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Abstract: Permanent magnet torque motor (PMTM) is widely used in aerospace, computer numerical
control (CNC) machine tools, and industrial robots with many advantages such as high torque density,
strong overload capacity, and low torque ripple. With the upgrading of industrial manufacturing,
the requirements for the performance of torque motors have become more stringent. At present,
how to achieve high output torque and low torque ripple has become a research hotspot of torque
motors. In the optimization process, it is necessary to increase the output torque while the torque
ripple can be reduced, and it is difficult to get a good result with the single-objective optimization. In
this paper, a multi-objective optimization method based on the combination of design parameter
stratification and support vector machine (SVM) is proposed. By analyzing the causes of torque
ripple, the output torque, efficiency, cogging torque, and total harmonic distortion (THD) of back
electromotive force (EMF) are selected as the optimization objectives. In order to solve the coupling
problem between the motor parameters, the calculation formula of Pearson correlation coefficient is
used to analyze the relationship between the design parameters and the optimization objectives, and
the design parameters are layered ac-cording to the sensitivity. In order to shorten the optimization
cycle of the motor, SVM is used as a fitting method of the mathematical model. The performance
between initial and optimal motors is compared, and it can be found that the optimized motor has a
higher torque and lower torque ripple. The simulation results verify the effectiveness of the proposed
optimization method.

Keywords: permanent magnet torque motor (PMTM); multi-objective optimization; design parame-
ter stratification; SVM

1. Introduction

With the in-depth research of permanent magnet materials, permanent magnet mate-
rials with excellent performance have been invented, which can improve the performance
of permanent magnet motors [1]. In order to improve the performance of the motor, re-
searchers have done a lot of research work. One type of method is to improve the topology
of motors, such as: skewed slot [2], fractional slot winding [3], offset asymmetric rotor
poles [4], etc. Another type of method is to improve the design parameters of motors
through optimization methods to achieve the purpose of improving the electromagnetic
performance of motors. Motor optimization is an important research topic in the field
of motors. Because the traditional single-objective optimization method cannot meet the
needs of motor optimization, researchers have explored the optimization method of the mo-
tor for many years. At present, the multi-objective optimization method of motors is widely
used in the field of motor optimization. Taguchi method is proposed by a Japanese quality
control expert, and this method is an optimization method based on orthogonal experiment
and signal to noise ratio [5,6]. Taguchi method is used to select the best combination of
design parameters to improve the electromagnetic performance of motors [7–9]. With the
development of artificial intelligence, researchers have gradually introduced optimization
algorithms such as genetic algorithm, particle swarm algorithm, and bee colony algorithm
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into process of motor optimization [10–13], and these algorithms have a better search ability
than Taguchi.

In the process of motor optimization, a mathematical model needs to be used. This
model is used to describe the relationship between the optimization objective and the
design parameters, and it is taken as the optimization objective function. The finite element
model is generally used, and the development of finite element software in the field
of motor design is becoming mature, such as Maxwell, Motor CAD, Flux, etc. These
software integrate intelligent optimization algorithms such as particle swarm algorithm and
genetic algorithm, which can be directly called during the motor optimization process [14].
However, finite element simulation needs to consume a lot of simulation time, and with
the increase of motor design parameters, the time consumed increases exponentially. Some
researchers used response surface model instead of finite element model, and have achieved
certain results [15–18], but the number of design parameters that can be fitted by response
surface method is relatively small. There are many design parameters in PMTM, and
the coupling relationship between design parameters and optimization objectives also
increases the difficulty of motor optimization.

To solve these problems, a multi-objective optimization method based on the combi-
nation of design parameter stratification and support vector machine (SVM) is proposed.
Different design parameters have different sensitivities for different optimization objectives.
It is unreasonable to fit the mathematical model without distinguishing the design parame-
ters, which can increase the simulation time and reduce the accuracy of the model [19,20].
In this paper, idea of design parameter stratification is introduced, and the sensitivity
of each design parameter to different optimization objectives is calculated. The design
parameters are divided into different levels according to the sensitivity. SVM is introduced
into the fitting process of the mathematical model, and the mathematical model obtained
by the SVM is used to replace the finite element model to complete the subsequent motor
optimization, which can shorten the simulation time and the motor optimization cycle.
SVM is an intelligent algorithm based on statistics and the principle of structural risk
minimization [21,22]. Because of its kernel function, SVM has a strong nonlinear fitting
ability. The relationship between motor design parameters and optimization objectives
is non-linear, and SVM can be used to solve this problem. By using SVM, a relatively
accurate mathematical model can be quickly obtained. The particle swarm algorithm has a
strong ability to find optimization, fewer parameters need to be adjusted, and the algorithm
converges quickly, so it is widely used in various optimization fields, and particle swarm
will be used as the search algorithm [23,24].

In this paper, in order to reduce the torque ripple of the torque motor and shorten the
optimization cycle of the motor, this paper proposes a multi-objective optimization method.
After determining the optimization objectives, first, the Pearson correlation coefficient
calculation formula is used to obtain the sensitivity of each parameter to the optimization
objectives, and design parameters are classified. Then, the optimization based on SVM
and FEA is completed. The simulation results verify that the optimization method can
improve torque performance of PMTM, and the optimized motor performance can meet
engineering needs.

2. Materials and Methods
2.1. Determination of Optimization Objectives
2.1.1. Structure of the PMTM

The design of motor is the premise of motor optimization. By comparing perfor-
mance of different poles and slots, the number of poles and slots of the motor are finally
determined to be 16 and 18. The model structure of the PMTM proposed in this paper
is shown in Figure 1. In order to reduce torque ripple, bread-shaped magnetic pole and
concentrated fractional slot windings are adopted in the motor. According to relative
theory and experience of motor design, the design of the PMTM is completed. The design
parameters and initial dimensions of the PMTM are shown in the Table 1.
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Table 1. Parameters and initial values of the PMTM.

Symbol Quantity Initial Value

T_MAG/◦ Angle of PM 20
H_MAG/mm Thickness of PM 4

GAP/mm Length of air gap 0.5
W_T/mm Width of stator tooth 10

H_SLOT/mm Depth of slot 15
SO/mm Width of slot open 1

H_SO/mm Height of slot open 0.8
H_PS/mm Height of pole shoe 1.5

OFFSET/mm Magnetic pole eccentricity 20
COIL Turn of coil 60

2.1.2. Analysis of Torque Ripple

Torque ripple is an important factor that affects control accuracy of servo systems,
and it is also easy to cause permanent magnet motor vibration and mechanical noise. If
the situation is serious, it will affect the reliability of the motor. Smooth motor torque is
required for most applications. Suppression of torque ripple is an important content in
the design of high-precision permanent magnet motor. The motor torque ripple is shown
as [25]:

Trip =
Tmax − Tmin

Tavg
× 100% (1)

where Trip is motor torque ripple, Tavg is the average value of output torque, Tmax the
maximum value of output torque, Tmin is the minimum value of output torque. Due to
problems of meshing, the finite element software has the problem of non-convergence of
a certain unit, which can cause inaccurate measurements of the maximum or minimum
value. Therefore, it is necessary to analyze the cause of motor torque ripple and find out
the substitute index of torque ripple. The torque formulas in permanent mag-net motor are
as follows [26]:

T = Tcog + Tem

Tem = Np(ψdiq − ψqid) = Np

[
(ψ f diq − ψ f qid) + (Ld − Lq)idiq

]
Tpm = Np(ψ f diq − ψ f qid)
Tr = Np(Ld − Lq)idiq

(2)
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where T is output torque of the motor, Tcog is cogging torque, Tem is electromagnetic
torque. Np is the number of pole pairs of the motor, Tpm is permanent magnet torque, Tr is
reluctance torque. After the above analysis, it is easy to know that torque ripple is related
to cogging torque, harmonics of permanent magnets, and reluctance torque.

Because the research object of this paper is a surface mount motor, its reluctance torque
can be ignored, and THD of no-load back EMF can reflect the sine of the magnetic density
waveform. In summary, output torque, THD of no-load back EMF, and cogging torque
are selected as optimization objectives in the optimization of the PMTM. By optimizing
the design parameters, these objectives are improved, and the purpose of improving the
torque performance of the motor can be achieved.

2.2. Multi-Objective Optimization
2.2.1. Sensitive Analysis

As mentioned above, there are many design parameters in the PMTM. The sensitivity
of each design parameter to different optimization objectives is different. When the number
of design parameters is too large, the accuracy of the surrogate model can be decreased. In
order to analyze the relationship between design parameters and optimization objectives,
this paper uses orthogonal experiments to obtain data, and the Pearson correlational
coefficient is used to perform the sensitivity analysis [19,20]. It can be calculated as:

ρYi ,Xi =
N∑ YiXi −∑ Yi∑ Xi√

N∑ Y2
i − (∑ Qi)

2
√

N∑ X2
i − (∑ Xi)

2
(3)

where Yi is the ith optimization objective, Xi is the design parameters, and N is sample size.
Thus, the sensitivity of each parameter to the objectives is shown in Figure 2. It can be

noted that the sensitivity of each parameter to the objectives varies greatly, and T_MAG,
GAP, H_MAG, W_T, and COIL have great influence on torque and effectiveness. SO, H_PS,
OFFSET, and H_SO have little influence on torque and effectiveness, but they are sensitive
to Cogging and THD.
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According to the different sensitivities of design parameters to the optimization
objectives, the design parameters are divided into two levels, as shown in the following
Tables 2 and 3. The design parameters can be divided into different levels according
to the sensitivity of the parameters to the optimization objectives. Because the primary
requirement for the motor is to ensure the output torque, the optimized parameters in
the first level are sensitive to efficiency and output torque. The parameters of the second
level are sensitive to cogging torque and THD. The reason for this arrangement is also
that the accuracy of the surrogate model of cogging torque and THD is slightly lower. In
the second-level optimization, model is not used, and the finite element method is used
to obtain the relationship between the optimization objective and the parameters. Thus,
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a double level optimization method is proposed in this paper, and the flowchart of the
multi-objective optimization is shown in Figure 3.

Table 2. Parameters of the first level.

Symbol Ranges

T_MAG/◦ [17, 20]
H_MAG/mm [4.5, 6.5]

GAP/mm [0.5, 1.2]
W_T/mm [9.5, 12.5]

H_SLOT/mm [14, 16]
COIL [63, 67]

Table 3. Parameters of the second level.

Symbol Ranges

SO/mm [0.5, 1]
H_SO/mm [0.3, 0.7]
H_PS/mm [1.5, 2.5]

OFFSET/mm [20, 40]
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2.2.2. Optimization of First Level

Motor optimization is a non-linear problem. There is a non-linear relationship between
design parameters and motor performance. Traditional statistical methods cannot guaran-
tee the accuracy of the proxy model. In this paper, SVM is introduced for the optimization
of PMTM, and the model can be obtained by SVM.

The initial application of SVM is in the field of sample classification. When some
sample points cannot be linearly separated in low-dimensional space, they are mapped
to high-dimensional space through a kernel function to achieve the purpose of linear
separability of samples. Due to the kernel function, SVM has a strong data-fitting ability. In
the paper, SVM is used to fit the data and the relationship between the design parameters
and the optimization objective can be obtained. The SVM formula is expressed as [25]:

f (x) =
n

∑
i=1

ωi · K(xi, x) + b∗ (4)
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where ωi is the regression parameter vector, K(x) is kernel function. n is the number of
support vector, xi is support vector, x is predicted vector, b* is the Bias factor. The structure
of SVM is shown in Figure 4.
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The core of the SVM is the kernel function, and the main types of kernel functions
of SVM are linear kernel function, polynomial kernel function, Gaussian radial basis
kernel function, exponential radial basis kernel function, and multilayer perceptron kernel
function respectively, which are shown as [27]:

K(xi, x) = xTxi
K(xi, x) =

(
xTxi + r

)p

K(xi, x) = exp(− ‖x−xi‖2

σ2 )

K(xi, x) = exp(− ‖x−xi‖
σ2 )

K(xi, x) = tanh
(
γxTxi + r

)
(5)

where p, r, γ, and σ are the parameters of kernel function. The Gaussian radial basis kernel
function has the best generalization performance, so in this paper it is selected as the kernel
function in SVM.

The parameters of first level are sensitive to torque and efficiency, and some of the
parameters such as length of air gap, has an influence on cogging and THD. For these
parameters, the mathematical model can be obtained by using SVM. First, orthogonal
experiment is used for the complete collection of sample data of training set, and then SVM
is used to obtain SVM model of the optimization objectives, which can be represented as:

Trated(x) =
n
∑

i=1
ωi_Trated · K(xi, x) + b∗Trated

E f f iciency(x) =
n
∑

i=1
ωi_E f f iciency · K(xi, x) + b∗E f f iciency

THD(x) =
n
∑

i=1
ωi_THD · K(xi, x) + b∗THD

Cogging(x) =
n
∑

i=1
ωi_Cogging · K(xi, x) + b∗Cogging

(6)
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where x is the parameter of the first level, Trated(x) is output torque of the SVM model,
Efficiency(x) is the efficiency of the SVM model, THD(x) is the THD of back EMF SVM
model, and Cogging(x) is the cogging torque of the SVM model.

After obtaining the SVM model, the usability of the model needs to be verified. The
finite element method is used to obtain 15 sets of test data, which are compared with the
data of the SVM model, and the 15 sets of data are shown in Table 4.

Table 4. Parameters of the first level.

Label Trated Efficiency THD Cogging

1 36.38160 84.1 0.81 305.9
2 47.08480 83.6 1.32 122.8
3 39.11010 80.4 1.13 64.3
4 37.254500 84.1 0.86 245.5
5 37.88260 84.4 1.02 132.2
6 44.4506 80.2 1.37 57.1
7 44.10130 87.4 1.01 355.8
8 46.83510 83.2 1.31 351.0
9 45.30450 80.7 1.29 42.5
10 49.96070 83.5 1.11 246.1
11 42.90750 87.6 0.74 351.7
12 39.02500 86.80 1.23 146.4
13 42.056800 84.60 1.54 63.2
14 40.81640 84.8 1.42 217.7
15 43.95690 88 0.97 420.3

The formula of mean square error and determining factor is expressed as:

MSE = 1
l

l
∑

i=1
(ŷi − yi)

2

R2 =

(
l

l
∑

i=1
ŷiyi−

l
∑

i=1
ŷi

l
∑

i=1
yi

)2

(
l

l
∑

i=1
ŷi

2−
(

l
∑

i=1
ŷi

)2)(
l

l
∑

i=1
yi

2−
(

l
∑

i=1
yi

)2)
(7)

where MSE is the mean square error, R2 is the determining factor, l is the number of
samples in the test set, yi is the true value of the ith sample, and ŷi is the predicted value
of the ith sample. The value of MSE and R2 can be used to judge the accuracy of SVM
models. According to the above formula, MSE and R2 can be calculated and be shown in
the following Table 5.

Table 5. Parameters of the first level.

Symbol MSE R2

Trated 0.002 0.991
Efficiency 0.001 0.994

THD 0.012 0.893
Cogging 0.011 0.914

It can be seen from the data in the table that the accuracy of SVM model of output
torque and efficiency is very high, these SVM models are almost consistent with the finite
element models. However, the accuracy of SVM model of THD and cogging torque is
relatively poor. Due to the existence of slots, the change trend of the air gap permeability
can become more diverse, and the high-precision model cannot be fitted when the amount
of data is insufficient.

The data of the finite element model is compared with the data of the SVM model,
and the results are shown in Figures 5–8. The x-axis in these figures is the serial number
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of 15 sets of data. It can be noted that there are differences between the finite element
model and the SVM model in individual values, but the trend of the predicted value is
consistent with the trend of the actual value. In engineering, the values of optimization
objective serve as a reference, and the design parameters are focused on, so these models
are available. In this paper, the parameters that have a strong influence on cogging torque
and THD, but the parameters that have little influence on torque and efficiency are placed
in the optimization of the second level.
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After getting four SVM models, according to the actual needs of performance, a multi-
objective optimization mathematical model can be established, and can be represented as:

max F(X) = ( f1(X), f2(X), f3(X)) X ∈ Rn

f1(X) = Trated(X)
f2(X) = 1

THD(X)
f3(X) = 1

Cogging(X)
f4(X) = Efficiency(X)

s.t. Trated(X) > 38
Efficiency(X) > 82

THD(X) < 1.7
Cogging < 250

(8)

where X is the parameter, f 1(X) is the fitness function of torque, f 2(X) is the fitness function
of cogging torque, f 3(X) is the fitness function of THD, f 4(X) is the fitness function of
efficiency. Trated(X), THD(X), Cogging(X), and Efficiency(X) are the SVM model of four
optimization objectives respectively.

In this paper, particle swarm algorithm is used to optimize the multi-objective opti-
mization mathematical model. The PSO algorithm is expressed as follows:

vk+1
i = ωvk

i + c1r1(pk
i − xk

i ) + c2r2(pk
g − xk

i )

xk+1
i = xk

i + vk+1
i

ω = ωmax − k(ωmax−ωmin)
kmax

(9)

where ω is the weight of inertia, c1 and c2 are self-learning factor and social learning factor,
r1 and r2 are two random numbers respectively, ωmax and ωmin are the maximum and
minimum values of the inertia weight respectively, k and kmax are the current number of
iterations and maximum number of iterations respectively.

In the particle swarm algorithm, the inertia weight is a quantity that reflects the
inheritance of the particle to the velocity. Although the convergence speed of ordinary
particle swarm algorithm is fast, it is easy to fall into the local optimum. Changing the
value of the inertia weight in the iterative process is beneficial to improve the optimization
ability of the algorithm. In the improved particle swarm algorithm, the maximum and
minimum inertia weights are introduced to achieve the above effects. In the early iteration
of the algorithm, the inertia weight is larger, and the particle speed of the particle swarm is
faster, so the algorithm’s global search ability is stronger. The inertia weight is higher in the
later iteration of the algorithm, and the particle speed of the particle swarm is slower, so
the local search ability of the algorithm is stronger. It balances the global search and local
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search in the process of the whole algorithm, and the values of the relevant parameters of
the particle swarm are shown in the following Table 6.

Table 6. Parameters of the first level.

Parameter Value

Size 30
kmax 100
ωmax 1
ωmin 0.8

c1 1.5
c2 1

According to obtaining the multi-objective model and the search algorithm, the pro-
gram of motor optimization of the first level can be written. The pareto front of the
multi-objective optimization is obtained, as is shown in Figure 9. According to the re-
quirements and processing conditions, the values of the parameters of the first level are
determined. The optimization result of first level is shown in Table 7.
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Table 7. Optimization results of the first level.

Symbol Initial Value Optimized Value

T_MAG/◦ 20 18.6
H_MAG/mm 4 5

GAP/mm 0.5 1
W_T/mm 10 12.2

H_SLOT/mm 15 14.5
COIL 60 65

Trated/N·m 38.2 41.0
Trip/% 3.7 2.5

2.2.3. Optimization of Second Level

After finishing optimization of the first level, parameters of the first level are kept
unchanged and the second level optimization is carried out. The parameters of second
level have little influence on torque and efficiency, but they are sensitive to cogging torque
and THD. The finite element method is used to obtain the relationship curve between the
optimization objective and the design parameters, as shown in Figure 10.
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Figure 10. Variation curve of cogging torque and THD with various parameters. (a) Variation curve of cogging torque and
THD with SO. (b) Variation curve of cogging torque and THD with H_PS. (c) Variation curve of cogging torque and THD
with H_SO. (d) Variation curve of cogging torque and THD with OFFSET.

Both THD and cogging torque have an optimal value in the optimization process of
H_PS, so H_PS is selected as 2 mm. H_SO and SO are taken at the minimum value of THD
curve, and H_SO and SO are determined to be 0.5 mm and 0.75 mm respectively. If the
OFFSET is too large, the magnetic flux density will be affected. When OFFSET is 40 mm,
the output torque is lower than the requirements of technical index, so OFFSET is selected
as 30 mm. The optimization result of second level is shown in the Table 8.

Table 8. Optimization results of the first level.

Symbol Initial Value Optimized Value

SO/mm 1 0.75
H_SO/mm 0.8 0.5
H_PS/mm 1.5 2

OFFET/mm 20 30
Trated/N·m 41.0 40.2

Trip/% 2.5 1.7

3. Results

Through the above optimization method, the multi-objective optimization of output
torque and torque ripple is completed. The optimized performance is compared with the
initial motor performance, as shown in Figures 11–13.
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Figure 11 shows the comparison of the amplitude of the no-load back EMF before and
after the optimization. It can be noted that the fundamental wave amplitude is increased
from 190.4 V to 194.5 V, which is beneficial to increase output torque of the PMTM. After
optimization, the THD is decreased from 2.06% to 1.02%, which proves that the sine of
the air gap flux density is improved. It is beneficial to reduce the torque ripple when
the motor is running under load. Figure 12 shows the comparison of the cogging torque
before and after the optimization, and cogging torque of the PMTM is reduced from initial
313 mN·m to 165 mN·m. Cogging torque is one of the main causes of torque ripple, so
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reducing the cogging torque of the motor also helps to reduce the torque ripple of the
motor. Figure 13 shows the waveform of output torque of the motor before and after the
optimization. Torque ripple of the motor is reduced from 3.7% to 1.7%, and output torque is
increased from 38 N·m to 40.2 N·m, which proves the rationality of the above optimization.

4. Conclusions

This paper proposes a multi-objective optimization method based on the combination
of design parameter stratification and SVM. The effectiveness of the proposed optimization
method is proved by simulation. The main conclusions are the following:

(1) Through the analysis of the causes of torque ripple, the optimization objectives
are determined. The simulation results show that the optimization of THD and
cogging torque is helpful to reduce torque ripple and improve torque performance of
the motor.

(2) Aiming at the coupling problem between parameters and performance of motor, the
Pearson formula is used to calculate the sensitivity of the design parameters for the
optimization objectives. The design parameters are divided into two levels, which
can achieve decoupling to a certain extent.

(3) Aiming at the long time-consuming problem of finite element simulation, SVM is
used to fit mathematical models which can replace the finite element models. The
models can have high accuracy and meet engineering needs.

(4) Compared with the initial design, the output torque of the motor becomes larger
and the torque ripple becomes smaller, which can prove the effective-ness of the
proposed method.
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Abbreviation

Symbol Unit
T_MAG ◦

H_MAG Mm
GAP Mm
W_T Mm
H_SLOT Mm
N_COIL turn
SO mm
H_SO Mm
H_PS Mm
OFFSET Mm
Trated Nm
Efficiency %
THD %
Cogging mN·m
Trip %
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