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Abstract: This paper is focused on the determination of real driving ranges for electric vehicles (EV’s)
and how it influences fuel consumption and carbon emissions. A precise method to evaluate the
driving range of an EV can establish the correct reduction in GEI amount, mainly CO and CO2, ejected
to the environment. The comparison of the daily driving range between an internal combustion
engine (ICE) vehicle and an EV provides a useful tool for determining actual fuel saved during a
daily trip and a method to compute carbon emissions saved depending on the type of ICE vehicle.
Real driving range has been estimated on the basis of a daily trip consisting of five different segments,
acceleration, deceleration, constant speed, ascent and descent, which reproduce the different types of
driving. The modelling has been developed for urban routes since they are the most common and
the most polluted environment where the use of electric vehicles is applied. The effects of types of
driving have been taken into account for the calculation of the driving range by considering three
main types of driving: aggressive, normal and moderate. The types of vehicle in terms of shape
and size as well as dynamic conditions and the types of roads have also been considered for the
determination of the driving range. Specific software has been developed to predict electric vehicle
range under real driving conditions as a function of the characteristic parameters of a daily trip.

Keywords: electric vehicle; driving range; driving conditions simulation; real conditions modelling;
software design; fuel consumption saving; carbon emissions reduction

1. Introduction

Electric vehicles are today’s main alternative to internal combustion engine (ICE)
vehicles. The transition from ICE to EV involves studying the retrofit method to improve
the transition from ICE to EV [1] and analyzing different factors such as life cycle assessment
(eLCA) [2] or life cycle costing (LCC) to decide whether or not the transition from ICE to EV
is suitable [3]. The comparison of the influence of the different types of car powered (EV, H2
or ICE) from decarbonized fuels is also under consideration in terms of adopting a future
model of road transportation [4]. This transition is especially interesting in urban routes,
since they do not produce carbon emissions, thus reducing pollution level and helping
to tackle climatic change [5,6]. The progressive replacement of ICE vehicles by hybrid
electric vehicles (HEV), plug-in electric vehicles (PHEV) and full electric vehicles (EV) has
contributed to reducing urban carbon emissions. Some studies have been devoted to the
analysis of the reduction in greenhouse gas emissions by using modelling processes where
ICE vehicles have been replaced by EV, HEV or FC vehicles in urban environments [7];
others use artificial intelligence (AI) applied to plug-in electric vehicles (PHEV) in order to
optimize vehicle configuration and its influence on the air pollution [8]. The benefits of a
transition to vehicle electrification onto the citizens’ health is another point of interest to
consider in a decision on the change of transport model in urban areas [9]. Furthermore, the
use of EV may influence the population distribution as well as the use of the land through

World Electr. Veh. J. 2021, 12, 166. https://doi.org/10.3390/wevj12040166 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-8421-6540
https://doi.org/10.3390/wevj12040166
https://doi.org/10.3390/wevj12040166
https://doi.org/10.3390/wevj12040166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12040166
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12040166?type=check_update&version=2


World Electr. Veh. J. 2021, 12, 166 2 of 21

changes in transport demand, type of energy use and emission profiles, which affects the
concentration of pollutant gasses and, thus, human welfare [10]. Simulation studies have
been conducted to estimate the reduction in gas emissions in highly concentrated urban
areas [11]. The influence of driving regulations onto some of the aforementioned issues
has also been studied [12]. Additional benefits derived from the use of EV, such as a lower
local environmental temperature, reduced AC energy requirements [13]. Finally, some
investigations have been focused on the minimization of global and local environmental
impact due to the use of EV, among other factors [14].

Currently, one of the main worries of electric vehicle manufacturers is the range of
autonomy, either for full electric vehicles, plug-in electric vehicles or hybrid electric vehicles.
Many studies have been devoted to this problem and are supported by public and private
research institutions, providing a database that is used by car manufacturers [15–17]. Private
companies develop their own tests to determine the driving range of an electric vehicle with
the subsequent different results; tests, however, have been normalized according to specific
protocols such as NEDC, WLTP, FTP-75 and JP-08 (see Section 3), although some studies
have developed a simulation process to take into account the different factors affecting
the electric vehicle range [18]. The driving range of an electric vehicle, however, is not a
constant value, as it depends on many factors such as driving mode [19,20], road type [21],
traffic environment [22], battery aging [23,24], etc.; therefore, the real value currently differs
from car manufacturer data.

Driving range depends on battery capacity provided that the aforementioned factors
remain unchanged, thus the higher capacity results in longer range. Nevertheless, battery
capacity is not constant since it evolves with discharge rate and power demand, resulting
in variable autonomy and driving range. The effects of the discharge rate have been widely
studied by many authors analyzing the different factors that modify battery capacity due
to operating conditions [25–29].

Although driving range has been improved in the last years, it continues to be the most
important challenge that researchers and the industry have to confront in order to make
electric vehicles competitive. By comparing driving ranges with internal combustion engine
vehicles, it is observed that the ones for EV are still low, especially in interurban routes.
Despite the fact that urban routes are relatively well covered by today’s EV autonomy, a
more adaptive performance of EV car batteries relative to real conditions can enlarge the
driving range, thus improving the time of single use.

Driving range is essential for computing carbon emission reduction in urban areas
since the evaluation of the emitting gases of greenhouse effects (GEI) such as CO and CO2
coming out from the exhaust pipes of ICE vehicles is directly related to the driving distance;
therefore, the precise knowledge of the driving range of an electric vehicle results in the
accurate determination of carbon emissions reduction.

The reduction in carbon emissions depends on the type of ICE vehicle [30,31]; however,
based on statistical data, an estimation of the average emissions by ICE cars in urban areas
may be useful for calculations [32–37]. Moreover, the use of electric vehicles also contributes
in reducing fuel consumption [38–40], which generates a preservation of the environment
since the production of fuel for urban traffic also provokes carbon emissions.

The use of full electric vehicles avoids carbon emissions as far as driving the vehicle
is concerned, although the electricity required to recharge the batteries produces carbon
emissions unless it is generated by renewable energy sources. Nevertheless, other electric
vehicles such as hybrid and plug-in vehicles cannot be considered emissions free since they
combine an electric engine and an ICE one [41,42].

On the other hand, electric vehicle engines last longer than ICE ones, which represents
a global lower emissions rate despite the electricity used for recharging batteries comes
from conventional polluting power plants [43].

The method of driving is another point that should be considered in the calculation of
the carbon emissions and fuel consumption, since an aggressive mode results in higher
fuel consumption and carbon emissions [44,45]. Therefore, fuel consumption saving can be
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determined from the driving mode and driving dynamic conditions, assuming that both
ICE and EV vehicles operate at equal conditions.

2. Fuel Consumption

Fuel consumption is a reference parameter that car manufacturers provide to estimate
the driving range of a vehicle. This parameter is given in different units depending on the
world zone; in many countries, it is expressed in liters of fuel per 100 km of driving trip
(l/100 km); however, the American market uses mileage (mpg) as the unit to express fuel
consumption, which indicates how many miles can be driven per gallon of consumed fuel.

The estimated driving range is calculated on the basis of the average fuel consumption,
which never occurs since the driving conditions vary along the driving trip; this situation
only results in an approximate driving range for any vehicle and a real range is never
known. In fact, the driving range is always lower than estimated from standard fuel
consumption, which is a very common complaint among the drivers; therefore, in order
calculate fuel consumption within high accuracy, it is necessary to apply real driving
conditions to the calculation.

The standard method for the estimation of the driving range in an ICE vehicle uses
the following expression.

DR = TV/FC (1)

DR, TV and FC represent driving range, fuel tank capacity and standard
fuel consumption.

In Equation (1), driving range can be expressed in kilometers or miles, depending on
the world zone. Fuel tank capacity is indicated in liters or gallons, and fuel consumption
should be given in liters per kilometer or gallons per mile. In this latter case, it is necessary
to use the inverse of the mileage value, which is the current method for expressing fuel
consumption in the English system (miles per gallon (mpg)).

If we take into consideration that the vehicle does not run at constant driving condi-
tions, we should divide the daily trip into segments, each one having specific conditions;
therefore, the above expression should be reformulated as follows:

DR = TV
n

∑
i=1

( fV)i
(FC)i

(2)

DR = TV
n

∑
i=1

( fV)i(FC)i (3)

where fV represents the volume fraction of the fuel tank that has been used for the specific
segment i, and n is the number of segments that the daily trip has been divided in.

Coefficient fV is not easy to measure within high precision, but accuracy can be
improved significantly if the appropriate sensor is used. Fuel consumption at every
segment, (FC)i, cannot be considered constant any longer, since driving conditions such as
acceleration, deceleration, constant speed, ascent or descent segment results in a variable
fuel consumption rate.

Fuel consumption at every segment can be determined using the following equation:

(FC)i =
ξi

CH
=

Piti
ηthCH

(4)

where ξi is the energy consumed in the segment i, Pi the required power, ti the driving
time and CH represents fuel combustion heat in J/kg or BTU/pound. ηth represents the
efficiency of the ICE.
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It should be noted that the fuel consumption is given in kilograms or pounds. In
the case where fuel consumption should be expressed in liters or gallons, Equation (3) is
transformed into the following:

(FC)i =
Piti

ρηthCH
(5)

where ρ represents fuel density in kg/L or pounds/gallon.
Fuel combustion heat depends on the type of fuel, gasoline or diesel and on fuel

composition; however, there is not much difference between the different fuels used for
ICE vehicles. Provided that the ICE efficiency and fuel combustion heat are known, the
fuel consumption only depends on the required power at every daily trip segment. Power
is determined from driving dynamic conditions, which can be established as a function
of the vehicle speed, tilt of the road, rolling factor between road and tires, shape and size
of the vehicle and acceleration rate. In the Theoretical Background Section, the dynamic
conditions for a vehicle are analyzed.

3. Driving Cycle Protocol

Among the many driving tests for EV, four are the most relevant: NEDC, WLTP, FTP-
75 and JC08. The first two have been developed for the European market while FTP-75 and
JC08 are for the American and Japanese markets. Some differences arise when comparing
one to another: NEDC (New European Driving Cycle) is mainly devoted for urban routes,
although it includes an extra urban driving cycle (EUDC); however, the protocol does not
match the real driving conditions in current days, as it is considered too conservative [46].
FTP-75 is also a driving cycle protocol that was developed firstly for urban routes but
updated for highway driving (HWFET), aggressive driving (SFTP US06) and optional air
conditioning tests (SFTP SC03) [47]. This test is more realistic than NEDC as it includes
some of the today’s driving modes in modern cities and developed countries.

The FTP-75 test, however, is developed for the American standard driving conditions,
for which its speed limits in many states are a little bit more conservative than European
ones [48]. The Japanese JC08 cycle [49] is even more conservative than FTP-75 as far as
speed limit is concerned; furthermore, the cycle duration is too short for current modern
driving times; therefore, it does not represent a real picture of a single mode of EV driving
for today’s drivers. Finally, WLTP (World Harmonized Light-Duty Vehicle Test Procedure)
shows up as a solution to fulfil the real requirements of power demand for an EV in modern
society, especially for interurban routes: although it is more realistic than the NEDC, the
WLTP protocol slightly differs from real driving conditions since the driving conditions
under which the protocol run on are based on average driving conditions, which are not
completely precise [50,51].

Advanced studies have developed a more accurate model to determine the fuel con-
sumption of electric vehicles under real driving conditions (RDC) [52,53], which improves
the accuracy of the determination but does not use online instant values; thus, it does not
reflect the specific driving mode associated with any driver. Other models use collected
data from real driving conditions [54]. The method provides real data from electric vehicles
under various driving conditions, including kinematics aspects and segmentation of the
driving trip, in a very similar way than proposed in the present paper, with the difference
that the proposed method includes online values of the critical magnitudes.

In summary, due to the specific driving mode that people adopt, a unique driving
protocol that could match the driving conditions does not exist; therefore, it is wise to
develop an adaptive model that can be applied to changes in driving mode as vehicles and
road conditions evolve. This can also be applied to urban routes where traffic regulations
may affect the speed limits or time interval of driving before stopping.

4. Modeling

The development of the new driving cycle modeling is based on the consideration
that the daily cycle is made up of a group of five steps: normal running at constant speed,
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acceleration, deceleration, ascending and descending road. These five steps are comple-
mented with the corresponding stops, when necessary, and the regenerative breaking
process during descent, if any.

The daily cycle, then, must be divided into these five steps, plus the corresponding
stops, in order to match the global time dedicated to the daily urban route. It is assumed
that the daily cycle is repeated day after day with no exception. Based on statistical data
and the current method of driving in a big city, for which the model has been developed, a
specific time has been assigned to every step no matter when the step has occurred during
the day. By conducting this, we have grouped all times as a step is produced into a single
event, thus simplifying the model development.

At every step, the car has driven a certain distance given by the dynamic conditions of
driving; the sum of all distance should provide the global distance of a daily route. In the
case where a specific cycle is reproduced, this global distance should match the standard
distance of the tested cycle.

5. Methodology

The project should develop a software that allows the user to know the remaining
driving distance by setting up the driving conditions from a menu on the control panel.
This menu should include the different options that correspond to the driving mode and
type of journey. Every option will correspond to the related algorithms that control the
driving process and how they influence the performance of the battery; thus, the amount
of extracted charge and energy and, consequently, the driving range can be known.

6. Theoretical Background

The autonomy of an electric vehicle depends on the energy consumption rate and
on the battery capacity that supplies energy for propelling the vehicle. The energy of
the battery is directly related to its operational voltage, while electric vehicle energy
consumption can be obtained from the demanded power and time of operation.

Since an electric vehicle does not maintain constant speed at all times, the average
value should be obtained using the following equation.

< v >=
1

t2 − t1

t2∫
t1

v(t)dt (6)

The speed distribution is not often known as it depends on driving conditions and
driving mode, which can be considered randomly variable.

Global force can be expressed as the following:

F = ma + kv2 + µmg + mg sin β (7)

where m is the mass of the vehicle, a the acceleration, k the effective drag coefficient, v the
vehicle speed, µ the rolling factor with the road and β the slope of the road.

The first term of the right hand of Equation (7) corresponds to the inertial effects; the
second is the drag force due to the wind; the third term refers to the rolling effect between
the vehicle tires and the road; and the last term accounts for the force at the tilted sections
of the road.

If we consider a daily trip, we should divide the entire route into segments since the
driving conditions, speed, acceleration and tilt are not constant at all times. In such a case,
the global force must be expressed as the following.

F =
n

∑
i=1

Fi =
n

∑
i=1

(
mai + kiv2

i + µimg + mg sin βi

)
(8)
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In order to simplify the analysis, a constant rolling factor can be considered, assuming
the type of road is the same for the entire trip. The effective drag coefficient depends on
type of flow and, thus, on Reynolds’ number, given by the following equation.

Re =
(
vLeq/ν

)
(9)

The parameter Leq represents the equivalent length of the cross section of the vehicle,
which is directly dependent on its shape and size, and ν is the kinetic viscosity of air.

If we assume that there is no significant change in vehicle speed along the route, the
Reynolds’ number can be considered constant since the air’s viscosity is also constant pro-
vided that there are no sudden changes in the air’s temperature, and Leq can be considered
constant because shape and size of the vehicle are not modified. In the case where temper-
ature effects are considered, air viscosity should be modified according to the following
expression.

ν =
[
8x10−5(tC)

2 + 0.0909tc + 13.21
](

x10−6m2/s
)

(10)

The Reynolds’ number in Equation (9) should be modified accordingly.
The drag force can be expressed as follows:

FD = kv2 =
ρCD A

2
v2 (11)

where the coefficient, CD, is dependent on Reynolds number, and the air density is depen-
dent on the temperature, as is described in the following.

ρ =
[
−3x10−8(tC)

3 + 2x10−5(tC)
2 − 0.0056tc + 1.3

](
kg/m3

)
(12)

The CD coefficient barely changes with the Reynolds number for low range of temper-
ature, as it can be observed in Figure 1; in fact, for a temperature change of 50 ◦C, the CD
coefficient adopts a maximum variation of 3%.

Figure 1. Drag coefficient vs. temperature.

Therefore, if the drag coefficient is considered constant for a relatively wide range
of temperature, 0 ◦C to 40 ◦C, it is only dependent on air density; thus, the global force
expression adopts the following form.

F =
n

∑
i=1

(
mai + ρ

CD A
2

v2
i + µmg + mg sin βi

)
(13)
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Power and energy demand to propel the vehicle are supplied by the battery; thus,
ξEV = ξbat. Converting mechanical power into energy is performed by using the following:

CV = F < v > ∆t (14)

from which we obtain the following:

CV =
n

∑
i=1

[(
mai + kv2

i + µmg + mg sin βi

)
< vi > (∆t)i

]
(15)

where the time interval, ∆ti, is the duration of every segment of the trip
Battery voltage decays as charge is extracted; thus, the voltage cannot be taken as a

constant in Equation (15). To determine the battery voltage at every time, we should know
the evolution with respect to time; for lithium batteries, which are the most widely used in
electric vehicles, the voltage decay follows a linear pattern that can be expressed as follows:

Vi = Vo − s(DOD)i (16)

where Vo is the initial voltage at a fully charged state, s is the slope of the voltage decay
line and DOD is the depth of discharge.

The parameter Vo depends on the type and structure of the battery, and it is currently
provided by the manufacturer; the slope is obtained from the technical data sheet of
the battery, which is also provided by the manufacturer, or experimentally determined.
Although the slope of the voltage decay line for any kind of batteries depends on the
discharge rate, in the case of lithium batteries, there is only a slight influence; thus, the
parameter s can be considered constant between certain limits.

By applying the aforementioned condition, we deduce the following:

s =
Vo − Vo f f

100
(17)

where Voff represents the cut-off voltage of the battery
The depth of discharge is defined as the fraction of charge extracted from the battery

related to its global capacity. Global capacity, also called nominal capacity, is the charge a
battery can deliver from a fully charged state until completely discharged for a reference
time, which is a value that is usually provided by the manufacturer (20 h most of the times).

Since the battery voltage decays for a time interval corresponding to a segment of the
trip, Equation (12) must be expressed in the following form.

C
(

Vo − Vo f f

)
=

n

∑
i=1

[(
mai + kv2

i + µmg + mg sin βi

)
< vi > (∆t)i

]
(18)

The energy from the battery is transmitted to the electric engine throughout a power-
train that operates at a specific efficiency level depending on the power train configuration.
A previous study on this subject [55] shows the efficiency of different powertrain sys-
tems operating at different efficiency values depending on the type of protocol, NEDC or
HWFET. Since NEDC is very conservative and it is no longer accepted as a reference, the
HWFET cycle is used. According to results from the study, the efficiency of the different
powertrain configurations is rather constant once the powertrain configuration is set up
(see Figure 2).
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By using a single motor configuration (SM), we can observe that there is not much
difference between the SM1ST or SM2ST configuration, with an average value of 85% for
the entire interval. Therefore, we can use this value as a reference parameter that modifies
the energy conversion from battery to electric engine, thus converting Equation (18) into
the following:

C
(

Vo − Vo f f

)
=

1
ηPWT

n

∑
i=1

[(
mai + kv2

i + µmg + mg sin βi

)
< vi > (∆t)i

]
(19)

where ηPWT indicates powertrain efficiency.
We then apply Equation (16) and obtain the following.

Cs(DOD)max =
1

ηPWT

n

∑
i=1

[(
mai + kv2

i + µmg + mg sin βi

)
< vi > (∆t)i

]
(20)

Battery capacity depends on temperature, although the dependence is a function
of type and structure of the battery; therefore, for the lithium-ion battery type used for
the simulation, we have recovered test results from a previous investigation where we
observed that the capacity of the battery remains almost constant for the entire range of the
temperature test (Figure 3) [56]
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The analysis of the results shown in Figure 3 indicates that the variation of battery
capacity in the temperature range from −10 ◦C to 60 ◦C is of 3.5%; therefore, we assume
that the battery capacity is constant.

Battery capacity is also dependent on the type of discharge rate; for a lithium battery,
this dependence has been found [57].

Ci = Cn

(
fi/ fre f

)
(21)

Ci represents the real capacity of the battery for a specific discharge rate, while Cn is
the nominal capacity at fully charge state. The f -factor is the so-called capacity correction
factor, and it is obtained from the following expression [26]:

fi = 0.9541(ti)
0.0148 (22)

fre f = 0.9541
(

tre f

)0.0148
(23)

where the reference discharge time, tref, is currently taken as 20 h, and the discharge time,
ti, can be calculated from the following equation.

ti = (Cn/Ii) (24)

By combining Equations (20)–(22), we obtain the following.

Ci = Cn

(
Ire f /Ii

)0.0148
(25)

Since a daily trip can be represented as a combination of several segments, each one
having specific dynamic conditions, average speed, acceleration and slope of the road, the
battery capacity cannot be assumed to have a unique value; therefore, Equation (12) must
be applied to every single segment of the daily trip, resulting in the following.

Cn

( Ire f

Ii

)0.0148

[Vo − s(DOD)i] =
1

ηPWT

(
mai + kv2

i + µmg + mg sin βi

)
< vi > (∆t)i (26)

By applying Equation (18), we obtain the following.

Cn

100

( Ire f

Ii

)0.0148(
Vo[100 − (DOD)i] + Vo f f (DOD)i

)
=

1
ηPWT

(
mai + kv2

i + µmg + mg sin βi

)
< vi > (∆t)i (27)

In general terms, the mathematical equation for the DOD coefficient can be expressed
as follows:

(DOD)i = Qi/Ci = Ii(∆t)i/Ci (28)

where Qi accounts for the extracted charge from the battery.
Since the discharge process is continuous, the DOD coefficient must be expressed in

terms of the cumulative charge extracted from the battery; thus, the following is the case.

(DOD)i =
i

∑
j=1

Qj

Cj
(29)

By using Equation (25), we obtain the following.

(DOD)i =
1

Cn

(
Ire f

)0.0148

i

∑
j=1

(
Ij
)1.0148

(∆t)j (30)

Now, by replacing in Equation (27), we obtain the following.
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1
100

(
1
Ii

)0.0148
[

100VoCn

(
Ire f

)0.0148
−
(

Vo − Vo f f

) i
∑

j=1

(
Ij
)1.0148

(∆t)j

]
=

1
ηPWT

(
mai + kv2

i + µmg + mg sin βi
)
< vi > (∆t)i

(31)

Equation (31) represents the energy balance at every single segment of a daily trip for
the electric vehicle.

7. Electric Vehicle Driving Range

The range of an electric vehicle, based on a daily trip, can be defined as the maximum
number of days the electric vehicle can use the battery before recharging is required. By
using the expression for daily energy consumption, ξday, which is given by the following:

ξday =
1

100

(
1
Ii

)0.0148
[

100VoCn

(
Ire f

)0.0148
−
(

Vo − Vo f f

) i

∑
j=1

(
Ij
)1.0148

(∆t)j

]
1

ηPWT
(32)

We can obtain the autonomy from the following equation.

Taut =
CVηPWT

1
100

(
1
Ii

)0.0148
[

100VoCn

(
Ire f

)0.0148
−
(

Vo − Vo f f

) i
∑

j=1

(
Ij
)1.0148

(∆t)j

] (33)

Equation (33) indicates that the lower the powertrain efficiency, the shorter the autonomy.
Nevertheless, the battery capacity and voltages do not remain constant as the discharge

process is occurring; therefore, the CV product must be expressed as follows.

CV =
n

∑
i=1

CiVi =
n

∑
i=1

[
Cn

(
Ire f /Ii

)0.0148
][Vo[100 − (DOD)i] + Vo f f (DOD)i

100

]
(34)

By replacing Equation (33), we obtain the following.

Taut =

n
∑

i=1

[
Cn(Ire f /Ii)

0.0148]Vo

100− 1

Cn(Ire f )
0.0148

i
∑

j=1
(Ij)

1.0148
(∆t)j

+Vo f f
1

Cn(Ire f )
0.0148

i
∑

j=1
(Ij)

1.0148
(∆t)j

(
1
Ii

)0.0148
[

100VoCn(Ire f )
0.0148−(Vo−Vo f f )

i
∑

j=1
(Ij)

1.0148
(∆t)j

] ηPWT (35)

Equation (32) provides the range of the electric vehicle on a daily trip basis as a function
of characteristic parameters of the battery, nominal capacity Cn, reference discharge current
Iref, open circuit voltage Vo and cut-off voltage Voff, as well as a function of the operational
parameters, discharge current Ii and time of running, (∆t)i.

It can be observed that discharge current adopts two forms, Ii and Ij, both correspond-
ing to the same parameter. The difference in the subindex notation corresponds to the
cumulative effect when calculating the depth of discharge coefficient, where the discharge
current subindex is noted as j in order to distinguish from an individual segment of the
discharge for which the subindex is noted as i.

8. Simulation Process

To evaluate the autonomy of an electric vehicle, a simulation process has been de-
veloped; the simulation is based on a model that reproduces the performance of the real
prototype. To perform this, the characteristics of the electric vehicle as well as of the battery
must be known in order to establish the modeling values; these characteristics are, on the
side of the vehicle, the mass, the operational voltage of the electric engine, the wheel radius,
the model of the vehicle, the type of tires and road type. On the side of the battery, the
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characteristics include battery energy, nominal capacity, open circuit and cut-off voltage
and reference discharge time.

To simulate the performance of the battery, the aforementioned characteristics are
essential since they are variables of the mathematical expression that determines the
available power and energy of the battery for the specific operational conditions.

Vehicle mass is used to obtain global force while the operational voltage of the electric
engine sets up the battery voltage. The wheel radius, combined with the angular speed of
the engine, is used to determine the vehicle speed, which is one of the parameters involved
in the calculation of the global force; the model of the vehicle determines its shape and size
and, thus, the drag coefficient. Finally, the type of tires and road establishes the rolling
factor, which also intervenes in the determination of global force.

Vehicle speed and acceleration, below the limits imposed by the manufacturer, are
subject to the driver’s decision, which means that they depend on the driving mode.
Three different driving modes have been considered: aggressive, moderate or normal and
gentle. The three modes are distinguished by the acceleration rate, for which its values are
indicated in Table 1.

Table 1. Acceleration values for the different driving modes.

Driving Mode Acceleration (m/s2) t (s) (0–100 km/h)

Aggressive 3.50 6.9

Moderate/Normal 2.50 11.1

Gentle 1.50 18.5

The values presented in Table 1 match, within a low margin error, the current values
of combustion engine vehicles that are currently commercialized.

The first category with the highest acceleration rate corresponds to luxury and ex-
pensive vehicles with very powerful engines but are not accessible to most of the drivers.
Moderate or normal acceleration range includes the majority of urban utility vehicles,
compact, saloon or SUVs. The gentle acceleration category is devoted for small cars with
low power engines and very high mileage rates.

To facilitate the driver’s decision, the simulation will provide the option to users to
decide whether or not the default option is chosen. Default option is automatically selected
by the control system according to set up parameters that search for optimum performance
of the battery service for a specific vehicle and trip. The default option, in our simulation,
has been assigned to the moderate/normal acceleration rate. Drivers, however, can enter
the advanced mode where the control system allows choosing the acceleration rate that is
preferred, thus rearranging the calculation according to the driver’s selection.

The simulation has the goal of reproducing real driving situations based on an ur-
ban daily trip. The trip has been divided into five segment categories: normal driving,
acceleration and deceleration process and ascending or descending roads. Normal driving
has been configured to maintain constant vehicle speed, while acceleration or deceleration
processes correspond to segments where the vehicle speed is increasing or decreasing due
to the mechanical action on the vehicle’s dynamic state, which means pressing or releasing
the accelerator pedal. Ascent and descent segments are those where the slope of the road
exceeds a threshold that is either positive or negative.

Drag coefficient and rolling factor are currently set up according to the vehicle mass
range; the typical values have been represented in Table 2.

Table 2. Drag coefficient and rolling factor for EV’s.

Mass (kg) k µ

1000–2500 0.578 0.15

3000–3500 1.458 0.15
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The average vehicle speed is calculated by the classical expression of kinematics,
v = d/t, where the travelling distance and the time are retrieved by using the Google Maps
application. However, when our software determines the route to be taken, it will not
determine all the fractions of the route in the form of the five algorithms. In fact, our
software will transcribe the path in the form of the following (Figure 4):

• A horizontal path (which takes into account normal walking, acceleration and deceler-
ation);

• An ascending part;
• A descending part.
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The path can then be simplified as represented in the following figure.
It is important to know that there is no access to descent or ascent percentages on

Google Maps, and consequently this application does not allow us to obtain all the neces-
sary information; therefore, the Google Maps application will only be used to define the
route and to determine the distance and duration of the trip from which we can calculate
the average speed.

To determine the inclination of the road, different solutions are possible, but the
preferred solution is the inclinometer [58–61]. This solution will allow obtaining the
inclination of the daily route taken by the user in order to determine the final angle of
ascent and descent.

In our model, we have chosen this last system because of its major sensitivity to changes
in road tilt. The vehicle speed is calculated by using the following expression [62,63]:

v =
πDωrg

(1000/60)
(36)

where D is the wheel diameter, ω the engine rotational speed in rpm and rg the gear box ratio.
These three parameters are currently known from the vehicle manufacturer data sheet.

In the case where the trip segment is made up of up and down sections, we have to
group all ascent sections in one as well as another section for the descent; in such a case,
the equivalent tilt angle of the road, either with respect to ascent or descent, is given by
the following:

β =

n
∑

i=1
diβi

n
∑

i=1
di

(37)

where the subindex i corresponds to the number of sections within the segment, and n is
the number of sections.

9. Software Development

To simulate the performance of a prototype vehicle under specific driving conditions,
it is necessary to develop a software program that reproduces the different steps of daily
driving. This program commands a control system that receives information of the variables
intervening in the daily driving.

The driver can obtain useful information from his/her daily driving route as follows:

- The energy spent in percentage (%);
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- The remaining battery charge in percentage (%);
- The autonomy of the battery and, therefore, of the EV in hours (h).

Moreover, all the data on the power spent for each stage (acceleration, normal driving,
deceleration, ascent and slope) will be displayed, as well as the distances traveled at
every segment.

The process is described in the following charts (Figures 5 and 6).
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Driving mode
The user chooses his/her driving mode, i.e., aggressive, normal or gentle.
According to this mode, the acceleration taken into account in the calculations is

different (Table 1). In order to validate his choice, it is necessary to select one of the three
proposals. An informative message appears when the user has already selected one of
the options.

Percentage in horizontal path (Percentage)
In this second window, the user selects the percentages for acceleration, normal

driving and deceleration on a horizontal path. The default values are already set up, but
they can be changed depending on the driver’s choice.

If the sum of the percentages is not 100%, a warning message appears, otherwise an
OK message shows up. It is necessary for the user to click on the VALIDATE button at the
bottom of the tab in order to save the chosen values.

Choice of the path (Google Maps)
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The user is directed to Google Maps through an informative page to enter his des-
tination, from which distance and duration of the journey are provided. The user will
then have to convert the values in kilometers and minutes on the software in order to
make calculations.

As soon as this is performed, it is necessary to click on the CALCULATE button
and an information message will appear to inform the user that the calculations have
been performed.

Display of characteristic data (Data)
The user should have access to the necessary characteristic values of the battery and

the electric vehicle. In other words, we have the following:

- Percentage of energy dissipated (%);
- Autonomy (h);
- Remaining charge in the EV (%).

Characteristics of the pathway
On this tab, the user can check the characteristics of the path. These data are only for

the driver’s information.
Simulation data (Simulation)
This tab provides useful information for the simulation with the setup explained in

the next main part.

10. Carbon Emissions

Carbon emissions can be direct or indirect; in the case of road transport, indirect
emissions are due to the manufacturing process, which in almost 100% of the cases uses
fossil fuels. By neglecting these effects because they affect any type of vehicle (whether
electric or internal combustion engines), only direct emissions remain.

Direct emissions come from the combustion of fossil fuels or hydrocarbon materials.
In the case of road transport, the emissions are produced by the combustion of gasoline
and diesel, which are the main energy sources for ICE vehicles.

Many tools have been used to predict the evolution of the CO2 content in the atmo-
sphere, showing that the predicted threshold for environmental preservation has been
surpassed long ago, especially in urban areas.

The avoidance of these types of emissions can be realized by using full electric vehicles
(EV) or hybrid, HEV or PHEV. The latter type of electric vehicles only partially remedy
CO2 emissions; therefore, it is out of focus. It is true that in urban traffic the use of hybrid
electric vehicles helps to reduce air pollution level, but it does not solve the problem at
the necessary rate; therefore, the replacement of ICE vehicles by full electric ones (EV’s) is
mandatory if we intend to invert the increasing trend of CO2 emissions.

To obtain the carbon footprint of a vehicle, the determination of fuel consumption
is necessary. Nevertheless, the carbon footprint is different from ICE vehicles to electric
vehicles, HEV, PHEV or EV. In the case of ICE vehicles, once the fuel consumption is known,
carbon emissions are obtained by using the following expression:

m(CO2)g
= 2.196kg/l f (38)

m(CO2)d
= 2.471kg/l f (39)

where subindexes g and d account for gasoline and diesel, and lf is the fuel consumption
in liters.

The above expressions should be changed if we express fuel consumption in gallons,
which is common in the American market; in such a case, the carbon emissions are given
by the following.

m(CO2)g
= 18.324pounds/gallon (40)

m(CO2)d
= 20.619pounds/gallon (41)
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Hybrid and plug-in electric vehicles generate carbon emissions since they operate
partially with an electric engine; however, their emissions are out of focus since the analysis
in this paper has been developed only for full electric vehicles.

Based on modelling and simulation of the driving range, we can establish the carbon
emissions savings as follows.

SCO2 = m(CO2)g,d
(FC)(DR) (42)

The average fuel consumption should be expressed as follows.

FC =
n

∑
i=1

(FC)i =
1

ρηthCH

n

∑
i=1

Piti (43)

Therefore, the following is the case.

SCO2 = m(CO2)g,d

DR
ρηthCH

n

∑
i=1

Piti (44)

Equation (43) provides an expression to determine the carbon emissions savings as
a function of the driving range that can be obtained by applying the proposed model in
this paper.

The CO2 emission savings, due to the use of electric vehicles (EV’s), can be treated
under two different points of view: raw saving and net saving. Raw saving is the one
generated by avoiding carbon emissions from the exhaust pipe of an ICE vehicle; net saving
takes into account emissions due to the electricity generated when recharging the batteries
of the electric vehicles.

The calculation of net saving is rather complicated since electricity generation differs
from one process to another; in the case where electricity is generated by renewable energy
sources such as photovoltaics, wind energy, tidal or waves systems or hydraulic power
plants, we can consider that there are no carbon emissions due to electricity generation, at
least in terms of direct emissions. On the other hand, if electricity is generated in fossil fuel
power plants, there is a carbon footprint that should be taken into consideration.

To determine this footprint, it is necessary to know the type of fuel used, the kind of
thermodynamic cycle and the efficiency of the process. Since there are many options, it
would be tedious to analyze all cases; however, a standard case can be used as a reference.
Neglecting nuclear plants that are currently in sharp decline due to fear of radioactive
waste, the most effective method for electricity generation is the combined cycle power
plants; these plants use gas as fuel to generate electricity in a gas turbine and water vapor
in a secondary vapor turbine. Since water vapor is generated through heat recovering from
the enthalpy of the released gas at the gas turbine, only the gas used in the primary section
produces carbon emissions.

According to the literature [64], natural gas emits around 204 g (CO2)/kWht. Con-
sidering an average efficiency of 70% in the combined cycle, which is a realistic value, the
net CO2 emissions is 291.4 g (CO2)/kWhe. On the other hand, in order to recharge electric
vehicles, electricity must be carried from the power plant to the recharging point, a process
that generates energy losses. Although the energy loss coefficient depends on different
factors, we can assume a 1%−2% loss associated with transportation and 5−6% loss with
respect to distribution [65]; therefore, a global 7% loss, on average, represents the power
loss coefficient.

The carbon mass emissions are obtained from the following.

MCO2 = m(CO2)g
(FC)(DR)/100 (45)
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Using values from the simulation, we obtain the following.

MCO2 = (2.196)(5.7)(284.5)/100 = 35575.2g (46)

This result corresponds to raw CO2 emissions saving. The value has been obtained for
the aggressive mode, but it is the same for the other two modes since the driving distance
remains constant.

The associated emissions with respect to the required electricity generation for recharg-
ing the battery of the electric vehicle are calculated by using the following equation:

Mel
CO2

=
mg

(CO2)
Cbat

ηPW f
(47)

where Cbat is the capacity that equips the electric vehicle.
Applying the aforementioned values to the CO2 emissions, we obtain the following.

Mel
CO2

=
(204)(50)
(0.7)(0.93)

= 15668.2g (48)

The net CO2 emissions saving is, therefore, described as follows.

∆MCO2 = MCO2 − Mel
CO2

= 35575.2 − 15668.2 = 19907g (49)

This represents a reduction of 56%.
The simulation results can be seen in Figure 7.
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11. Comparative Analysis

The method of driving influences energy consumption since acceleration depends
on it. To show how the type of driving modifies the driving range, we have to consider
specific driving and vehicle conditions, with the only difference being the acceleration
value. For a standard electric vehicle of 1500 kg of mass equipped with a battery of 50 kWh,
driving for a distance of 15 km at an average speed of 60 km/h with a maximum ascent or
descent tilt of 3%, we obtain the following results for the three types of driving (Figure 5).

The analysis of the numerical results indicates that there is a reduction of about 30%
in the energy consumption, energy rate and CO2 emissions saving when selecting the
aggressive mode compared to the gentle one. The driving range is reduced at 24% if the
aggressive mode is selected.

Figure 8 shows a graph representation of the energy consumption, energy rate, CO2
saving and driving range from the simulation process.
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12. Conclusions

A new method to determine an electric vehicle range has been proposed. The method
uses online real driving conditions in order to improve the accuracy of the predictions. The
protocol software is based on the type of driving modes and on road characteristics.

Driving modes have been associated with an acceleration value, representing most
current habits of today’s drivers, but other values can be implemented in the software. The
protocol software is adaptive since most of the involved parameters can be updated at the
user’s will.

The influence of the variation of battery capacity with discharge rate has been consid-
ered for the calculation of available energy; since driving conditions define discharge rate,
the calculation of battery power and energy are adjusted with respect to the real situation.

The model predicts a severe reduction in driving range, up to 30%, when operating in
the aggressive mode compared to the gentle one. This reduction is of 15% if the normal
driving mode is used.

Driving range has been found to be consistent with current values for standard electric
vehicles operating in urban routes for a battery specific capacity of 50 kWh. The minimum
driving range produced by the simulation is 284.5 km for the aggressive mode, while the
maximum driving range of 373.2 km is obtained for the gentle mode.

The new method allows accurate predictions of electric vehicle range as well as the
remaining charge in the battery at the end of a daily trip, thus warning the user the need
for battery recharge based on predictions of the energy required for the next day trip.

The proposed methodology improves the existing methods since it takes into account
real online values of parameters involved in the calculation, thus rendering the calculation
of the electric vehicle driving range more accurate. It also can be applied to any driving
conditions or driving mode, rendering the model more reliable.
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Real fuel consumption is obtained by using the proposed expression that takes real
driving conditions into account. Carbon emission savings can also be determined from the
estimated driving range by applying the proposed model.

The values obtained for the energy rate throughout the simulation are comparable
to those of standard electric vehicles operating today; the values are in the range from
134 Wh/km for the gentle mode to 175.8 Wh/km for the aggressive mode.

A simulation for the CO2 emissions has been developed, showing a significant reduc-
tion by the use of EVs instead of ICE cars. The reduction has been estimated at 56%.
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