angle and kβ is the parameter of exponential

approaching rate based on β−
.
β decision. The letters are shown above.

In order to eliminate chattering causes by sliding-mode control near the sliding surface,
the boundary layer φ = 0.01 is introduced near sliding surface. That is the sign function
sgn(sβ) which is replaced by the saturation function sat(sβ/φ). The saturation function is
as follows:

sat(
sβ

φ
) =

{
sgn(sβ),

∣∣sβ

∣∣ > φ
sβ

φ ,
∣∣sβ

∣∣ ≤ φ
(23)

The letters are shown above.

5.2. Distribution of Wheel Longitudinal Forces

For realizing the control of vehicle stability, the yaw moment of the vehicle should be
converted to the input torques of each wheel. First of all, the torques of each wheel should
meet the requirements of vehicle longitudinal forces and yaw moment. In addition, the
constraints for electric vehicle with four IWMs include the limit of driving/braking forces
of IWM and road adhesion coefficients.{

∑ Fx = (T1 + T2 + T3 + T4)/R
∆MZ = d[(T1 − T2) cos δ f + (T3 − T4)]/2/R (24)

Txi ≤ min(µRFzi, Tmax) (25)

where T1, T2, T3, and T4 represent the output torque of left-front wheel, right-front wheel,
left-rear wheel and right-rear wheel, respectively; R is the wheel radius; Txi is torques of
each in-wheel-motor; Fzi is the vertical forces of each wheel; and i = 1–4; Tmax is the peak
torque of in-wheel-motors. The other letters are shown above.
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In order to avoid the control failure caused by the longitudinal/lateral forces satu-
ration of a tire, this paper takes the minimum sum of squares of wheel load rates as the
optimization objective to optimize the wheel torque distribution. The minimum sum of
squares of wheel load rates is defined as follows:

ηi =

√
F2

xi + F2
yi

µFzi
(26)

Considering that it is difficult to control the tire lateral forces accurately, the opti-
mization objective can be simplified to minimize the sum of squares of wheel load rates
generated by the wheel longitudinal forces. The objective function is as follows:

minJ =
4

∑
i=1

F2
xi

(µFzi)
2 =

4

∑
i=1

T2
xi

(µRFzi)
2 (27)

where Fxi is the longitudinal forces of each wheel. The other letters are shown above.
Based on the above optimization objective function, equality constraints and inequality

constraints, a quadratic programming mathematical model is established.

minJ =
1
2

xT Hx + CTxC (28)

where x= [Fx1 Fx2 Fx3 Fx4]T,C is a null matrix, and the expression of H is as follows:

H =


1

(µFZ1)
2 0 0 0

0 1
(µFZ2)

2 0 0

0 0 1
(µFZ3)

2 0

0 0 0 1
(µFZ4)

2

 (29)

For the quadratic programming problem with equality or inequality constraints, the
optimum can be obtained by using the active set methods.

6. Cosimulation Model Based on Matlab/Simulink and Carsim

In order to assess phase planes, sideslip-angle estimation algorithm, optimal algorithm
of torque distribution, and torque control method proposed in the paper, a simulation
model for the stability control system of electric vehicles with four IWMs is built based on
Matlab/Simulink and Carsim. The architecture for cosimulation model is presented in the
Figure 5. The driver–vehicle–road model is established in Carsim. The other two models
are established in Matlab/Simulink. The first is the criterion of vehicle stability model,
including the estimation model of sideslip angle and 7-DOF vehicle model. The second
is the vehicle stability control model, including the calculation model of yaw moment
based on the sideslip angle, the wheel longitudinal forces distribution model, and the
IWM model.

6.1. Vehicle Model

The advantage of using Carsim in the cosimulation model is that Carsim can provide
reliable driver–vehicle–road models to ensure the accuracy of simulation. However, there
is no electric vehicle with IWM model in Carsim. Therefore, in this paper, the electric
vehicle model with 4 IWMs is obtains by changing the power transmission system scheme
of traditional vehicle model in Carsim. The method is as follows: the power transmission
system of the traditional vehicle in Carsim is changed to external components; the IWM
model is built in Matlab/Simulink; and the torque output from the in-wheel-motor model
is transmitted to the wheel module of Carsim.
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6.2. IWM Model

Based on the research objectives, the first order time-delayed system for is selected
IWM model [13]:

G(s)
T

min(T∗, Tmax)
=

1
ξ · s + 1

(30)

where T is the actual torque of motor,T* is the target torque of motor, ξ is a constant
determined by the motor parameters, and s is the Laplace operator. Tmaxis the maximum
torque at the current speed. When the motor speed is lower than the base speed, Tmax is a
constant. When the motor speed is higher than the base speed, Tmax is a function of the
motor speed.

7. Simulation Evaluation
7.1. Evaluation of Sideslip-Angle Estimation

The accuracy of sideslip-angle estimation is the premise of the stability control system
for an electric vehicle with four IWMs. Therefore, we assessed the accuracy of sideslip-
angle estimation through several working conditions this paper, such as double-lane
change maneuver, square-wave incremental steering, sinusoidal delay steering, etc. In this
paper, the effect of sideslip-angle estimation is illustrated by taking double-lane change
maneuvers under two velocities as examples. The road adhesion coefficient is 0.8, and the
vehicle velocity is 40 km/h and 100 km/h, respectively. The simulation results are shown
in Figures 6 and 7.
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Figure 6. Estimation for sideslip angle (when Vx is 40 km/h and µ is 0.8) (a) Lateral acceleration. (b) Sideslip angle.
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Figure 7. Estimation for sideslip angle (when Vx is 100 km/h and µ is 0.8) (a) Lateral acceleration. (b) Sideslip angle.

It can be seen from Figure 6 that when the vehicle velocity is 40 km/h, the lateral
acceleration of vehicle is less than 0.4 g, and the vehicle is in a stable state. The estimation
of sideslip angle by the extended Kalman filter algorithm can well follow the output value
of Carsim.

It can be known from Figure 7 that the lateral acceleration of the vehicle is more than
0.4 g when the vehicle velocity is 100 km/h, indicating that the vehicle is in an unstable
state. The estimation of sideslip angle by the extended Kalman filter algorithm is slightly
less than the output value of Carsim at the peak value, and other parts can follow the
output value of Carsim well.

The simulation results show that the proposed estimation algorithm for sideslip angle
can follow the output value of Carsim, no matter if the vehicle is stable or unstable, and
can meet the requirements of stability control system of electric vehicle with four IWMs.

7.2. Evaluation of Torque Distribution

The double-lane change maneuver is used to verify the correctness of quadratic
programming torque distribution. The road adhesion coefficient is 0.8, and the vehicle
velocity is 130 km/h. The simulation results are as follows:

As shown in Figure 8a, vehicle trajectories without stability control have a large
deviation from the target trajectories. The vehicle tends to be unstable. However, the direct
yaw moment control (DYC), based on the average torque distribution and the optimal
torque distribution, can make the deviation between the actual trajectories and the target
trajectories smaller. As shown in Figure 8b, the DYC, based on optimal torque distribution,
can make the vehicle yaw rate closer to the target value than the average distribution
method. As shown in Figure 8c,d, the sideslip angle, based on optimal torque distribution
method, is limited to a small range, and the β −

.
β phase portraits return to the origin

more quickly than that without control. This shows that the vehicle is more stable, and
it can be known that the control effect of optimal torque distribution method is better
than the average distribution method. As shown in Figure 8e–g, the torque value of each
wheel, based on the optimal torque distribution, is consistent with trend of the wheel
vertical forces. This distribution mode enables each wheel to adjust the longitudinal forces
reasonably and avoid the vertical forces from reaching the longitudinal forces saturation
rapidly, especially if the tire vertical force is small. As shown in Figure 8h, the sum of
the wheel load rates based on the optimal torque distribution method is smaller than that
of average torque distribution method. This shows that the optimal torque distribution
control can make the torque distribution of each wheel more reasonable, and the adjustable
margin of longitudinal forces is larger, which can make the vehicle more stable.
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Figure 8. Verification of optimal torque distribution (a) trajectory, (b) yaw rate, (c) sideslip angle, (d) β−
.
β phase plane,

(e) wheel torque when average distribution, (f) wheel torque when optimal distribution, (g) vertical load of each wheel, and
(h) sum of wheel load rates.
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7.3. Evaluation of Vehicle Stability Control

In this paper, the effectiveness of the stability control for an electric vehicle with
four IWMs is verified through several working conditions, such as double-lane maneuver,
square-wave incremental steering, sinusoidal delay steering, etc. A typical sinusoidal
delay condition is taken as an example to illustrate it. The specific working condition is as
follows: the road adhesion coefficient is 0.4, the vehicle velocity is 70 km/h, the amplitude
of front wheel angle is 0.1 rad, the input frequency of front wheel angle is 0.7 Hz, and the
time delay is 500 ms. The specific signal is shown in Figure 9a. As shown in Figure 9b,
when the stability control is not applied, the β−

.
β phase portraits of the vehicle exceed the

stability boundary lines, and the vehicle is seriously unstable. When the stability control
is applied, the β−

.
β phase plane does not exceed two boundary lines, and the vehicle

is in a stable state. It shows that the stability control system proposed in this paper is
effective. In order to further illustrate the problem, the change of yaw rate is analyzed. As
shown in Figure 9c, the yaw rate of the vehicle can follow the target value well when the
stability control is applied. However, when the stability control is not applied, the yaw rate
of the vehicle deviates from the target value seriously, and this means that the vehicle is
seriously unstable.
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Figure 9. Simulation results of sinusoidal delay condition (a) front-wheel angle, (b) β−
.
β phase plane of vehicle, and

(c) yaw rate of vehicle.

8. Conclusions

The stability control for electric vehicles with four IWMs is the premise to give full
play to its advantages that longitudinal forces of each wheel can be adjusted independently.
Aiming at this key problem, the stability control system for electric vehicles with four
IWMs based on the sideslip angle is studied. The following conclusions are drawn:
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(1) Considering the key factors such as vehicle velocities and road adhesion coefficients,
the criterion of vehicle stability based on β−

.
β phase planes is established, and β−

.
β phase

planes are got by a 7-DOF vehicle model. On the premise of considering the velocities and
accuracy of simulation, maps of inclinations and intercepts for boundary lines of β−

.
β

phase planes are established based on a large number of simulations, and it is used in
the stability control system for electric vehicles with four IWMs through looking up a
two-dimensional table.

(2) To solve the problem that sideslip angle is difficult to measure directly, an estima-
tion algorithm for sideslip angle based on the extended Kalman filter is designed. Based on
sliding-mode control, the DYC is proposed, together with wheel driving/braking torque
distribution control method which takes the minimum sum of squares of wheel load rates
as the optimization objective.

(3) Based on MATLAB/Simulink and Carsim, a cosimulation model for stability
control of electric vehicles with four IWMs is built. The accuracy of β−

.
β phase plane,

estimation algorithm for sideslip angle, optimal algorithm of torque distribution, and
torque control method are assessed. Relevant research can provide some references for the
development of stability control system of electric vehicles with four IWMs.
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