A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives
Abstract
:1. Introduction
- -
- The vehicle must have a rated all-electric range of at least 120 km.
- -
- The APU must provide a range less than or equal to the main battery range.
- -
- The APU must not be switched on until the main battery charge has been depleted.
- -
- The vehicle must meet the super ultra-low emission vehicle (SULEV) requirements.
- -
- The APU and its associated fuel must meet the zero evaporative emissions requirements.
2. Internal Combustion Engine as a Range Extender
2.1. Definitions, Mechanisms, and Pros and Cons
2.2. Recent Research Developments
3. Free-Piston Linear Generator as a Range Extender
3.1. Definitions, Mechanisms, and Pros and Cons
3.2. Recent Research Developments
4. Fuel Cell as a Range Extender
4.1. Definitions, Mechanisms, and Pros and Cons
4.2. Recent Research Developments
5. Micro Gas Turbine as a Range Extender
5.1. Definitions, Mechanisms, and Pros and Cons
5.2. Recent Research Developments
6. Zinc-Air Battery as a Range Extender
6.1. Definitions, Mechanisms, and Pros and Cons
6.2. Recent Research Developments
7. Comparison of Range Extending Technologies and Their Future Perspectives
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Apostolou, D.; Xydis, G. A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renew. Sustain. Energy Rev. 2019, 113, 109292. [Google Scholar] [CrossRef]
- Aldhafeeri, T.; Tran, M.-K.; Vrolyk, R.; Pope, M.; Fowler, M. A review of methane gas detection sensors: Recent developments and future perspectives. Inventions 2020, 5, 28. [Google Scholar] [CrossRef]
- Shamsi, H.; Tran, M.-K.; Akbarpour, S.; Maroufmashat, A.; Fowler, M. Macro-level optimization of hydrogen infrastructure and supply chain for zero-emission vehicles on a Canadian corridor. J. Clean. Prod. 2021, 289, 125163. [Google Scholar] [CrossRef]
- Perera, P.; Hewage, K.; Sadiq, R. Are we ready for alternative fuel transportation systems in Canada: A regional vignette. J. Clean. Prod. 2017, 166, 717–731. [Google Scholar] [CrossRef]
- Panchal, S.; Gudlanarva, K.; Tran, M.-K.; Fraser, R.; Fowler, M. High Reynold’s number turbulent model for micro-channel cold plate using reverse engineering approach for water-cooled battery in electric vehicles. Energies 2020, 13, 1638. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.-K.; Mevawala, A.; Panchal, S.; Raahemifar, K.; Fowler, M.; Fraser, R. Effect of integrating the hysteresis component to the equivalent circuit model of Lithium-ion battery for dynamic and non-dynamic applications. J. Energy Storage 2020, 32, 101785. [Google Scholar] [CrossRef]
- Tran, M.-K.; Fowler, M. Sensor fault detection and isolation for degrading lithium-ion batteries in electric vehicles using parameter estimation with recursive least squares. Batteries 2019, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Mevawalla, A.; Panchal, S.; Tran, M.-K.; Fowler, M.; Fraser, R. Mathematical heat transfer modeling and experimental validation of lithium-ion battery considering: Tab and surface temperature, separator, electrolyte resistance, anode-cathode irreversible and reversible heat. Batteries 2020, 6, 61. [Google Scholar] [CrossRef]
- Mevawalla, A.; Panchal, S.; Tran, M.-K.; Fowler, M.; Fraser, R. One dimensional fast computational partial differential model for heat transfer in lithium-ion batteries. J. Energy Storage 2021, 37, 102471. [Google Scholar] [CrossRef]
- Tran, M.-K.; Fowler, M. A review of Lithium-Ion battery fault diagnostic algorithms: Current progress and future challenges. Algorithms 2020, 13, 62. [Google Scholar] [CrossRef] [Green Version]
- Van Mierlo, J. The World Electric Vehicle Journal, The Open Access Journal for the e-Mobility Scene. World Electr. Veh. J. 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.-K.; Akinsanya, M.; Panchal, S.; Fraser, R.; Fowler, M. Design of a hybrid electric vehicle powertrain for performance optimization considering various powertrain components and configurations. Vehicles 2021, 3, 20–32. [Google Scholar] [CrossRef]
- Lai, C.S.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Wong, R.T.K.; Zobaa, A.F.; Wu, R.; Lai, L.L. A review of technical standards for smart cities. Clean Technol. 2020, 2, 290–310. [Google Scholar] [CrossRef]
- Husain, I. Electric and Hybrid Vehicles Design Fundamentals, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- 2014 BMW I3 Electric Car: Why California Set Range Requirements Engine Limits. Available online: https://www.greencarreports.com/news/1087888_2014-bmw-i3-electric-car-why-california-set-range-requirements-engine-limits (accessed on 22 June 2020).
- Andwari, A.M.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V. A review of battery electric vehicle technology and readiness levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. [Google Scholar] [CrossRef]
- Friedl, H.; Friedl, G.; Hubmann, C.; Sorger, H.; Teuschl, G.; Martin, C. Range Extender Technology for Electric Vehicles. In Proceedings of the 2018 5th International Conference on Electric Vehicular Technology, Surakarta, Indonesia, 30–31 October 2018. [Google Scholar] [CrossRef]
- Heron, A.; Reinderknecht, F. Comparison of Range Extender Technologies for Battery Electric Vehicles. In Proceedings of the 2013 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies, Stuttgart, Germany, 27–30 March 2013. [Google Scholar] [CrossRef]
- Ozsoysal, O.A. Effects of combustion efficiency on an Otto cycle. Int. J. Exergy 2010, 7, 232–242. [Google Scholar] [CrossRef]
- Feng, R.; Li, Y.; Yang, J.; Fu, J.; Zhang, D.; Zheng, G. Investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine. SAE Tech. Pap. Ser. 2016, 1, 1–10. [Google Scholar] [CrossRef]
- Ebrahimi, R. Performance of an irreversible Diesel cycle under variable stroke length and compression ratio. J. Am. Sci. 2010, 6, 58–64. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, J.; Han, B.; Zhang, P.; Hua, H.; Chen, H.; Su, X. Emissions of automobiles fueled with alternative fuels based on engine technology: A review. J. Traffic Transp. Eng. 2018, 5, 318–334. [Google Scholar] [CrossRef]
- Platt, S.M.; El Haddad, I.; Pieber, S.M.; Zardini, A.A.; Suarez-Bertoa, R.; Clairotte, M.; Daellenbach, K.R.; Huang, R.-J.; Slowik, J.G.; Hellebust, S.; et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 2017, 7, 4926. [Google Scholar] [CrossRef]
- Szybist, J.; Wagner, R.; Curran, S. Internal Combustion Engines for Hybrid Electric Configurations; National Transportation Research Center: Knoxville, TN, USA, 2017.
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 1–28. [Google Scholar] [CrossRef]
- Keil, P.; Jossen, A. Aging of Lithium-Ion batteries in electric vehicles: Impact of regenerative braking. World Electr. Veh. J. 2015, 7, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Borghi, M.; Mattarelli, E.; Muscoloni, J.; Rinaldini, C.A.; Savioli, T.; Zardin, B. Design and experimental development of a compact and efficient range extender engine. Appl. Energy 2017, 202, 507–526. [Google Scholar] [CrossRef]
- Solouk, A.; Tripp, J.; Shakiba-Herfeh, M.; Shahbakhti, M. Fuel consumption assessment of a multi-mode low temperature combustion engine as range extender for an electric vehicle. Energy Convers. Manag. 2017, 148, 1478–1496. [Google Scholar] [CrossRef]
- Spectrum “Powertrain Electrification”. FEV. 2018. Available online: https://www.fev.com/fileadmin/user_upload/Media/Spectrum/en/Spectrum_64_EN_WEB.pdf (accessed on 3 July 2020).
- Spectrum “Zero Emission Strategies”. FEV. 2017. Available online: https://www.fev.com/fileadmin/user_upload/Media/Spectrum/en/Spectrum_61_EN.pdf (accessed on 3 July 2020).
- MAHLE Powertrain. MAHLE Range Extender Demonstrator Vehicle. 2017. Available online: https://www.mahle-powertrain.com/media/mahle-powertrain/news-and-press/brochures/range_extender/mahle-powertrain-range-extender-vehicle.pdf (accessed on 3 July 2020).
- Green Car Congress. Available online: https://www.greencarcongress.com/2019/09/20190910-mahle.html (accessed on 3 July 2020).
- Guo, C.; Zuo, Z.; Feng, H.; Jia, B.; Roskilly, T. Review of recent advances of free-piston internal combustion engine linear generator. Appl. Energy 2020, 269, 115084. [Google Scholar] [CrossRef]
- Kock, F.; Haag, J.; Friedrich, H.E. The free piston linear generator-development of an innovative, compact, highly efficient range-extender module. SAE Tech. Pap. Ser. 2013. [Google Scholar] [CrossRef]
- Hung, N.B.; Lim, O. A review of free-piston linear engines. Appl. Energy 2016, 178, 78–97. [Google Scholar] [CrossRef]
- Jia, B.; Smallbone, A.; Zuo, Z.; Feng, H.; Roskilly, A.P. Design and simulation of a two- or four-stroke free-piston engine generator for range extender applications. Energy Convers. Manag. 2016, 111, 289–298. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, X.; Wang, Y.; Ai, M. Performance characteristics of compressed air-driven free-piston linear generator (FPLG) system—A simulation study. Appl. Therm. Eng. 2019, 160, 114013. [Google Scholar] [CrossRef]
- Mikalsen, R.; Roskilly, A.P. The design and simulation of a two-stroke free-piston compression ignition engine for electrical power generation. Appl. Therm. Eng. 2008, 28, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.; Mishra, S.; Paswan, M.K. Review on Design and Development of Free Piston Linear Generators in Hybrid Vehicles. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Greater Noida, India, 3–5 May 2019; Volume 691, p. 012053. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.-C.B.; Schaltz, E.; Koustrup, P.S.; Andreasen, S.J.; Kaer, S.K. Evaluation of fuel-cell range extender impact on hybrid electrical vehicle performance. IEEE Trans. Veh. Technol. 2012, 62, 50–60. [Google Scholar] [CrossRef]
- Mahapatra, M.K.; Singh, P. Fuel cells. Future Energy 2014, 511–547. [Google Scholar] [CrossRef]
- Fuel Cell Today. Available online: http://www.fuelcelltoday.com/history (accessed on 12 July 2020).
- Kreuer, K.-D. (Ed.) Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Janssen, L.J.J. Hydrogen fuel cells for cars and buses. J. Appl. Electrochem. 2007, 37, 1383–1387. [Google Scholar] [CrossRef]
- Dell, R.M.; Moseley, P.T.; Rand, D.A.J. Hydrogen, fuel cells and fuel cell vehicles. In Towards Sustainable Road Transport; Academic Press: London, UK, 2014; pp. 260–295. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Available online: https://www.energy.gov/sites/prod/files/2015/11/f27/fcto_fuel_cells_fact_sheet.pdf (accessed on 12 July 2020).
- Minnehan, J.J.; Pratt, J.W. Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels; SANDIA Report: SAND2017-12665; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2017. [CrossRef]
- Udomsilp, D.; Rechberger, J.; Neubauer, R.; Bischof, C.; Thaler, F.; Schafbauer, W.; Menzler, N.H.; De Haart, L.G.; Nenning, A.; Opitz, A.K.; et al. Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems. Cell Rep. Phys. Sci. 2020, 1, 100072. [Google Scholar] [CrossRef]
- Wu, X.-L.; Xu, Y.-W.; Zhao, D.-Q.; Zhong, X.-B.; Li, D.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system. Appl. Energy 2020, 263, 114628. [Google Scholar] [CrossRef]
- Wang, J. Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy 2015, 80, 509–521. [Google Scholar] [CrossRef]
- Geng, C.; Jin, X.; Zhang, X. Simulation research on a novel control strategy for fuel cell extended-range vehicles. Int. J. Hydrog. Energy 2019, 44, 408–420. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Chen, Z.; Qin, D.; Zhang, Y. Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles. J. Power Sources 2019, 429, 55–66. [Google Scholar] [CrossRef]
- Álvarez Fernández, R.; Corbera Caraballo, S.; Beltrán Cilleruelo, F.; Lozano, J.A. Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renew. Sustain. Energy Rev. 2018, 81, 655–668. [Google Scholar] [CrossRef]
- Dimitrova, Z.; Maréchal, F. Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender. Renew. Energy 2017, 112, 124–142. [Google Scholar] [CrossRef]
- Fernández, R.Á.; Cilleruelo, F.B.; Martínez, I.V. A new approach to battery powered electric vehicles: A hydrogen fuel-cell-based range extender system. Int. J. Hydrog. Energy 2016, 41, 4808–4819. [Google Scholar] [CrossRef]
- Kaparaju, P.; Rintala, J. Generation of heat and power from biogas for stationary applications: Boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells. In The Biogas Handbook: Science, Production and Applications; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 404–427. [Google Scholar]
- Ji, F.; Zhang, X.; Du, F.; Ding, S.; Zhao, Y.; Xu, Z.; Wang, Y.; Zhou, Y. Experimental and numerical investigation on micro gas turbine as a range extender for electric vehicle. Appl. Therm. Eng. 2020, 173, 115236. [Google Scholar] [CrossRef]
- do Nascimento, M.A.R.; de Oliveira Rodrigues, L.; dos Santos, E.C.; Batista Gomes, E.E.; Goulart Dias, F.L.; Gutierrez Velasques, E.I.; Carrillo, R.A.M. Micro gas turbine engine: A review. In Progress in Gas Turbine Performance; IntechOpen: London, UK, 2013; pp. 107–141. [Google Scholar] [CrossRef] [Green Version]
- Boukhanouf, R. Small combined heat and power (CHP) systems for commercial buildings and institutions. In Small and Micro Combined Heat and Power (CHP) Systems: Advanced Design, Performance, Materials and Applications; Woodhead Publishing: Cambridge, UK, 2011; Volume 15, pp. 365–394. [Google Scholar] [CrossRef]
- Ribau, J.; Silva, C.; Brito, F.P.; Martins, J. Analysis of four-stroke, Wankel, and microturbine based range extenders for electric vehicles. Energy Convers. Manag. 2012, 58, 120–133. [Google Scholar] [CrossRef]
- Shah, R.; McGordon, A.; Amor-Segan, M. Micro Gas Turbine range extender—Validation for automotive applications. In Proceedings of the IET Hybrid and Electric Vehicles Conference, London, UK, 6–7 November 2013. [Google Scholar] [CrossRef] [Green Version]
- Karvountzis-Kontakiotis, A.; Andwari, A.M.; Pesyridis, A.; Russo, S.; Tuccillo, R.; Esfahanian, V. Application of micro gas turbine in range-extended electric vehicles. Energy 2018, 147, 351–361. [Google Scholar] [CrossRef]
- Tan, F.; Chiong, M.; Rajoo, S.; Romagnoli, A.; Palenschat, T.; Martinez-Botas, R. Analytical and experimental study of micro gas turbine as range extender for electric vehicles in Asian cities. Energy Procedia 2017, 143, 53–60. [Google Scholar] [CrossRef]
- Tran, M.-K.; Sherman, S.; Samadani, E.; Vrolyk, R.; Wong, D.; Lowery, M.; Fowler, M. Environmental and economic benefits of a battery electric vehicle powertrain with a zinc-air range extender in the transition to electric vehicles. Vehicles 2020, 2, 398–412. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Tang, Y.; Zhang, L.; Li, Y. Zinc–air batteries: Are they ready for prime time? Chem. Sci. 2019, 10, 8924–8929. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.B.; Cano, Z.P.; Fowler, M.; Chen, Z. Range-extending Zinc-air battery for electric vehicle. AIMS Energy 2018, 6, 121–145. [Google Scholar] [CrossRef]
- Gilligan, G.E.; Qu, D. Advances for Medium and Large-Scale Energy Storage; Woodhead Publishing: Cambridge, UK, 2015; pp. 441–461. [Google Scholar] [CrossRef]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279. [Google Scholar] [CrossRef]
- Catton, J.; Wang, C.; Sherman, S.; Fowler, M.; Fraser, R. Extended range electric vehicle powertrain simulation, and comparison with consideration of fuel cell and metal-air battery. SAE Tech. Pap. Ser. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Eckl, R.; Burda, P.; Foerg, A.; Finke, H.; Lienkamp, M. Alternative range extender for electric cars—Zinc air batteries. In Conference on Future Automotive Technology; Springer: Fachmedien Wiesbaden, Germany, 2013; pp. 3–18. [Google Scholar] [CrossRef]
- Ghosh, A. Possibilities and challenges for the inclusion of the electric vehicle (EV) to reduce the carbon footprint in the transport sector: A review. Energies 2020, 13, 2602. [Google Scholar] [CrossRef]
- Guanetti, J.; Formentin, S.; Savaresi, S.M. Energy management system for an electric vehicle with a rental range extender: A least costly approach. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3022–3034. [Google Scholar] [CrossRef] [Green Version]
- Krithika, V.; Subramani, C. A comprehensive review on choice of hybrid vehicles and power converters, control strategies for hybrid electric vehicles. Int. J. Energy Res. 2017, 42, 1789–1812. [Google Scholar] [CrossRef]
Range Extender | Distance Added | Advantages | Disadvantages | Related Research |
---|---|---|---|---|
Internal combustion engine | 150–420 km | Low cost; High power density; Easily implemented due to established fuel infrastructure; Good scalability; Fast start-up. | Low efficiency; High emissions; No packaging variability; Issues with noise and vibration. | [24,25,26,27,28,29] |
Free piston linear generator | ~600 km | Compatible with a variety of fuels; Simple design; Low-to-mid cost; Long service life; Compact size; Good scalability. | Detent force; Inconsistent start; Some emissions; Low power density; Issues with noise and vibration. | [30,31,32,33,34,35,36] |
Fuel cell | 60–240 km | High efficiency; Good packing variability; High power density; Low emissions; No issue with noise and vibration; Compact size. | High cost; No fuel infrastructure; No flexibility of fuel; Susceptible to contaminant poisoning. | [45,48,49,50,51,52] |
Micro gas turbine | ~45 km | Compatible with a variety of fuels; Long service life; Low emissions; No issue with noise and vibration; Compact size. | High cost; Low efficiency; Low power density; Slow start-up. | [54,57,58,59,60] |
Zn-air battery | ~75 km | High energy density; Low cost; Easy to manufacture; Safe to use; Long lifespan; Low emissions; No issue with noise and vibration. | Not yet optimized for commercialization; Highly susceptible to cycle degradation. | [61,63,65,66,67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, M.-K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr. Veh. J. 2021, 12, 54. https://doi.org/10.3390/wevj12020054
Tran M-K, Bhatti A, Vrolyk R, Wong D, Panchal S, Fowler M, Fraser R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electric Vehicle Journal. 2021; 12(2):54. https://doi.org/10.3390/wevj12020054
Chicago/Turabian StyleTran, Manh-Kien, Asad Bhatti, Reid Vrolyk, Derek Wong, Satyam Panchal, Michael Fowler, and Roydon Fraser. 2021. "A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives" World Electric Vehicle Journal 12, no. 2: 54. https://doi.org/10.3390/wevj12020054
APA StyleTran, M. -K., Bhatti, A., Vrolyk, R., Wong, D., Panchal, S., Fowler, M., & Fraser, R. (2021). A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electric Vehicle Journal, 12(2), 54. https://doi.org/10.3390/wevj12020054