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Abstract: The electrification of the transportation sector will increase the demand for electric power,
potentially impacting the peak load and power system operations. A change such as this will be
multifaceted. A power system production cost model (PCM) is a useful tool with which to analyze
one of these facets, the operation of the power system. A PCM is a computer simulation that mimics
power system operation, i.e., unit commitment, economic dispatch, reserves, etc. To understand
how electric vehicles (EVs) will affect power system operation, it is necessary to create models that
describe how EVs interact with power system operations that are suitable for use in a PCM. In this
work, EV charging data from the EV Project, reported by the Idaho National Laboratory, were used
to create scalable, statistical models of EV charging load profiles suitable for incorporation into a
PCM. Models of EV loads were created for uncoordinated and coordinated charging. Uncoordinated
charging load represents the load resulting from EV owners that charge at times of their choosing.
To create an uncoordinated charging load profile, the parameters of importance are the number of
vehicles, charger type, battery capacity, availability for charging, and battery beginning and ending
states of charge. Coordinated charging is where EVs are charged via an “aggregator” that interacts
with a power system operator to schedule EV charging at times that either minimize system operating
costs, decrease EV charging costs, or both, while meeting the daily EV charging requirements subject
to the EV owners’ charging constraints. Beta distributions were found to be the most appropriate
distribution for statistically modeling the initial and final state of charge (SoC) of vehicles in an
EV fleet. A Monte Carlo technique was implemented by sampling the charging parameters of
importance to create an uncoordinated charging load time series. Coordinated charging was modeled
as a controllable load within the PCM to represent the influence of the EV fleet on the system’s
electricity price. The charging models were integrated as EV loads in a simple 5-bus system to
demonstrate their usefulness. Polaris Systems Optimization’s PCM power system optimizer (PSO)
was employed to show the effect of the EVs on one day of operation in the 5-bus power system,
yielding interesting and valid results and showing the effectiveness of the charging models.

Keywords: EV load profile; uncoordinated charging; coordinated charging; power system operation

1. Introduction

Currently, electric vehicles represent a small fraction of the transportation sector.
Nevertheless, different market analysts predict a high penetration of electric cars, which
will increase up to 33% by 2040 [1] and 50% by 2050 [2]. The advancement propelling the
increase in the penetration of electric vehicles is the battery, via both an increase in the
energy density (kWh/kg) and a reduction in the cost per energy (USD/kWh). In 2018,
costs were in the range of 209 USD/kWh [3]. In 2020, the battery pack achieved a price of
137 USD/kWh [4]. The International Renewable Energy Association (IRENA) anticipates
a cost of 150 USD/kWh in the 2020s, which will make EVs a competitive transportation
option [5].
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An electric vehicle needs to hold enough energy for the everyday commute and extra
energy for extended travel. Charging technology is also relevant, since it is necessary to
supply energy at a reasonable rate for the next day’s commute by charging at home and
traveling beyond the battery charge capacity at public charging stations [6]. The electrifica-
tion of the transportation sector will lead to a reduction in primary fuel consumption and
an increase in the power output of the electric sector [7]. This increased amount of power
in the electrical system requires analysis from different perspectives, such as the impacts
on the low-voltage distribution system [8] and the high-voltage transmission system [9].
Furthermore, it is important to consider the operation of the electric system as a whole to
minimize the increase in the peak load and ensure the lowest cost of electricity [10]. The
charging of electric vehicles, if done intelligently and in a coordinated fashion, can enhance
the penetration of variable renewable energy (VRE) sources such as wind and solar power.
As an example, the research from Tuffner and Kintner-Meyer demonstrated that controlling
the rate of charge of EVs can compensate for abrupt or step changes in power production
from wind farms [11]. The charging of EVs, if done in an uncoordinated fashion, could
increase the peak energy demand.

The EV Project from Idaho National Lab (INL) explores the uncoordinated charging
of electric vehicles in different cities, including San Francisco, CA, and Nashville, TN [12].
Charging availability (where a charger is connected to a car) is similar in both regions: low
during the day and increasing during the evening. Nevertheless, there is a difference in
the charging demand: in Nashville, the demand peaks at 8 p.m., and in San Francisco, it
peaks at 1 a.m. due to utility time-of-use (TOU) rates offering reduced rates at off-peak
hours [12]. In this latter case, the uncoordinated response to TOU rates created a new
spike in demand during off-peak hours. In other words, the charging of EVs poses both
opportunities and challenges.

Recently, the methods for modeling EV load have mainly used bottom-up behavioral
techniques such as Markov chain [7,8,13], Markov chain Monte Carlo [14–16], machine
learning [17,18], and agent-based [19–27] (aggregator) simulations. Moreover, some au-
thors have used travel survey data to construct the EV load, using either a Monte Carlo
simulation approach [28] or stochastic modeling [29]. The focus of the modeling in the
reviewed literature is on the distribution grid (voltage and line loading), hub management
(transactions on the distribution side), and grid infrastructure planning (capacity expansion
country or microgrid). This paper’s contribution is to link EV modeling with power system
operation, detailed point by point as follows:

• The paper focuses on the bulk power system rather than the distribution side, which
usually involves AC power flow simulations.

• This paper is the first to describe the incorporation of EV modeling of coordinated
charging directly into a production cost model (PCM). Uncoordinated and coordinated
EV charging models have been devised to bookend the positive and negative impacts
of charging strategies.

• This work successfully demonstrates the implementation of both uncoordinated and
coordinated charging models in a PCM for a simple power system.

1.1. Batteries and Their Effect on EV Costs

A reduction in the cost of batteries for electric vehicles decreases the cost of new
electric cars. Battery packs account for about half the cost of modern EVs. Recently, the
cost of batteries for EVs has been decreasing year by year, reducing 73% from 2010 to
2016 [5]. The price reduction from 2010 to 2020 is estimated at 89% [4]. The price drivers
for EV lithium-ion (Li-ion) batteries are the chemistry, manufacturing capacity, battery size,
and charging speed [13]. Battery cells for fast charging are more complex and thus more
expensive to produce. As there has been an increase in the production and size of Li-ion
batteries, the manufacturing cost has decreased. The chemistry of the battery is one key
to their price reduction. Reducing the percentage of cobalt in the battery cathode reduces
their cost.
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The reduction in the price of EVs is also due to the cost of batteries. In this regard, the
Vehicle and Technology Office at the U.S. Department of Energy (DOE) set a goal to reach
100 USD/kWh by 2033, and 80 USD/kWh by 2038 [30]. Regarding the capital cost of new
vehicles, the U.S. National Renewable Energy Laboratory (NREL) projects substantial, yet
achievable, reductions in battery costs that would lead to the capital cost of EVs matching
the capital cost of equivalent conventional vehicles before the year 2030 [13].

It is essential to consider the operating cost of new vehicles, as this compensates
for a higher capital cost. The Electric Power Research Institute (EPRI) showed that the
total cost of ownership is lower for EVs than for conventional vehicles and hybrids [31].
In this comparison, EPRI used 2014 cost data (manufacturer, taxes, credits, destination
charges, and EV chargers for Palo Alto, CA) and assumed 12 years or 150,000 miles of
ownership. Concerning the lower cost of driving EVs, NREL anticipates that the levelized
cost of driving (LCOD) [30] (without tax credits or other incentives) will be in parity with
conventional vehicles as soon as 2021. For example, using the vehicle cost calculator from
the DOE’s alternative fuel data center, the Tesla Model 3 Standard Range has an equivalent
cost of driving to the Toyota Camry XLE after eight years of ownership [32]. With cost
parity between EVs and standard vehicles, there is a high chance that EVs will become
a substantial portion of the car fleet in the years to come; as much as 75% of the sales of
light-duty vehicles will be electric in 2050 [33].

1.2. Production Cost Model

A power system PCM is a software tool that mimics the operation of the power
system by minimizing operation costs while adhering to operational constraints, ultimately
yielding operational costs and locational marginal prices (LMPs), as well as other useful
information. PCM software solves the unit commitment (UC) and economic dispatch (ED)
optimization problems to minimize power system operational costs. ED is an optimization
problem in which the objective function is to minimize the total operation cost of the
system from a predetermined set of online resources to meet the load in the system. ED
considers min/max power dispatch, transmission, ramping, and fuel constraints. Linear
programming optimization is a common method to solve this type of problem. UC is
also an optimization problem, where the goal is to determine the electrical generators
that must be available for use, i.e., be committed, to meet the forecasted power demand
at the minimum operation cost in a system. Mathematically, the state of a particular
generation unit is either off (not committed) or on (committed) in a time step (i.e., the
decision variable is binary). A solution technique appropriate for solving both UC and ED is
mixed-integer linear programming (MILP), which adds integer multipliers in the objective
function to account for the state of each generator as on or off. The MILP formulation of UC
includes more integer variables (constraints) than ED, also called “security-constrained unit
commitment” (SCUC) [34]. For example, it includes start-up costs, start-up time, minimum
up/downtime, reserve requirements, transmission, ramping, and fuel constraints. In this
research, statistical models of EV charging appropriate for incorporation into a PCM are
presented. The specific PCM employed to demonstrate the method is Polaris Systems
Optimization’s power system optimizer (PSO), which uses MILP to solve the optimization
problems [35].

2. Methods

This section presents statistical models for EV charging that are adaptable to any
regional mobility pattern, based on data from the EV Project. The EV Project data came
from over 10,000 public and residential charging stations over three years (2011 to 2013),
covering 4 million charging events in 18 different metropolitan areas across the U.S., with
more than 4200 Nissan Leaf (24 kWh) and 1800 Chevrolet Volt (16 kWh) vehicles. In
addition to describing the charging characteristics, a model of a simple 5-bus grid for use
in testing the statistical models, the “NAU 5-bus system”, is also presented. Further details
on the methods described below are reported in two M.S. theses [36,37].
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2.1. Battery and Charging Level

This study assumed a battery capacity of 24 kWh (Nissan Leaf 2013) as an average
representative of all EVs. For statistical modeling, the EV and its charging characteristics
are arbitrary. Regarding the type of charger, a survey study performed in the Salt River
Project service area (in Arizona, U.S.) by the EPRI showed that 66.7% of charging events
occur using Level 2 chargers [38]. Level 1 and DC fast-charging event occurrences were
32.5% and 0.9%, respectively. Therefore, we assumed that the EV fleet will employ the
percentage of each charger portrayed in Figure 1. For the statistical models being created,
the battery capacity and distribution of charger types were definable variables (i.e., they
are not constrained to the numbers mentioned above).
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Figure 1. Charging level proportion (%) modeled in the electric vehicle (EV) fleet.

2.2. Battery State of Charge

This research assumed that the charging behavior of the EV owners in the EV Project
data can be modeled statistically and scaled to be representative of any number of EV
owners. Four statistical distributions of the state-of-charge (SoC) data were tested: normal
(Gaussian) distribution, binomial distribution, Poisson distribution, and beta distribution.
The chi-square goodness-of-fit test was applied to each distribution for the fitted data. For
both the initial and final SoC data, the best fit was found using the beta distribution. At a
95% confidence in the differences between the observed value and the predicted value from
a probability distribution, the best fit is the distribution with the smallest chi-square test
value. For the initial SoC, the beta distribution with a chi-square test value of 357.76 ranked
the lowest.

The beta distribution is a general type of continuous probability distribution. This
distribution is defined on the interval (0, 1) parametrized by two positive shape parameters
α and β. The probability density function of a random variable “x” that follows the beta
distribution is determined as follows [39]:

y =
1

B(α, β)
xα−1(1 − x)β−1

where B is the beta function, a normalizing constant to keep the total probability equal to 1.
A histogram of the initial SoC data from the EV Project and beta distribution is shown

in Figure 2. The least-squares method for the beta distribution took values of α = 3.28 and
β = 3.27.
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Figure 2. A plot of the beta distribution model of the initial state-of-charge (SoC) values fitted to the source data.

A histogram showing EV battery state of charge at the end of charging events (i.e.,
target state of charge) taken from the EV Project [40], along with a fitted beta distribution,
is shown in Figure 3. Note the two peaks in the data, one at 70–80% SoC and the other
at 90–100% SoC. The double peak occurs because 80% or lower was the target SoC. A
faster charging rate happens below 80% for lithium-ion batteries. However, more than
two-thirds of the charging ended with an SoC above 80%, and more than half above 90%.
Beta distributions were once again found to fit the data best, and in this case, two beta
distributions were used, one for the range 0–80% of SoC (α = 5.51 and β = 0.16) and
another for the range 80–100% of SoC (α = 14.59 and β = 0.67). Again, at 95% confidence,
the lowest difference from the observed and predicted values for the final SoC came from
using two beta distributions with a chi-square test value of 371.
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2.3. Availability—Arrival and Departure Time

Charging “availability” is defined here as the period when the charger for an EV
is connected to a vehicle and is able to charge. The EV Project data include charging
availability at home, at work, and at public locations. A chart showing the charging
availability data for each hour of the day on an average weekday is provided in Figure 4 [41].
Of the charging events, 85% occurred at home, with just above 40% availability during
the night-time hours, and between 10% and 15% during daytime working hours. As the
distribution of charging availability data can vary significantly between different regions
of a country, or between different countries, it was not fitted to a statistical distribution but
was directly used. In the EV charging models implemented below, a distribution such as
this is necessary to determine the charging load profile.
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Figure 4. Weekday charging availability covering all types of chargers in the EV Project 2013 [41].

In addition to charging availability, the EV Project data included both the arrival and
departure times of the EVs. Departure times, which represent an end to an EV’s availability
for charging, are shown in the histogram in part (a) of Figure 5. Arrival times, the times
at which an EV is available for charging, are presented in part (b) of Figure 5. Note the
preponderance of departure times in the morning hours and arrival times in the evening
hours, with a low and fairly constant number of arrivals and departures during the other
hours of the day. The arrival data were used as the start time of charging if there was no
TOU price incentive to start charging later in the day. The given distributions for the arrival
and departure times were used with a Monte Carlo sampling technique to reproduce the
arrival and departure data for a population of vehicles, thus allowing for easy adaptation
to other regional or country profiles.
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2.4. Modeling the Charging of Electric Vehicles

A survey of modeling techniques used to estimate EV load profiles showed that most
researchers implemented bottom-up and agent-based simulations to generate a load profile,
and that these were primarily for distribution system load studies [19–27]. Bottom-up
simulation requires a transition probability at every step, which is unnecessary when
creating a load profile for transmission-level studies. Consequently, this research used a
Monte Carlo sampling technique, which can generate the load profile by accounting for
the charging state of an EV.

2.4.1. Uncoordinated Charging of Electric Vehicles

The uncoordinated charging of EVs occurs when EV owners charge their vehicles
according to convenience and without any information about, or communication with,
other EV owners or the electric utility supplying the electricity. This section presents a load
profile model for reproducing the uncoordinated charging behavior of EV users.

The previous section demonstrated that the various deciding factors of electric vehicle
charging may follow some kind of probability distribution. This application of statistical
models to address our problem is helpful, as they can be scaled to create load profiles for
different numbers of EVs. By definition, Monte Carlo is a method for randomly sampling
from a probability distribution to create a random process for a problem [42]. For a chosen
number of EVs, a random sampling of the values of the influencing factors (SoC, availability,
etc.) for each EV from these distributions can be achieved. In this way, it is possible to
produce a load profile from a population of vehicles that adheres to the overall shape of
the distribution, scales to the number of vehicles, and gives daily load profiles that differ
from day to day.

The sampled values of the influencing factors, as explained above, are processed to
obtain the total charging profile of EVs. The flowchart in Figure 6 describes the step-by-step
procedure for determining an uncoordinated load profile. The charging profiles for each
EV in the fleet are consecutively created in the loop structure. Once all individual EV load
profiles are created, they are summed to generate the overall load profile.
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2.4.2. Coordinated Charging of Electric Vehicles

The coordinated charging model of EVs in this research employed an aggregator
scheme. An overview of the algorithm used to model the aggregator is described in the
flowchart in Figure 7.
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The first step in coordinated charging is to determine the daily energy requirement
for charging the fleet of EVs. The projected maximum power draw at each time of the day
comes from the charging availability distribution, the number of EVs (e.g., 1000 or 10,000,
etc.), and the charging capacity, as shown in Figure 8. This profile defines a dispatchable EV
load during each period of the day. The time in Figure 8 is in hours, but any time increment
desired can be created, depending on the time resolution of the source data, which in this
case was 15 min. As the size of the EV fleet increases to higher penetrations, EV charging
impacts both the total load profile and the correspondent local marginal pricing (LMP) of
electricity. Consequently, trying to allocate a coordinated charging profile by using only the
day-ahead forecast of LMP with no EVs neglects the influence of EV charging in the LMP
profile. Therefore, the coordinated charging profile is determined in the PCM optimization
as a dispatchable load. This is necessary so that the charging time series can respond to
LMP changes as the load increases or decreases.

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 10 of 23 
 

 

Figure 8. Projected maximum power (P) in MW for 1000 EVs on a weekday based on charging avail-

ability and charging capacity. 

2.4.3. NAU 5-Bus System 

The goal of creating the EV load models described above was to use them in studying 

the effects of EVs on the operation of an actual power system (e.g., the Western Intercon-

nect in the U.S., a regional utility power system model, etc.). However, to show the effec-

tiveness of the models, it is only necessary to use a simple transmission system model that 

contains loads, generators, and transmission linkages that are representative of an actual 

power system. Therefore, a simple 5-bus system, namely the “NAU 5-bus system” (NAU 

is the acronym for Northern Arizona University), was created, and is depicted in Figure 

9. The generator types and capabilities, the renewable energy generation time series, and 

the load time series are representative of those found in the southwestern U.S.; it includes 

a subset of the variable renewable energies and generator characteristics from the Relia-

bility Test System of the Grid Modernization Laboratory Consortium (RTS-GMLC) 

[43,44]. 

 

Figure 9. Northern Arizona University (NAU) 5-bus system layout that portrays buses (bold vertical lines), transmission 

lines (connecting the buses), loads (inverted triangles), and generators (circles and rectangles). 

The NAU 5-bus system has an installed generation capacity that is representative of 

a utility in the southwestern U.S. (see Figure 10). The researchers scaled the load from 

region 1 of the RTS-GMLC down to 1580 MW and applied it to the NAU 5-bus system. 

This peak load of 1580 MW matches the peak load in the “Pennsylvania-New Jersey-Mar-

yland (PJM) 5-bus system”, from which the NAU 5-bus system drew its inspiration [45]. 

Similarly, VRE sources were also scaled down from region 1 in the RTS-GMLC to the NAU 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
 [

M
W

]

Hour of a weekday

E

240 MW

400 MW

A

B C

D

PV 54.3 MW 

121_NUCLEAR_1 200 MW

101_STEAM_3 Coal 76 MW

102_CT_1 Oil 20 MW

113_CT_3 NG 55 MW

113_CT_4 NG 55 MW

213_CC_3 Gas 355 MW

113_CT_1 NG 55 MW 

113_CT_2 NG 55 MW

RTPV 59.3 MW

107_CC_1 NG 355 MW

118_CC_1 NG 355 MW

122_WIND_1 45.5 MW

0.4

0.3
0.3EV
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2.4.3. NAU 5-Bus System

The goal of creating the EV load models described above was to use them in studying
the effects of EVs on the operation of an actual power system (e.g., the Western Interconnect
in the U.S., a regional utility power system model, etc.). However, to show the effectiveness
of the models, it is only necessary to use a simple transmission system model that contains
loads, generators, and transmission linkages that are representative of an actual power
system. Therefore, a simple 5-bus system, namely the “NAU 5-bus system” (NAU is the
acronym for Northern Arizona University), was created, and is depicted in Figure 9. The
generator types and capabilities, the renewable energy generation time series, and the load
time series are representative of those found in the southwestern U.S.; it includes a subset
of the variable renewable energies and generator characteristics from the Reliability Test
System of the Grid Modernization Laboratory Consortium (RTS-GMLC) [43,44].
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Figure 9. Northern Arizona University (NAU) 5-bus system layout that portrays buses (bold vertical lines), transmission
lines (connecting the buses), loads (inverted triangles), and generators (circles and rectangles).

The NAU 5-bus system has an installed generation capacity that is representative of a
utility in the southwestern U.S. (see Figure 10). The researchers scaled the load from region
1 of the RTS-GMLC down to 1580 MW and applied it to the NAU 5-bus system. This peak
load of 1580 MW matches the peak load in the “Pennsylvania-New Jersey-Maryland (PJM)
5-bus system”, from which the NAU 5-bus system drew its inspiration [45]. Similarly, VRE
sources were also scaled down from region 1 in the RTS-GMLC to the NAU 5-bus system.
The capacity of the generators used in the NAU 5-bus system is shown in Table 1. The
time-series data for load and VRE are the actual real-time (RT) of a 1-h resolution in the
RTS-GMLC.

Table 1. Generation capacity per technology and penetration percentage presented in the NAU
5-bus system.

Generation Technology Capacity (MW) Percentage (%)

Gas CC 1065 62
Gas CT 220 13
Oil CT 20 1
Coal 76 4

Nuclear 200 12
PV 54 3

Wind 28 2
RTPV 59 3

TOTAL 1722 100
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Figure 10. Proportion ratio (%) for the types of generators considered in the NAU 5-bus system
(CC = combined cycle; CT = combustion turbine; PV = photovoltaics; RTPV = rooftop PV).

Refer to Table 2 for the load distribution per node in the NAU 5-bus system, which
is similar to that of the PJM 5-bus system, except for the additional EV load in node C.
A summary of the dispatchable generation fleet of the NAU 5-bus system is presented in
Table 3. The prices of various fuels are considered for the year 2025. The transmission
parameters for the NAU 5-bus system are the same as those in the PJM 5-bus system [45].

Table 2. Load distribution presented in the NAU 5-bus system.

Node System Load (%) EV Load (%)

A 0% 0%
B 30% 0%
C 30% 100%
D 40% 0%
E 0% 0%

Table 3. Summary of dispatchable generators in the NAU 5-bus system.

Node Name Type Fuel Fuel Price 1

(USD/MMBtu)

Max
Dispatch

(MW)

Min
Dispatch

(MW)

Cold Start
(USD/MWh)

E 107_CC_1
Combined Cycle Natural

Gas
4.2 355 170 30,303E 118_CC_1

C 213_CC_1

D 102_CT_1 Combustion
Turbine Oil 23.9 20 8 120

A 101_STEAM_3 Steam Turbine Coal 2.8 76 30 8600
A 121_NUCLEAR_1 Steam Turbine Nuclear 0.8 200 198 31,600
D 113_CT_1

Combustion
Turbine

Natural
Gas

4.2 55 22 6121
D 113_CT_2
C 113_CT_3
C 113_CT_4

1 Fuel prices come from the EIA Annual Energy Outlook 2019 Nominal Cost reference year 2025.



World Electr. Veh. J. 2021, 12, 263 12 of 22

2.5. Production Cost Model

As mentioned, this research aimed to create models of EV load that are suitable
for studying the integration of EVs into power system operations via a power system
production cost model. Thus, the time resolution in the models is 1 h to replicate the
day-ahead electricity market integration of EV charging. The objective of the PCM is
to minimize the electricity generation cost, subject to a host of power system constraints.
Production costs depend on a variety of factors, including the characteristics of the load and
the generation on each node, the capabilities of the interconnecting transmission elements,
the reserve requirements, the accuracy of load and VRE forecasts, etc. Consequently, the
electricity prices at each node, i.e., the LMPs, often differ from one another. LMPs are
an important output from a PCM and are typically higher during the peak load hours
and lower during the off-peak hours. Due to the variation in the LMP with the time of
day, a price-based charging strategy is a good choice for minimizing operating costs and
reducing charging costs.

2.5.1. Power System Optimizer (PSO)

An appropriate PCM tool for this research requires capabilities similar to those typical
in power system planning and operations. Polaris Systems Optimization’s power system
optimizer (PSO) is a tool with the capabilities that are necessary for an accurate simulation
of power system operations that mimics the actions and timing of power system planners
and operators. PSO uses MILP, has multilevel nested time intervals (overlapping time
frames), and simulates uncertainties for both load and VRE resource forecasting [35]. Using
multilevel nested time intervals means that the solver can commit units at multiple points
in the time ahead of the hour of operation (e.g., commit units with long start-up time days
ahead, units with 12-h start-up times a day ahead, units with a 1-h start-up time 1 h ahead,
etc.). PSO also employs a “look-ahead” feature that permits commitment decisions to be
made in full consideration of forecasted load and VRE beyond the current decision cycle.
This multilevel nested time interval capability is important because it emulates the forecast
uncertainties that system operators face in committing generators and ancillary services.

For this simulation, the planning cycle for committing units was a day ahead. It had a
collection of horizons consisting of 24 1-h periods with a look-ahead of 24 h, and the time
increment for dispatch (i.e., the period resolution) was hourly. The look-ahead ensures
that the commitment decisions in every horizon are related to the expected conditions
in the next horizon. The PCM outputs analyzed to show the effect of the EVs include
total production cost (USD), generation (energy produced in megawatt hours; MWh),
revenue (USD), and electricity price (LMP, USD/MWh). The revenue (USD) is calculated
as the LMP (USD/MWh) times the generation (MWh). Therefore, the EV charging cost
is equivalent to the negative of the revenue for the EV load. The model simulated seven
days, using RTS-GMLC data from Wednesday 31 January to Tuesday 4 February. Net
loads were low at times when the VRE was relatively high. The model run started on
Wednesday and finished on Tuesday to ensure that the commitment on Sunday (the day
for which analyzed the results) was in accordance with the previous and future power
system conditions (i.e., there was sufficient time in advance of Sunday to start the slowest
starting coal units). In the NAU 5-bus system on Sunday 2 February, the VRE reached its
highest hourly penetration of 18% of the load between 11 a.m. and 1 p.m.

For each time increment of the model data, the “net load” that the conventional,
dispatchable generation must serve is found by subtracting the VRE from the load on each
bus. During system operation, dispatchable generators are committed and dispatched to
serve the net load. The heat curves (heat rates) of the dispatchable generators listed in
Table 3 (taken from RTS-GMLC) are multiplied by their fuel costs to calculate the dispatch
curves (cost curves), which have units of USD/MWh (refer to Figure A1).
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2.5.2. EV Penetration and Modeling

Regarding the quantity of EVs, we tested 1000 EVs. Given the assumed EV character-
istics and their availability profile, this represented a maximum possible EV load of 2.8 MW
during the morning hours, and about 0.8 MW during the midday hours (refer to Figure 8).
This was a small but realistic load penetration compared to the peak load of ~550 MW in
the results to be presented in the next section. During periods of low load (e.g., night-time),
fewer dispatchable generators will be online. Consequently, it is expected that any VRE or
dispatchable load will be a more decisive factor influencing the system operation cost.

Within the PSO, the uncoordinated charging model was implemented as an “injector”
with a discrete time series of EV load data points. These data resulted from the uncoordi-
nated model previously described. To apply the coordinated charging model, we employed
the built-in library “Energy Limited” (EL) in the PSO. The setup for this library requires an
estimate of the amount of energy that needs to be served in a decision horizon (i.e., over the
course of a day); this energy can be determined from the total daily energy supplied in the
uncoordinated charging model, or by using the fleet’s daily energy consumption or total
charging load in MWh. The dispatch constraint for the EVs is their charging availability,
which represents the number of vehicles plugged into the grid; this number caps the power
that can be drawn from the power network to charge the EVs in any time period (see
Figure 8). The EL library ensures that the total amount of the charging load is served, while
honoring the EV availability constraints. For a detailed examination of the input data in
PSO format (comma-separated values format), refer to the Supplementary Materials.

3. Results

This section presents the results of running the PSO production cost model for the
NAU 5-bus system for the week of interest. As a representative sample, the results of the
simulation are presented for one day, in this case, 22 February, as it had the largest VRE
penetration. This section starts by showing the results for the NAU 5-bus system with
no EVs, followed by the results when charging 1000 EVs under the uncoordinated and
coordinated charging scenarios.

3.1. System Operation without EVs

The generation stack and system LMPs for each hour of the day are presented in
Figure 11 for a typical day of operation in the period analyzed. The system LMP is repre-
sented by the dark dashed line and refers to the scale on the right side of the graph. The
LMP varied between 24.6 USD/MWh at low net load, up to 35.4 USD/MWh during the
peak load hours. The bars show the generation stack and refer to the scale on the left-hand
side of the graph. The nuclear generation is represented by the green color on the bottom
of each column and is the base load generation, which does not vary from hour to hour.
The next generator stacked on each bar is the combined cycle (CC) gas generation (light
blue color). This represents the marginal generator, and its output varies from hour to hour.
Between hours 5 and 17, there was substantial VRE generation, represented by the small
bars (dark blue, yellow, and red, respectively) stacked on the top of each bar. Note that the
LMP increased and decreased as the CC generation changed, according to its cost curve
(see Figure A1 frame (e)). The LMP followed the expected behavior and had two peaks,
one in the early morning and a higher second peak in the early evening. The LMP valley in
the middle of the day was a consequence of high solar and wind power that reduced the
net load. During this day, the total operation cost was calculated as 359,060 USD, the daily
average system LMP was 29.65 USD, and the peak load was 551 MW at 18 h (6 p.m.).
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Figure 11. Power generation (Pg) stack MW (left axis) and locational marginal price (LMP) USD/MWh (right axis) in the
NAU 5-bus system occurring without EVs.

3.2. System Operation with Uncoordinated EV Charging

Applying the uncoordinated charging model scaled to 1000 EVs resulted in the hourly
EV load profile shown in Figure 12. Uncoordinated EV charging had a maximum load
of just under 1 MW at 20 h (8 p.m.), with a base load of just over 0.2 MW. The total
energy consumed over the course of the day in charging the EVs was 10.75 MWh. The
uncoordinated charging profile followed the trend of the EV arrivals (Figure 5b), peaking
in the early evening, as 85% of the charging happened at home.
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Figure 12. Uncoordinated EV charging power (P) profile in MW developed for 1000 EVs.

Running the PCM PSO for the NAU 5-bus system with the addition of the EV load
resulted in an operating cost of 359,390 USD (an increase of only 330 USD). In addition,
the system LMP did not change; the system dispatch stack and LMP are similar to those
shown in Figure 11 because the EV charging profile was small compared with the rest of
the injectors.

3.3. System Operation with Coordinated EV Charging

Implementing the coordinated charging modeling in the PSO resulted in the daily
charging profile shown in Figure 13. Recall that the coordinated charging model used
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the LMP in combination with EV availability and battery SoC in determining the time to
charge as part of the goal to minimize operating costs over the course of a day. Compared
with the uncoordinated charging profile (Figure 12), most of the EV charging was moved
to the low-LMP hours of the day (hours 1, 2, and 11 to 14). The total daily energy used in
charging was the same as in the uncoordinated case (10.75 MWh), but the charging timing
was shifted in a way that complied with EV charging availability, battery SoC, and daily
charging requirement.
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Figure 13. Coordinated EV charging power (P) profile in MW developed for 1000 EVs.

In the case of coordinated charging, Figure 14 shows the generation stack and LMPs.
The system operation cost for the day was 359,330 USD. Relative to the plot shown in
Figure 11, the system LMP increased between 1 a.m. and 2 a.m., which means that as the
marginal generator increased its power dispatch due to the EV load, it increased a step in
its cost curve. Figure 15 directly compares this point, plotting the EV charging profiles and
the system LMPs. Regardless of this increase in LMP, the overall production cost was less
than for the case of uncoordinated charging, as the charging occurred during the lower-cost
(i.e., lower LMP) hours during the day.
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Figure 14. Power generation (Pg) stack MW (left axis) and LMP USD/MWh (right axis) in the NAU 5-bus system occurring
with coordinated EV charging.
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Figure 15. Comparison of the EV coordinated and EV uncoordinated charging profile power (P) in MW (left axis) and their
corresponding system LMPs in USD/MWh (right axis).

3.4. Comparing the EV Cost of Charging

The cost to charge the EVs was determined by multiplying the magnitude of energy
used to charge the EVs each hour by the LMP that hour. The total cost to charge was
then computed by summing the hourly charging costs over all hours of the day. The
uncoordinated charging approach led to a cost to charge of 334 USD, while the coordinated
charging cost was 294 USD (see Figure 16). Using the coordinated charging approach
reduced the cost of charging by 40 USD, equal to 12%. Interestingly, the system production
cost decreased by 60 USD between the uncoordinated and coordinated cases, which was
slightly different from the reduction in cost to a charge of 40 USD. This phenomenon
is due to the coordinated EV charging profile changing the LMP in the early morning
hours. Putting the charging numbers into a per vehicle context, the average EV will charge
10.75 kWh. The average uncoordinated charging cost was close to 0.33 USD per day per
vehicle, and the coordinated charging cost was close to 0.29 USD, representing roughly
12% in savings. These numbers are representative of the low energy cost experienced by
EV owners.
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Figure 16. Comparison between the coordinated and uncoordinated cost in USD of EV charging for
1000 EVs.

4. Discussion

Figure 17 shows a graph of the system and the EV loads for the day of 2 February,
the same day as is presented in the previous figures with the dispatch stacks. The system
load is shown by the light-blue bars (refers to the left-hand scale), and the EV load in the
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red (coordinated) and yellow (uncoordinated) bars, both referring to the right-hand scale
and having a much lower magnitude than the system load. Compared to the system load
alone, the uncoordinated EV charging increased the system’s peak load. In our particular
simulation, 1000 EVs led to an increase in peak demand of 1 MW. Coordinated EV charging
occurred during low-LMP hours and therefore did not increase the peak load.
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Figure 17. Comparison of the system load (L) in MW (left axis) against the EV coordinated and EV uncoordinated charging
power (P) profiles (right axis) of 1000 EVs.

It is interesting to compare operating costs and LMPs for each of the cases. In Figure 18,
the operation cost is shown in the blue columns associated with the primary y axis on the
left. In addition, in Figure 18, the average LMP is shown by the orange line related to the
secondary y axis on the right. In this figure, the left column is for the system operation
with no EV with a cost of 359,060 USD, the central column is for the system operation
with uncoordinated EV charging with a cost of 359,390 USD, and the right column is for
the system operation with coordinated EV charging with a cost of 359,330 USD. Thus, as
shown by comparing the central and right columns with the left one, the addition of the EV
load increased the system operation cost. However, the EV coordinated charging profile
(right blue column) led to lower operating costs than the uncoordinated charging profile
(central column). At the same time, the daily average LMP increased slightly (in 0.47 USD)
with coordinated charging (right line). This is not uncommon in power system operation;
average LMPs can increase while system operating costs decrease.
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Figure 18. Summary of the system operation cost and LMP change with the introduction of EV
charging, gross comparison against the system with no EVs.
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5. Conclusions

The purpose of this work was to create statistical models for EV charging that were
suitable for power system operation. Statistical models for EV charging were created
using data from the EV Project. This modeling with the appropriate data resulted in
reasonable and scalable EV charging load profiles. The models recognized coordinated and
uncoordinated charging loads. A production cost model could integrate the EV charging
model and assess the EV effects on the power system cost and loads.

The modeling of uncoordinated and coordinated charging profiles required the battery
size and charging level (power kW). In addition, the arrival time and planned energy
consumption were necessary (i.e., the initial and final SoC). However, for coordinated
charging, both the arrival and departure, or the equivalent availability, plus the energy or
charging requirement (MWh) for the whole fleet were required.

Statistical modeling recreated the uncoordinated charging profile. A Monte Carlo
simulation technique modeled the uncoordinated charging profile of each vehicle by
sampling the initial SoC, final SoC, charging level, and arrival time as the start time of
charging. The fleet charging profile was the sum of the individual charging profiles. The
statistical analysis chi-square method was used to find the best fit distribution for the
initial and final SoC. The best fit for the initial SoC was a beta distribution, and two beta
distributions for the final SoC. The least-mean-square method provided the beta parameters
to fit the data to beta distributions.

The authors developed an algorithm for modeling the uncoordinated charging and
incorporated the result into the PCM model as a time series, similar to the load forecast
or VRE forecast. However, coordinated charging modeling must be part of the PCM and
modeled as a controllable load with the constraints imposed by the fleet characteristics,
energy requirement (MWh), charging availability, and charging level (kW). Otherwise, the
modeling will neglect the influence of the EV fleet on the electricity price.

The NAU 5-bus system, a simple 5-bus power system similar to the PJM 5-bus model
but with time-series data from the RTS-GMLC model, was created to test the statistical
models of the EVs. Polaris Systems Optimization’s PSO was the PCM used for this
demonstration, and it showed the potential effects of 1000 EVs (maximum demand of ~0.2%
of the NAU 5-bus peak load) on power system operating costs, LMPs, and dispatch stacks
when implementing the two charging strategies mentioned above. The demonstration
showed interesting results, and revealed the potential positive or negative effects of EVs on
system operation. Coordinated charging exemplified the positive effects of accommodating
EV charging coincident with VRE. However, uncoordinated charging demonstrated the
negative effect of increasing the system peak load. With scalable statistical models of EVs,
such as those presented here, it is possible to investigate the impact of charging strategies
for the large-scale adoption of EVs on power system operations and costs.
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Appendix A. Cost Curves NAU 5-Bus System

Dispatch or cost curves of the committable generators presented in the NAU 5-bus
system, showing the variable cost of producing a unit of energy with respect to the power
output of these generators: (a) 121_NUCLEAR_1; (b) 101_STEAM_3 Coal; (c) 113_CT_1, 2,
3, 4 NG; (d) 102_CT_1 Oil; (e) 118_CC_1; (f) 117_CC_1; (g) 213_CC_3.
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Figure A1. Dispatch or cost curves of the committable generators presented in the NAU 5-bus system, showing the
variable cost of producing a unit of energy with respect to the power output these generators: (a) nuclear steam unit:
121_NUCLEAR_1; (b) coal steam unit: 101_STEAM_3 Coal; (c) natural gas (NG) combustion turbine (CT): 113_CT_1, 2, 3, 4
NG; (d) oil-fueled CT: 102_CT_1 Oil; (e) natural gas combined cycle (CC):118_CC_1; (f) 117_CC_1; (g) 213_CC_3.
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