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Abstract: This study set out to extract the charging characteristics of an electrical vehicle (EV) from
massive real operating data. Firstly, an unsupervised learning method based on self-organizing
map (SOM) is developed to deal with the power supply side data of various charging operators.
Secondly, a multi-dimensional evaluation index system is constructed for charging operation and
vehicle-to-grid (V2G). Finally, according to more than five million pieces of charging operating data
collected over a period of two years, the charging load composition and characteristics under different
charging station types, daily types and weather conditions are analyzed. The results show that bus,
high-way, and urban public charging loads are different in concentration and regulation flexibility,
however, they all have the potential to synergy with power grid and cooperate with renewable
energy. Especially in an urban area, more than 37 GWh of photovoltaic (PV) power can be consumed
by smart charging at the current penetration rate of EVs.

Keywords: power supply side data; unsupervised learning; electric vehicle (EV); multi-scenario

1. Introduction

The construction and operation of charging infrastructures are not only fundamental to
the sustainable development of electrical vehicle (EV), but also the basis for vehicle-to-grid
(V2G) [1,2]. The analysis of EV load characteristics is essential for the planning and operation
of charging infrastructures and V2G, thus it has been studied widely in recent years.

The load characteristics of EVs are affected by various coupled factors such as energy
consumption, the habits of the users, and traffic condition, which leads to complexity of
the models. The model-driven methods were firstly employed. The space-time distribution
model of EV parking demand was established in [3], providing basis for simulation of
charging load curves through Monte Carlo method. Travel chain model was proposed
in [4,5], in order to analyze the temporal and spatial distribution of EV charging demands,
considering the influence of different factors on the power consumption of driving. The
charging model of EVs in residential areas was developed in [6], combining the regional
parking model areas with the state-of-charge distribution model. However, model-driven
methods require many assumptions so that the results can be easily idealized. Data-driven
methods are less restricted by hypotheses and have gradually received attention in the
study of EV load characteristics. Historical data of both traffic and weather were analyzed
in [7] to obtain different traffic scenarios, and EV charging behaviors were classified using
decision tree algorithm. Travel trajectories of Di-Di cars were adopted in [8] for data
mining. Temporal-spatial distribution of charging load in different date types and areas
were effectively predicted with a single charging model of EV. A data-driven methodology
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was presented in [9] aiming at obtaining power requirement through the observation of the
charging profiles of a fleet of EVs over one year. In recent years, load characteristics analysis
considering the impact of power-traffic coupling [8,10] and bounded-rational users [11–13]
have become a research focus. The travel path of EV was simulated in [10] with the purpose
of evaluating the impact of large-scale EVs on both traffic and power systems under the
constraints of the urban area road network. Based on the cumulative prospect theory, the
bounded rationality of user travel decision was described in [12] considering the dynamic
characteristics of the transportation network. The influences of users’ bounded rationality
on the load dispatching of charging stations were investigated in [13].

In recent years, some achievements have been made in the construction of Chinese
charging networks, with a large amount of operation data accumulated. To provide refer-
ences for the further development of charging infrastructures and the design of intelligent
charging systems, it is significant to conduct multi-dimensional characteristic analysis of
various EVs’ load under different scenarios. However, research to date has tended to focus
on special scenarios and EV types. Very few studies have employed massive amounts of
real charging data, which is crucial to both overall and elaborate analysis of large-scale
EVs’ charging load characteristics.

This study set out to explore the general method for analyzing charging load charac-
teristics based on massive data and provide suggestions to the construction and operation
of charging infrastructures. For this purpose, this paper utilizes more than five million
pieces of electrical energy supply data from various charging operators in a provincial
administrative area collected over a period of two years. A unsupervised learning method
based on self-organizing map (SOM) is adopted to cluster the data on power supply side.
A multi-dimensional evaluation index is constructed for charging operation and V2G. The
charging load composition and characteristics under different charging station types, daily
types and weather conditions are analyzed as well.

The following arrangements are as follows: Section 2 processes and expands the data
on the power supply side. Section 3 introduces the SOM based data clustering method,
multi-dimensional evaluation indicators of charging characteristics, and comprehensive
analysis scheme. Section 4 shows the analysis results under different scenarios. Section 5
summarizes the main conclusions of the full text.

2. Data Processing and Expansion
2.1. Basic Format and Data Cleaning

In this paper, a total of 1588 charging stations including bus charging stations (BCS),
highway charging stations (HCS), and urban public charging stations (UPCS) are selected
as the research objects, including a total of more than 5.8 million charging records collected
over a period of two years. The basic format of the data is shown in Table 1. In order to
protect the privacy of users and enterprises, the user and charging pile number and specific
location information of the charging station are hidden.

Table 1. Basic format of power supply side data.

Name of Charging Station Charging Start Time Charging End Time Energy Delivered/kWh

Bus Return Yard Charging Station
(Internal), Renmin West Road, ××City 2018-01-02 08:14:45 2018-01-02 08:48:28 33.64

Guangling Service Area Charging
Station, ××Highway, ××City 2019-01-01 03:32:08 2019-01-01 03:59:59 16.52

Charging Station in Parking Area of
Zhongwei Building, ××City 2019-10-08 21:48:26 2019-10-09 00:10:49 37.03

Let the charging station in the record i be named as Namei. TSi, TEi and Ei denote
the name, charging start time, charging end time, and the amount of energy delivered,
respectively. Data error may be generated when an EV is connected to a charging point and
during upload owing to unsuccessful charging, failure of measuring components, packet
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loss, and unknown network errors. Therefore, it is necessary to examine the original data
to remove invalid and abnormal data to avoid interference and improve analysis accuracy.
The data filtrating principles are as follows:

• Delete records that satisfy Ei = 0.
• Let TDi = TEi − TSi be the charging duration and records with too long charging

duration be deleted (TDi ≥ 24 h).
• The maximum charging output power is denoted as Pmax. Delete abnormal charging

records (Ei > PmaxTDi).

After screening, a total of 5.1 × 106 valid data examples were obtained, including
1,342,372 data examples from 2018 and 3,831,368 data examples from 2019. As the numbers
clearly demonstrate, the charging business has grown rapidly.

2.2. Data Expansion and Scene Classification

In order to perform a refined analysis of the load characteristics in different scenarios, the
expansion based on the original data information mainly includes the following four aspects:

• Service type. The service object in each record can be determined based on the text
information in Namei. If Namei contains ’bus’, it is determined to be a bus charging
service; if it contains ’service area’, it is then classified as a highway charging service;
if it does not contain any special characters, it is determined to be a general urban
public charging service.

• Weather condition. Combine the charging start date (‘year’, ’month’, and ’day’) with
the charging station location information in Namei, such as “××province, ××city,
××district”, the weather information at the time when each record is generated can
be obtained through the web information. The weather conditions are divided into
three categories: ’sunny’, ’cloudy’, and ’rain or snow’.

• Day type. According to the charging start date and the holiday/weekend information
from 2018 to 2019, the day type at the start time of each record can be obtained, that is,
working day or non-working day.

• Temporal data conversion. With known TSi, TEi and TDi can be calculated by using
the time function in MATLAB. In addition, the Hour, Minute, and Second properties
were extracted from TSi, and they were converted into floating point numbers that are
easy to statistically process.

After expanding the original data, 18 charging scenarios can be divided according to
three groups of status indicators: service type, weather condition, and day type, as shown
in Figure 1. Based on the SOM, the massive charging records are going to be clustered
through the three characteristic quantities of TSi and TEi, TDi. Before clustering, they are
standardized according to the maximum/minimum values of each characteristic. On this
basis, in-depth analysis of the charging load structure and characteristics in each scenario
are carried out.
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3. Clustering and Characteristic Index Calculation
3.1. SOM Clustering Algorithm

Since it is very difficult to observationally determine the initial categories according
to input variables (TSi, TEi, and TDi), given the significant amount of data, the unsuper-
vised method has to be employed. The SOM is one of the most successful methods of
unsupervised clustering, and can cope with non-linear correlations and map the input
n-dimensional spatial data to a two-dimensional plane while maintaining the original
topological relationship [14]. Since its introduction, it has achieved significant results
in customer classification [15] and power load curve analysis [16] An SOM consists of
an input and output layer. The clustering results are derived from the parallel distance
computations (from the input vector) to a number of neurons. The weight vector value is
independently adjusted to find the inherent characteristics of each input. The number of
neurons in the input layer n should be fewer than those in the output layer m. Therefore,
this study adopted a SOM to cluster charging records with unsupervised learning. The
basic SOM training procedures are as follows:

1. Initialize the neighborhood Nc(0) and learning rate functions Z(0); set stop conditions.
The area surrounding the winner neuron, which is calculated in next step, is called
the neighborhood Nc, and the neighborhood neurons are activated to varying degrees.
Nc is a function of the number of calculations, which decrease as it increases. Z affects
the weight correction magnitude. To control the training stability, it also decreases
with an increase in the number of calculations. The training ends when the maximum
iterations are reached.

2. Calculate the Euclidean distances between the p-th input sample Xp =
(
TSp, TDp, Ep

)T

and the weight vector Ωj =
(
ωj1, ωj2, ωj3

)T , where j = 1, 2, . . . , m. The output neuron
with the smallest distance is selected as the winner neuron.

3. According to the neighborhood and learning rate functions, the neighborhood neuron
weights are updated:

Ωj(k + 1) =
{

Ωj(k) + Z(k)×
[
Xp −Ωj(k)

]
Ωj(k)

j ∈ Nc(k)
j /∈ Nc(k)

, (1)

where k is the current number of calculations.
4. Determine whether all samples have been input: if complete, set k to zero and proceed

to Step 5; if not, update the neighborhood and learning rate, and return to Step 2.
5. Determine whether the iterations have completed: if completed, output the training

results; if not, return to Step 2.

Upon the completion of training, the clustering stage can begin. The weights remain the
same after training. For each input (i.e., charging record), the SOM will automatically find the
similar output neuron and assign the record to the cluster corresponding to that neuron.

3.2. Characteristic Index Calculation Method

Compared with traditional load, EV charging load can be utilized as an optimization
resource while considering its impact on the operation of charging stations and power
grid. This paper adopts peak load ratio, daily load duration ratio, adjustment flexibility,
valley filling potential, and synergy with renewable energy as the characteristic indicators
of different types of charging load. The calculation methods are as follows:

• peak load ratio TP and daily load duration ratio TC.

According to TSi, TEi and Ei, a total of 96 time periods in 24 h are taken at equal
intervals. Each charging record is converted into a discrete power value in each time
interval, as shown in Figure 2:
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Where Pi(t) is the load value generated during the interval t using constant charging
power, t = 1, 2, · · · , 96. When Si(t) is 1, the EV is in the charging connection state and can
be charged. The total load curve of the m-th type of charging record Lm(t) = ∑

i∈m
Pi(t). Tm

P

and Tm
C are:

Tm
p = 100%×

96
∑

t=1
sgn{Lm(t)− 0.9max[Lm(t)]}

96
∑

t=1
sgn{Lm(t)− ε}

, (2)

Tm
C = 100%×

96
∑

t=1
sgn{Lm(t)− ε}

96
, (3)

where ε is an infinitesimal quantity and sgn is symbolic function. The peak load is reached
and sgn{Lm(t)− 0.9max[Lm(t)]} = 1 when the load is higher than 90% of its maximum
value. When the load is not 0, sgn{Lm(t)− ε} = 1. Tm

P represents the ratio of peak load
to the duration of this load type. Tm

C is the duration of this load type during one day. The
larger the Tm

P , the more concentrated this load type is. The larger the Tm
C , the more even the

distribution of this load type for one day is.

• adjustment flexibility FR

FR reflects the time and power adjustment capability of this type of load during the
charging duration:

Fm
R =

PmaxTm
D

Em , (4)

where Em and Tm
D are the average charging capacity and charging duration of the m-th

charging load, respectively.

• valley filling potential VF

It is generally considered that 23:00 at night to 7:00 the next day is the valley period of
the power grid. Em

valley is recorded as the charging capacity in the valley period of the m-th
charging load type:

Vm
F = max

[
Em

valley

Em
total

]
, (5)
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where Em
total represents the total charging capacity of the m-th charging load type.

Em
valley = 1

4 ∑
t∈[1.28]∪[93,96]

Lm(t) is the result of optimization in which the charging state,

power and time constraints of each EV need to be met:

Lm(t) = ∑
i∈m

pi(t)

si(t) ≤ Si(t)
0 ≤ pi(t) ≤ si(t)Pmax

1
4

96
∑

t=1
pi(t) = Ei

, (6)

where pi(t) is the charging power in the interval t after orderly adjustment. si(t) is 0/1
variable and the EV is charging when it is equal to 1.

• synergy with renewable energy CN

The Kendall rank correlation coefficient can effectively measure the correlation be-
tween variables [17]. It is proposed to use the Kendall rank correlation coefficient to
measure the synergy between the charging load and the output of renewable energy:

Cm
N =

(
96
2

)−1

∑
u<v≤96

sgn{[Lm(u)− Lm(v)][Pnew(u)− Pnew(v)]}, (7)

where Pnew are the value of the typical output curve of wind or photovoltaic power at
each time interval. The Cm

N calculated by Lm(t) which is the sum of each EV’s charging
power in time domain without adjusting reflects the synergy of EV load and new energy
output under natural condition. Cm

N ∈ [−1, 1]. The closer its value is to 1, the closer the
positive correlation between the two. Under the charging constraints of each EV, with the
goal of minimizing the variance between the total load curve and the output value of the
renewable energy, the charging power of each EV is adjusted according to the following
objective function:

min
96

∑
t=1

[Lm(t)− P∗new(t)]
2, (8)

where P∗new is the value obtained by converting the new energy output curve based on
the maximum value of the charging load under natural condition. Cm

N calculated by the
optimized Lm(t) reflects the optimal synergy.

3.3. Load Characteristic Analysis Process

The load characteristic analysis process is shown in Figure 3. The SOM is trained
by a random part of the charging records and is used to cluster all the records, then the
proportion of each type of charging record in different scenarios (service type, weather
condition and day type) is analyzed.

Calculate TP, TC, FR, VF, and CN for each type of charging record according to the
method described in Section 3.2. Since data has high similarity within each group due to
a self-organizing clustering, in order to reduce the difficulty of optimization calculation,
2000 groups of data are randomly selected to represent each type, which are used as input
for the calculation of TP, TC, VF, and CN .
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4. Results of Multi-Dimensional Analysis of EV Load Characteristics

We randomly extracted 20,000 charging records from 2018 and 2019 to train their
SOMs, respectively. The results are shown in Figure 4. The spatial location and topological
connection of the neurons in the output layer of the training results are basically the
same, indicating that although the charging business had achieved significant growth from
2018 to 2019, the data structure has not changed, which means the internal characteristics
remained consistent. Therefore, this paper selected the charging records of 2019 with a
larger amount of effective data to conduct further research on the load characteristics.
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4.1. Cluster Analysis

More than 3.8 million charging records in 2019 are clustered using the trained SOM
and are divided into 9 load types. The results are displayed in Figures 5 and 6.
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Load types 4, 6–9 account for nearly 80% of all charging records. The difference in the
distributions of charging capacity and duration, of which the average values are between
21 and 24 kWh and 1.1 to 1.7 h, are not obvious. However, there are big differences in the
distributions of charging start time, which are concentrated around 8:21, 21:57, 11:33, 14:57,
and 18:23, respectively. Load types 2, 3, and 5 have larger charging capacity. Especially,
load type 3 has an average charging power of 141.46 kWh. Load type 1 is concentrated
around 2:00 in the morning, of which the average charging duration is more than 2 h with
no particularly high charging capacity.

4.2. Characteristics of Each Load Type
4.2.1. Peak Load Ratio and Daily Load Duration Ratio

The calculation results of Tp and Tc are shown in Figure 7. Load types 4, 6–9 of which
Tp and Tc are distributed around 20% have relatively similar characteristics. Load types 2,
3, and 5 have a relatively large duration while peak loads account for relatively small
percentage. Load types 1 and 4, 6 to 9 have relatively similar small Tp, which means the
load concentration is weaker.
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4.2.2. Adjustment Flexibility and Valley Filling Potential

The calculation results of FR and VF are shown in Figure 8. Except for load types 2, 3,
and 5, all types of loads have good adjustment flexibility, which are up to more than 2 times.
The adjustment flexibilities of load types 1, 6, and 9 have reached more than 4 times, that is,
when charging with rated power, only 1/4 of the actual charging connection time can meet
the charging demand. High adjustment flexibility brings large adjustment space of charging
time and power. Since the duration of load types 1 and 6 of which the adjustment flexibility
is large are more compatible with the grid valley period, the valley filling potentials of the
two are the largest and the charging capacity of load type 1 can be 100% obtained during
the valley period.
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4.2.3. Synergy with Renewable Energy

Calculate CN between different types of loads and wind power (WP)/PV output
before/after adjustment. The results are shown in Figure 9. Before adjustment, load
type 2 has good natural coordination with PV, with a correlation coefficient of 0.83. Load
type 1 has good natural coordination with WP, and the correlation coefficient is 0.60. After
adjustment, the synergies of various types of loads with PV/WP increased to a certain
extent. It can be found that the displacements of load types 1 and 4 on the horizontal
axis through adjustment are significant, indicating a greater potential for improvement in
synergy with PV. However, load types 3, 5, 6, 8, and 9 have significant displacements on
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the horizontal axis, indicating that they have greater potential for improvement in synergy
with WP.
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4.3. Comparison of Different Scenarios
4.3.1. Load Composition in Different Scenarios

The load compositions in different scenarios are shown in Figure 10. The load composi-
tions of different charging service types are obviously different, while the load compositions
of the same charging station type under different weather conditions and day types are
basically similar and can pass the consistency test.
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The similarity of load compositions of the same charging service type, under different
weather conditions and day types shows the consistency of its inherent characteristics. The
daily average number of charging records in different scenarios is shown in Table 2. From
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the difference in the number of records in different scenarios, the following conclusions
can be drawn:

• The number of charging behaviors in HCS is much smaller than BCS and UPCS. The
application areas of EVs are mainly in the interior of the city.

• BCS and UPCS generally charge more on working days than non-working days, while
HPCS have a larger charging capacity on non-working days. The reason is that the
rigid travel behaviors in the city on non-working days has been significantly reduced.
The proportion of intercity-travel will increase in non-working day, resulting in a
corresponding load increase.

• On working days, there are more charging records for different types of charging
stations in rainy and snowy weather conditions. On the one hand, bad weather has
led to an increase in the average power consumption of EVs, on the other hand, it
has increased the users’ dependence on cars under the rigid travel demand. On
non-working days, bad weather will reduce users’ flexible travel needs.

Table 2. Daily average number of charging records under different scenarios.

Rain or Snow Sunny Cloudy

Working Day Non-Working Day Working Day Non-Working Day Working Day Non-Working Day

BCS 397.97 317.19 287.25 220.87 318.61 327.46
HCS 53.85 57.55 49.24 63.09 49.43 65.63

UPCS 503.15 420.88 424.85 390.05 438.18 433.21

4.3.2. Comparison of Characteristics of BCS, HCS and UPCS

The proportions of different charging service types in each load type are shown in
Figure 11. Based on the comparison with Figure 10 and the analysis of the characteristics
of different load types in Sections 4.1 and 4.2, the following conclusions can be drawn:

• Load types 2, 3, and 5 with relatively stable distributions and large average charging
capacities are mainly composed of bus charging loads. The total number of charging
records and charging capacity are 25.54% and 58.69% of the bus load, respectively.
Load type 2 and PV have better natural synergy characteristics, and load types 3 and 5
have better regulation and synergy characteristics with WP. Load type 6 is also mainly
composed of bus charging load, which accounts for 18.75% of the bus charging records
and 10.42% of the charging capacity.

• The load composition types of HCS and UPCS are similar. The main difference is that
the HCS charging loads are more concentrated on load types 7 and 8 with shorter
duration and less adjustment flexibility.
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4.3.3. V2G Capabilities of Different Types of Charging Stations

ThroughV2G, the potential of large-scale EVs in cutting peaks, filling valleys, and
coordinating new energy consumption can be brought into play. According to the load
structure and characteristics of different types of charging stations, the V2G capacity under
current conditions can be calculated.

As shown in Figure 12, the V2G capacities of BCS and UPCS are much higher than
that of HCS, which can provide about 4.51 GWh/year and 7.56 GWh/year of valley filling
capacity, respectively. Before the smart charging adjustment, the BCS and UPCS can
consume about 19.64 GWh and 17.92 GWh of PV, respectively, which can be increased by
about 25% after adjustment. In contrast, smart charging has more room for promoting WP
consumption, and it can reach more than 7 times the original consumption after adjustment.
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5. Conclusions

Unsupervised learning algorithm was adopted in this paper to analyze a total of more
than 5 million charging data. Multi-dimensional evaluation indicators for the charging
load characteristics were proposed. The main conclusions are as follows:

• The load structure and characteristics of the same charging service type (BCS, HCS,
UPCS) under different weather conditions and day types are stable and consistent,
which provides benefit for infrastructure planning and smart charging scheduling
based on charging behavior analysis and load forecasting.

• The charging loads are closely coupled with the user’s travel behavior. The impact
of weather conditions on the amount of charging load depends on the necessity of
travel. On working days, bad weather will lead to an increase in the charging load
and a decrease on non-working days.

• BCS has relatively stable total load curves and a large amount of charging loads
concentrated at night, resulting in good valley filling capacity and the ability to absorb
WP at night.

• The peaks of charging load in BCS and HCS are relatively concentrated, and the
volatility of the load curve is large, which brings challenges to the economic and safe
operation of charging stations. Compared with HCS, UPCS has longer load durations
and greater adjustment flexibility.

• In different scenarios, EVs have the potential to synergize with the power grid and
renewable energy sources, especially in cities. Smart charging adjustment can greatly
increase the consumption of PV and WP by EVs.
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