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Abstract: The state of charge (SOC) of a lithium-ion battery plays a key role in ensuring the charge
and discharge energy control strategy, and SOC estimation is the core part of the battery management
system for safe and efficient driving of electric vehicles. In this paper, a model-based SOC estimation
strategy based on the Adaptive Cubature Kalman filter (ACKF) is studied for lithium-ion batteries.
In the present study, the dual polarization (DP) model is employed for SOC estimation and the
vector forgetting factor recursive least squares (VRLS) method is utilized for model parameter
online identification. The ACKF is then designed to estimate the battery’s SOC. Finally, the Urban
Dynamometer Driving Schedule and Dynamic Stress Test are utilized to evaluate the performance of
the proposed method by comparing with results obtained using the extended Kalman filter (EKF)
and the cubature Kalman filter (CKF) algorithms. The simulation and experimental results show that
the proposed ACKF algorithm combined with VRLS-based model identification is a promising SOC
estimation approach. The proposed algorithm is found to provide more accurate SOC estimation
with satisfying stability than the extended EKF and CKF algorithms.

Keywords: state of charge; electric vehicle; dual polarization model; vector forgetting factor recursive
least squares; Adaptive Cubature Kalman filter

1. Introduction

Faced with the global energy shortage and climate change crisis, the market position
of electric vehicles (EVs) has become obvious [1,2], leading the trend of the automotive
industry with the advantages of being pollution-free, low noise, and having high energy
efficiency [3,4]. Among all commercially available lithium-ion batteries, the ternary lithium-
ion batteries are widely utilized because of their advantages of long service life, high
energy density, superior performance at high and low temperatures, and environmental
protection [5]. However, under certain operating conditions, the difference among all
individual cells may result in battery over-charge and over-discharge, even explosions [6].
Therefore, the Battery Management System (BMS) plays a crucial role in assuring safety
and monitoring the operating process [7,8]. State of charge (SOC), which indicates the
remaining energy in the battery, is an important part of BMS [9]. The SOC of a battery
cannot be obtained directly but is often estimated based on some measurable parameters
such as the terminal voltage and operation current [10]. Thus, SOC estimation is still a
challenging research topic.

SOC estimation algorithms can be classified into two categories: non-model-based
and model-based [11]. Two commonly used non-model-based SOC estimation approaches
are the Ampere-hour (Ah) integration method [12,13], and the open-circuit voltage (OCV)
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method [14]. The Ah integration method obtains the SOC by integrating the current over
time. The accuracy of the ampere-hour integration method depends on the measured
current value and the initial SOC value and high accuracy of the current sensor is required.
Moreover, since accurate data of real-time initial SOC value cannot be obtained easily
in operating EVs, this method is not ideal for practical applications. On the other hand,
although accurate SOC value can be obtained using the open-circuit voltage method, it
cannot perform online tests of SOC [15]. The OCV method acquires the SOC based on the
relationship between OCV and SOC. The OCV method is used for the initial calibration of
SOC in many BMS systems. However, this method requires long periods of standing of the
battery before measurement, and the operating conditions are only suitable for laboratories
and cannot be applied to the changing operating conditions of EVs.

Compared with the above-mentioned non-model-based methods, the model-based
methods are more promising for EV application. The process of these approaches can be di-
vided into three procedures: model building, identification of model parameters, and SOC
estimation [6]. Many battery models have been reported to date, e.g., the electrochemical
model [16], equivalent circuit models (ECMs) [17,18], and neural network models [19–22].
The electrochemical model is rather complex and requires a large number of parameters
for SOC estimation [16]. The neural network models [19] require vast training data of
all driving conditions for accurate estimation. In contrast, the equivalent battery models
(ECMs) are widely used for their ease of implementation [23]. The ECMs describe the
battery’s behavior by basic electric components such as resistors and capacitors. Some
well-known ECMs are the Thevenin model [24,25], DP model [26], and PNGV (Partnership
for a New Generation of Vehicle) model. Hu et al. [27] analyzed 12 lithium-ion battery
equivalent circuit models and proposed that the selection of the model should take into
consideration accuracy and simplicity, and models of higher than the second order only
had high accuracy in theory. By comparing the estimated terminal voltage values obtained
from using the Thevenin model, the DP model, and the PNGV model under different
operating conditions, Wang et al. [28] found that the accuracy and dynamic performance
of the DP model were better than the other two models. Thus, in view of accuracy and
simplicity, the DP model is chosen for the present study.

The parameters of ECMs should be identified after building the battery model. Offline
and online identification are two major approaches [29]. Offline identification, as the name
suggests, obtains the parameters as a function of SOC by identifying the parameters through
experiments of certain working conditions, such as the hybrid pulse power characterization
(HPPC) test. In Ref. [30], through real-time measurement and update of the battery voltage
and current, the battery parameters were accurately identified by HPPC test to guarantee a
reliable battery state estimate. However, the offline method based on certain conditions
relies on a large number of experiments, which requires long development cycles and
high costs. On the other hand, online identification only acquires new parameters that
correspond to the present battery state through the latest inputs, hence, the performance of
SOC estimation is better [31,32]. This method mainly includes the filter type [33–35] and the
recursive least square (RLS) type. Yu et al. [35] used the H-infinity filter to update battery
parameters, and the multi-scale EKF was adopted to estimate the system parameters. In
contrast, the RLS [36] method has been used widely because it is easy to implement and
the requirement of calculation is low. The RLS method is based on real-time observations
and uses filtering theory to update model parameters online. However, update of data will
result in the accumulation of old data; thus, it would be hard to track the parameters of a
time-variant system. The adoption of the forgetting factor reduces the accumulation of past
data and provides a calculation basis for supplementing new data [37]. Ze et al. [38] used
the forgetting factor recursive least squares (FFRLS) algorithm to identify 3 parameters
of the Thevenin model. In [9], good performance was obtained using the least squares
method (LS) with a forgetting factor in parameter identification of DP model. It is noted
that if the forgetting factor remains unchanged, the ability and accuracy of identification
will be influenced under a dynamic condition. To solve this issue, a method based on the
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recursive least square algorithm with a variable multiple forgetting factor is employed in
the present study.

As for battery states estimation, the Kalman filter family has been extensively used to
estimate the SOC, e.g., the extended Kalman filter (EKF) [39,40], unscented Kalman filter
(UKF) [41–43], or the cubature Kalman filter (CKF) [44–46]. The KF [47,48] is developed
based on linear systems and is not appropriate for the ECMs, which are based on non-
linear systems. The EKF model linearizes the non-linear system to make it approximately
equal to the first-order terms of the Taylor series expansions; therefore, it has limited
accuracy because higher order terms are ignored [49]. The UKF [50] model propagates the
battery states’ mean and covariance by utilizing unscented transform (UT), and improves
the accuracy of calculation. It has been proven that the UKF performs better than the
EKF with less error and faster convergence speed [51]. Additionally, the UKF does not
require the computation of Jacobian matrices. However, both models suffer from the curse
of dimensionality or divergence or both [52]. Based on spherical-radial Cubature rule,
the CKF predicts and updates the state values by 2N cubature points, and has attracted
extensive attention in nonlinear systems in recent years. Compared with the EKF, the CKF
does not require the computation of Jacobian matrices. Furthermore, it achieves better
estimation accuracy than the UKF [44].

Although the CKF is capable of yielding good results, some issues still remain. On
the one hand, in the standard CKF, the values of process noise covariance Q and the
measurement noise covariance R keep constant in the iterative process and cannot satisfy
real-time dynamic characteristics of the noise, which has a certain impact on the accu-
racy [53]. On the other hand, the values of Q and R are adjusted constantly using different
values until the CKF has the best performance in the certain condition; whereas the CKF
algorithm with certain Q and R might deviate the optimal trajectory when the CKF is
applied to other conditions, hence, the CKF algorithm with certain Q and R cannot satisfy
all driving conditions.

In the present study, a new approach of SOC estimation combining the vector forget-
ting factor recursive least squares (VRLS) with adaptive cubature Kalman filter (ACKF) is
proposed. Specifically, the DP model is selected to simulate the dynamic characteristics
of batteries, and the VRLS algorithm with variable multiple forgetting factors is utilized
to update the parameters of DP model in real time. The ACKF filter, which can adjust the
noise covariance according to the battery voltage residual sequence of the battery model,
is used to estimate the SOC. Finally, two typical dynamic conditions including the Urban
Dynamometer Driving Schedule (UDDS) and Dynamic Stress Test (DST) are utilized to
verify the performance of the proposed algorithm by comparing with results obtained
using the standard EKF and CKF algorithms.

The paper is organized as follows. Section 2 describes the employed equivalent-
circuit model and the method of online parameter identification. Section 3 explains the
ACKF algorithm based on the recursion theory in detail. Section 4 discusses and analyzes
the performance of parameter identification and SOC estimation under UDDS and DST,
followed by Section 5 with conclusions drawn from the above investigation.

2. Battery Model and Parameter Identification
2.1. Battery Model

The circuit diagram for the DP model is shown in Figure 1. The current is positive
in the discharge direction. Utv represents the terminal voltage and Uocv refers to the
open circuit voltage, and its magnitude is only associated with the positive and negative
electrodes of the battery and the electrolyte material. R0 represents the ohmic resistance,
which is composed of the physical and chemical resistance and contact impedance between
the battery materials. The polarization resistance (Rp1, Rp2) and the polarization capacitance
(Cp1, Cp2) are used to simulate electrochemical polarization and concentration polarization,
respectively.
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Figure 1. DP model circuit diagram.

The relations of the DP model’s variables and parameters are expressed in Equations
(1)–(3): 

Utv = UOCV − IR0 −UP1 −UP2
ˆ

UP1 = − 1
Cp1Rp1

Up1 +
1

Cp1
I

ˆ
UP2 = − 1

Cp2Rp2
Up2 +

1
Cp2

I

(1)


UP1k = UP1k−1e−

TS
τ1 + IkRP1(1− e−

TS
τ1 )

UP2k = UP2k−1e−
TS
τ2 + IkRP2(1− e−

TS
τ2 )

SOCk= SOCk−1 − ηTs
CN

Ik

(2)

Utv(k) = Uocv − I(k)R0 −UP1(k)−UP2(k) (3)

where I(k) and Utv(k) are, respectively, the current values flowing through the battery
and the terminal voltage values of the battery; Up1(k) and Up2(k) are the polarization
voltages between the two polarization circuits at time k; τ1, τ2 are the time constants of the
polarization loop; TS is the sample time.

2.2. Model Parameter Identification

As shown in Figure 1, six parameters including the Open Circuit Voltage (OCV), R0,
RP1, RP2, CP1, CP2 need to be identified. In this paper, OCV was recognized from the pulse
discharge experiments. For R0, RP1, RP2, CP1, CP2, the vector forgetting factor recursive
least squares algorithm was employed for online identification.

2.2.1. Identification of Open Circuit Voltage

The OCV is known as a nonlinear function of SOC. Since the accuracy of the OCV
plays a crucial role in estimating SOC, it is necessary to acquire relationship between OCV
and SOC of the battery. The pulse discharge experiments were designed to obtain the
relationship between them and experimental procedures are as follows.

1. Charge the battery fully. At this time SOC = 1 and the measured battery voltage is
recorded as OCV.

2. Discharge at 1 C until SOC = 0.95 and rest for 30 min. Measure the battery voltage
and record it as the open circuit voltage of SOC = 0.95.

3. Step (2) is repeated until SOC = 0.05 and the battery voltage corresponding to each
SOC is recorded.

Based on the experimental data, the fitted curve of SOC vs. OCV is obtained by using
curve fitting tool in MATLAB. The result of fitting curves is shown in Figure 2, and the
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corresponding coefficients of the fitted sixth-order polynomial is presented in Equation (4)
and the R-square from fitting is 0.9976.

Uocv = −29.81·(SOC)6 + 107.1·(SOC)5 − 150.6·(SOC)4 + 105.1·(SOC)3

−38.04·(SOC)2 + 7.532·SOC + 2.96
(4)

Figure 2. OCV as a function of SOC.

2.2.2. Parameter Identification with Vector Forgetting Factor Recursive Least
Squares Algorithm

Other parameters including R0, RP1, RP2, CP1, CP2 are identified using VRLS as follows.
Equation (2) is transformed into the following expression adapted to the least square

method to estimate the battery parameter.

Utv =

(
RP1

RP1CP1s + 1
+

RP2

RP2CP2s + 1
+ R0

)
I + Uocv (5)

Setting τ1 = RP1CP1 , τ2 = RP2CP2 , multiplying both sides of this equation by
(τ1s + 1)(τ2s + 1), we have:

τ1τ2Utvs2 + (τ1 + τ2)Utvs + Utv = τ1τ2R0 Is2 +
[
Rp1τ2 + Rp2τ1 + R0(τ1 + τ2)

]
Is

+
(

Rp1 + Rp2 + R0
)

I + τ1τ2Uocvs2 + (τ1 + τ2)Uocvs + Uocv
(6)

Setting a = τ1τ2, b = τ1 + τ2, C = RP1 + RP2 + R0, d = RP1τ2 + RP2τ1 + R0(τ1 + τ2),
we can obtain:

aUtvs2 + bUtvs + Utv = aR0 Is2 + dIs + cI + aUocvs2 + bUocvs + Uocv (7)

Substituting s = [h(k)−h(k−Ts)]
T , s2 = [h(k)−2h(k−Ts)+h(k−2Ts)

T2 into Equation (7), we have
Equation (8):

Utv(k)−Uocv(k)=
−bT − 2a

T2 + bT + a
[Uocv(k− TS)−Utv(k− TS)]

+
a

T2 + bT + a
[Uocv(k− 2TS)−Utv(k− 2TS)] +

cT2 + dT + aR0

T2 + bT + a
I(k)

+
−dT − 2aR0

T2 + bT + a
I(k− TS) +

aR0

T2 + bT + a
I(k− 2TS)

(8)
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where T represents the sampling time and Ts refers to the interval of sampling time for
parameter identification.

As a result:

Utv(k)−Uocv(k) = k1[Uocv(k− TS)−Utv(k− TS)] + k2[Uocv(k− 2TS)−Utv(k− 2TS)]

+k3 I(k) + k4 I(k− TS) + k5 I(k− 2TS)

(9)
where:

k1 = −bT−2a
T2+bT+a , k2 = a

T2+bT+a , k3 = cT2+dT+aR0
T2+bT+a ,

k4 = −dT−2aR0
T2+bT+a , k5 = aR0

T2+bT+a

(10)

The discrete equation of state at the time of (k-Ts), is:

Utv(k− TS)−Uocv(k− TS) = k1[Uocv(k− 2TS)−Utv(k− 2TS)] + k2[Uocv(k− 3TS)−Utv(k− 3TS)]

+k3 I(k− TS) + k4 I(k− 2TS) + k5 I(k− 3TS)
(11)

Subtracting Equation (11) from Equation (9), we can get:

∆Utv(k)− ∆Uocv(k) = k1[∆Uocv(k− TS)− ∆Utv(k− TS)] + k2[∆Uocv(k− 2TS)− ∆Utv(k− 2TS)]

+k3∆I(k) + k4∆I(k− TS) + k5∆I(k− 2TS)
(12)

where TS = 4; ∆Utv = Utv(k)−Utv(k− Ts); the other expressions of ∆U0cv(k), ∆I(k) in
Equation (11) are obtained in a similar manner.

According to Equation (12), the regression equation of parameter identification of DP
model can be transformed into:

y(k) = ωT(k)ϕ(k) + e(k) (13)

where the corresponding parameter matrix is:

ω(k) =[k1k2k3k4k5]
T

ϕ(k) =[∆Uocv(k− TS)− ∆Utv(k− TS)∆Uocv(k− 2TS)− ∆Utv(k− 2TS)

∆I(k)∆I(k− TS)∆I(k− 2TS)]
T

y(k) =∆Utv(k)− ∆Uocv(k)

(14)

The standard RLS is often utilized to the discrete system represented by Equation (13).
However, if the change rate of the estimated parameter is different in the system discretiza-
tion process, the application of the RLS algorithm is prone to failing. The tracking of
the parameter’s change rate is easily impacted by the value of the forgetting factor. The
parameters with a large change rate need to be matched with a smaller forgetting factor;
the slowly changing parameters need a larger forgetting factor to track, so as to ensure
that the RLS algorithm is stable in the tracking process of parameter changes. The change
rate of parameters that need to be estimated are different in the lithium battery system.
To obtain the best identification accuracy, the VRLS with multiple forgetting factors are
utilized to estimate the parameters of the DP model. This paper uses λw1, λw2, λw3, λw4,
λw5, respectively, to denote the forgetting factors of the five parameters to be estimated
in the parameter matrix w(k), and calculates them with Equation (15). In this algorithm,
these forgetting factors can be decoupled and adjusted to adapt to parameter changes to
obtain the best estimation effect. The calculation formula of the forgetting factor in this
paper is as follows:

λωi = λ0i − (λ0i − λ1i) exp(−t/τi) (15)

where i = 1, 2, 3, 4, 5; λw1, λw2, λw3, λw4, λw5, respectively, denote the calculation coefficients
of the forgetting factor, and their corresponding values are shown in Table 1.



World Electr. Veh. J. 2021, 12, 123 7 of 18

Table 1. Values for the calculation of forgetting factors λwi.

i λ0i λ1i τi

1 0.998 0.98 500
2 0.995 0.99 500
3 0.99 0.97 500
4 0.998 0.98 500
5 0.995 0.99 500

After solving the regression equation, the model parameters can be calculated as follows:
Setting K0 = T2 + bT + a, deducing Equation (10), we get:

k0 = T2/(k1 + k2 + 1)

a = k0·k2

b = −k0(k1 + 2k2)/T

c = k0(k3 + k4 + k5)/T2

d = −k0(k4 + 2k5)/T

R0 = k5/k2

(16)

With a = τ1τ2, b = τ1 + τ2, τ2 − bτ+ a = 0, solving the equation, we get:

τ1 =
b +
√

b2 − 4a
2

, τ2 =
b−
√

b2 − 4a
2

(17)

Substituting into c = Rp1 + Rp2 + R0, d = Rp1τ1 + Rp2τ2 + R0(τ1 + τ2), we have:
Rp1 = (τ1c + τ2R0 − d)/(τ1 − τ2)

Rp2 = c− Rp1 − R0

Cp1 = τ1/Rp1

Cp2 = τ2/Rp2

(18)

The parameter identification process of the VRLS algorithm is presented in Table 2. In
the VRLS algorithm, the sampling interval Ts has a crucial impact on the operation of the
algorithm. If Ts is too large, the model estimation error will be large; if Ts is too small, it
will affect the stability of the model. Therefore, Ts is taken as 4 to balance the precision and
stability of the battery model.

Table 2. Parameter identification process of VRLS algorithm.

Step 1. Initialize the parameters:ω0 = E[ω0], P0 = E

[(
ω0 −

ˆ
ω0

)(
ω0 −

ˆ
ω0

)T
]

Step 2. Calculate the state variables and the predicted value of covariance

matrix:
ˆ

ω
−
(k) =

ˆ
ω
+

(k− 1) P−(k) = P+(k− 1)
Step 3. Update the gain: Lω(k) = P−(k)ϕ(k)

[
1 + ϕT(k)P−(k)ϕ(k)

]−1

Step 4. Update the state variables and covariance matrix:
ˆ

ω
+

(k) =
ˆ

ω
−
(k) + Lω(k)

[
y(k)− ˆ

ω
−T

(k)ϕ(k)
]

P+(k) = Λ−1[E− Lω(k)ϕT(k)
]
P−(k)Λ−1

where Λ = diag
([√

λw1
√

λw2
√

λw3
√

λw4
√

λw5
])

, and E is a unit vector of the fifth order.
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3. Adaptive Cubature Kalman Filter Algorithm

Based on the third-order spherical radial cubature criterion, the Cubature Kalman
filter predicts and updates the state of the nonlinear system through the linear cubature
point. Synthesizing the third-order spherical radial criterion, Equation (19) is obtained:

∫
Rn

f (t)N
(

t;
−
t , Pt

)
dt =

N

∑
i=1

1
2n

(
f
(√

nPtei +
−
t
)
+ f

(
−
√

nPtei +
−
t
))

(19)

where ei is the ith unit vector in the identity matrix.
The discretized state equation and observation equation estimated by SOC are shown

in Equations (3) and (4), where state values x = [UP1 UP2 SOC], system input values
uk = [Ik], and system output values yk = [Utv_K_]. The application of ACKF for SOC
estimation is summed up as follows:

(a). Initialize the state values X, error covariance values Px, process noise covariance
Q, and measurement noise covariance R.

−
x0 = E(x0)

P0 = E
((

x0 −
−
x0

)(
x0 −

−
x0

)T) (20)

(b). Calculate the volume points and weights at the moment k− 1 for the first time.{
xk/k−1_Ri = xk−1 +

√
nPk−1ei

xk/k−1_Ri+n = xk−1 −
√

nPk−1ei
(i = 1, 2, · · · n) (21)

{
wi =

1
2n

wi+n = 1
2n

(22)

(c). Propagate the cubature points, namely, substitute the first calculated volume
points into the equation of state.

xk/k−1_Ci = f (xk/k−1_Ri, uk)(i = 1, 2, · · · 2n) (23)

(d). Calculate the state variable prediction and error covariance prediction:

xk/k−1 =
2n

∑
i=1

wixk/k−1_Ci (24)

Pk/k−1 =
2n

∑
i=1

wi(xk/k−1_Ci − xk/k−1)(xk/k−1_Ci − xk/k−1)
T + Qk−1 (25)

(e). Calculate the cubature points and weights the second time.
xk_Ri = xk/k−1 +

√
nPk/k−1ei

xk_Ri+n = xk/k−1 −
√

nPk/k−1ei

wi = wi+n = 1
2n

(i = 1, 2, · · · n) (26)

(f). Propagate the cubature points, namely, substitute the second calculated cubature
points into the equation of state.

yk_Ci = g(xk_Ri, uk)(i = 1, 2, · · · 2n) (27)
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(g). Calculate the predicted value of the observed variables:

yk =
2n

∑
i=1

wiyk_Ci (28)

(h). Calculate the observation error covariance and cross-covariance:

Py
k =

2n

∑
i=1

wi(yk_Ci − yk)(yk_Ci − yk)
T + Rk (29)

Pxy
k =

2n

∑
i=1

wi(xk_Ri − xk/k−1)(yk_Ci − yk)
T (30)

(i). Calculate the Kalman gain:

Gk = Pxy
k ·
(

Py
k

)−1
(31)

(j). Update the state value and error covariance:

xk = xk/k−1 + Gk(Yk − yk) (32)

Pk = Pk/k−1 − GkPy
k GT

k (33)

(k). Adaptive update of QK and RK
The noise covariance is adjusted with battery voltage based on the residual sequence

of the battery model. The modification and update expressions of QK and RK are shown in
Equations (34) and (35).

Qk = GkFkGT
k (34)

Rk = Fk +
2n

∑
i=0

wi(yk_Ci −Yk)(yk_Ci −Yk)

T

(35)

Fk is the approximate estimate of the voltage residual covariance, which is expressed
as:

Fk =
k

∑
i=k−Lw+1

aiaT
i (36)

where ai is the voltage residual of the battery model, i.e., the difference between the
calculated value of the voltage obtained at the cubature point of the second propagation
and the actual terminal voltage; Lw is the window size that matches the covariance.

Figure 3 shows the diagram of SOC estimation based on ACKF. After the initialization,
it is necessary to measure the battery operating current and terminal voltage. Moreover,
the predicted values of the state variables xk and the observed variables yk can be obtained
through the update of time and measurement. The noise covariance is adjusted and
corrected with the battery voltage based on the residual sequence of the battery model.
Finally, one can calculate the errors on the basis of measured terminal voltage, then the
battery SOC is estimated after correction and the algorithm goes to the next cycle.
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Figure 3. Diagram of SOC estimation based on ACKF.

4. Results and Discussion

In order to evaluate the performance of the present method based on VRLS online
parameters identification and ACKF in SOC estimation, the UDDS and DST conditions
are selected. The UDDS condition features rapid power changes and fierce current impact,
whereas the DST condition is a complicated and variable power working condition that
simulates the driving actions of a car, such as starting, acceleration, constant speed, braking,
etc. It is easy to cause strong impact to the battery and SOC estimation is challenging under
such complex conditions. The models of parameter identification and SOC estimation are
implemented in the Simulink simulation environment in MATLAB.

Section 4.1 presents the setup of test bench. Section 4.2 shows the comparison of
the two battery models tested. Comparison of two parameter identification methods
is presented in Section 4.3. SOC estimation performance with different algorithms is
evaluated in Section 4.4.

4.1. Experimental Setup

The experiment platform of battery test includes a charge–discharge test equipment
(Xinwei BTS-5V300A), an upper computer, and a high and low temperature alternating
heat and humidity test chamber (GDJS-150). This setup can simulate various battery charge
and discharge patterns by loading the test program of the upper computer, execute the
vehicle service condition, and obtain the data of battery voltage, capacity, power, and so
on in real time. The sampling frequency is set to 10 Hz. The current loading accuracy is
±0.3 A, and the voltage loading accuracy is ±0.005 V, which is sufficient to guarantee the
reliability of battery charge and discharge tests and data collection. The test chamber is
capable of simulating the temperature and humidity range of the battery in the test process
in a very high precision range. The control range for chamber temperature and humidity is
−50~150 ◦C and 30–98% RH, respectively. The battery under investigation is connected
to the channel of the test equipment through physical wiring, and is placed in the test
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chamber to ensure that the temperature and humidity of the battery become constant. The
technical parameters of the tested ternary lithium battery are presented in Table 3.

Table 3. Technical parameters of the battery.

Items Parameters

Cathode materials LiNi1-x-yCoxMnyO2
Nominal capacity (Ah) 35

Rated voltage (V) 3.7
Maximal continuous discharge current (C) 3

Maximal pulse discharge current (C) 5 (30 s)
Upper/lower cut-off voltage (V) 4.2/2.5

4.2. Comparison of Two Battery Models

To compare the accuracy of the DP model and Thevenin model under UDDS and DST
conditions [28], the DPVRLS and Thevenin-VRLS algorithms are utilized to identify battery
parameters and the estimated values of terminal voltage obtained from the two battery
models are compared with the experimental data. Figures 4 and 5 show the terminal
voltage comparison and error curves under UDDS and DST conditions, respectively.

Figure 4. The estimated terminal voltages and corresponding errors based on different battery
models under UDDS condition: (a) voltage comparison; (b) error of voltages.

Figure 5. The estimated terminal voltages and corresponding errors based on different battery
models under DST condition: (a) voltage comparison; (b) error of voltages.
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Figures 4 and 5 indicate that the agreement between the terminal voltage of DP-VRLS
and the measured value is obviously better than that of Thevenin-VRLS, the maximal value
of the error curve is smaller, and the volatility is gentler. The error value of DP-VRLS
does not exceed 0.039 V, whereas the maximum error of Thevenin-VRLS is 0.061V [28].
This demonstrates that the two models realize satisfactory estimation performance, and
the DP model has higher accuracy and better dynamic performance compared with the
Thevenin model.

4.3. Comparison of Two Parameter Identification Methods

To prove the superiority of the online model identification over the offline model
identification, the HPPC offline method and the VRLS online method are utilized to
identify the DP model parameters. Figures 6 and 7 show the terminal voltage curves under
UDDS and DST conditions, respectively.

Figure 6. The estimated terminal voltage and corresponding errors based on different battery
parameter identification under UDDS condition: (a) voltage comparison; (b) error of voltage.

Figure 7. The estimated terminal voltage and corresponding errors based on different battery
parameter identification under DST condition: (a) voltage comparison; (b) error of voltage.

Figure 6 shows that the DP-offline method has large errors under the UDDS condition
in general, and the maximum error of DP-offline is 0.4 V, while the maximum error of
DP-VRLS is only 0.075 V. After the middle period of the discharge, the terminal voltage
simulation curve starts to deviate from experimental data, especially in the later stage,
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which deviates from the measured value curve greatly and irregularly. The reason for this
deviation is that when parameters are identified under the HPPC condition, to prevent
the battery from over discharge, the experiment is stopped until the SOC is 5%. The
relationships between parameters and SOC are fitted as sixth-order polynomial by using
curve fitting tool in MATLAB based on the experimental data. The divergency begins at
about 18,000 s in Figure 6, and the SOC is about 5% at this time. As the condition continues,
there is a large error in parameter fitting because the fitting curve has a fitting error when
the SOC is in the range of 0 to 5%. As the SOC approaches 0, the fitting error is large and
the divergency becomes more pronounced.

In Figure 7, the curve of terminal voltage under DP-offline diverges from experimental
data and the deviation becomes obvious in the later stage. One can see that the voltage of
DP-VRLS is in agreement with the measured value steadily with the maximum error about
0.04 V, while the error of offline identification reaches 0.06 V and the error has increased by
50% compared to the former. This shows that the VRLS algorithm can effectively reduce
the drawbacks of battery time-varying and instability in dynamic working conditions, and
has strong advantages in parameter identification.

To further compare the models and the accuracy of online and offline estimation more
thoroughly, the mathematical statistical results of estimation error are presented in Table 4.
The maximum error, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
of the three algorithms under UDDS and DST conditions are calculated respectively; see
Table 4. Under the DST conditions, the maximum error of DP-VRLS is 0.039 V, which is
about 64% of the two algorithms, and the overall error range does not exceed 1.2% of
the rated voltage. The maximum error of DP-VRLS under UDDS operating conditions is
0.0754 V, which is only 2.4% of the rated voltage. Its MAE and RMSE are smaller, indicating
that the error fluctuation of DP-VRLS is smaller, the stability is better, and the dispersion is
smaller. The statistical results show that the second-order DP model has higher accuracy
and reflects the dynamic polarization effect of the battery better. The VRLS algorithm
prevents the estimation drawbacks caused by the time-varying nonlinearity of the battery
system and has reliable parameters identification accuracy. Both the battery model and the
parameter identification method contribute to the accuracy of the model. The DP-VRLS
algorithm integrates the battery model with the parameter identification well, and the
proposed method of parameter identification is accurate and reliable.

Table 4. Error of terminal voltage estimation.

Condition Algorithm Maximum Error/V MAE/V RMSE/V

UDDS

DP-VRLS 0.0754 0.0087 0.0126

Thevenin-VRLS 0.0525 0.0106 0.0149

DP-offline 0.4014 0.0486 0.0907

DST

DP-VRLS 0.0389 0.0123 0.0147

Thevenin-VRLS 0.0606 0.0185 0.0227

DP-offline 0.0612 0.0152 0.0192

4.4. Comparison of SOC Estimation with Different Algorithms

After identifying the model parameters, the SOC estimation performances based
on ACKF are compared with that of EKF and CKF under UDDS and DST condition in
this section. Figure 8 presents the SOC comparison curve among the estimates of three
algorithms and the experimental measurement under UDDS conditions. Figure 8 shows
that the SOC simulation value of ACKF algorithm and the measured value have the
smallest deviation, and the divergence of EKF curve is the most obvious. In Figure 8b, as
the working condition time is extended, the error accumulation of CKF and EKF continues
to increase. In the middle and late period of the working condition, the three error curves
are clearly differentiated, and the error of ACKF remains in a stable range. The error
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range of EKF is the largest and the maximum error is about 4%; the error of CKF is within
3%, and the maximum error of ACKF does not exceed 1.9%. This result shows that the
ACKF algorithm realizes satisfactory dynamic estimation performance under complex
working conditions.

Figure 8. SOC simulation results in UDDS: (a) SOC; (b) SOC error.

Figure 9 presents the SOC estimation performance curves of ACKF, CKF, and EKF in
DST condition. One can see that the SOC estimation curve of ACKF matches the measured
value well, and the agreement is better than the other two algorithms. The error curve
of EKF increases proportionally and CKF has a larger error than ACKF. The overall error
curve of ACKF has the smallest fluctuation and the best stability, and the maximum error is
around 0.015. In summary, the ACKF algorithm maintains an excellent estimation accuracy
under DST condition.

Figure 9. SOC simulation results in DST: (a) SOC; (b) SOC error.

Statistical methods can be used to more intuitively analyze the SOC error under UDDS
and DST conditions. Table 5 shows the maximum error, MAE, RMSE of ACKF, CKF, and
EKF algorithm, respectively: the maximum estimation error of the ACKF algorithm is
1.85%, and its MAE and RMSE are much smaller than the EKF and CKF algorithms. The
ACKF algorithm has superiority in accuracy and stability. The error statistical parameters
of the CKF algorithm are smaller than that of the EKF, and the cubature points are directly
used for nonlinear propagation, which avoids the accumulation of linearization errors and
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enhances the accuracy of the algorithm. The maximum error of ACKF is 58% of CKF under
the DST condition and 69% of CKF under the UDDS condition. In CKF, because the state
and observation noise are constant, the error correction of SOC estimation is reduced. The
ACKF algorithm adopts the module that tracks and corrects noise adaptively, which raises
the accuracy and stability of the algorithm by reducing the interference of noise to the
estimation result.

Table 5. Errors of SOC estimation with different algorithms.

Condition Algorithm Maximum Error MAE RMSE

UDDS

ACKF 0.0185 0.0059 0.0072

CKF 0.0268 0.0067 0.0084

EKF 0.0399 0.0156 0.0188

DST

ACKF 0.0164 0.0039 0.0049

CKF 0.0283 0.0056 0.0077

EKF 0.0181 0.0085 0.0096

5. Conclusions

For the purpose of better SOC estimation performance, the parameters of DP model
are identified online using the VRLS method. The ACKF model with online parameters
identification is employed to estimate the SOC in UDDS and DST conditions. The research
conclusion can be summarized as follows.

(1) By comparing the estimated terminal voltage of the Thevenin model and DP model,
we can conclude that on the one hand, the Thevenin model and DP model can be
adopted to the dynamic and complex condition. On the other hand, the DP model has
higher accuracy and better dynamic performance compared with the Thevenin model.

(2) Online parameter identification based on VRLS has an improvement for voltage
estimation over the offline parameter identification of the HPPC test, and it is shown
that the proposed VRLS has a more accurate parameter identification ability.

(3) Experiments based on the two typical dynamic operating cycles are used to evaluate
the superiority of the proposed algorithm compared with EKF and CKF in terms of
accuracy and stability. The maximum errors of ACKF are 1.85% in UDDS and 1.64%
in DST, the MAEs are 0.59% in UDDS and 0.39% in DST, and the RMSEs are 0.72% in
UDDS and 0.49% in DST. The estimation accuracy is relatively high and the maximum
error, MAE, RMSE of ACKF are all smaller than those of EKF and CKF. The results
show that the ACKF has a satisfactory performance in SOC estimation, and has better
accuracy and stability than EKF and CKF. To conclude, the VRLS-ACKF is capable of
obtaining accurate SOC estimation and terminal voltage prediction with satisfying
stability, which is suitable to implement in the real application. For future work, the
proposed algorithm will be applied in BMS to verify its practicality.
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Abbreviations

ACKF Adaptive cubature Kalman filter
AUKF Adaptive unscented Kalman filter
BMS Battery Management System
CKF Cubature Kalman filter
DP Dual polarization
DST Dynamic Stress Test
ECMs Equivalent circuit models
EKF Extended Kalman filter
EVS Electric vehicles
HPPC Hybrid pulse power characterization
KF Kalman filter
MAE Mean Absolute Error
OCV Open Circuit Voltage
PNGV Partnership for a New Generation of Vehicle
RLS Recursive least square
RMSE Root Mean Square Error
SOC State of charge
UKF Unscented Kalman filter
VRLS Vector forgetting factor recursive least squares
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