Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network
Abstract
:1. Introduction
2. Methods
2.1. CEEMDANICA Method Introduction
2.2. Comprehensive Index Method
2.2.1. Multiscale Permutation Entropy (MPE)
2.2.2. Box Dimension
2.2.3. Correlation Coefficient
2.2.4. Kurtosis
2.3. Two-Dimensional Convolutional Neural Network
3. Bench Vibration Test of Rolling Bearing of Automatic Transmission
3.1. Two-Speed Automatic Mechanical Transmission
3.2. Test Platform
3.3. Signal Acquisition
4. Fault Diagnosis of Rolling-Element Bearing of Automatic Transmission
4.1. Signal Processing Based on CEEMDANICA
4.2. Fault Diagnosis of Rolling-Element Bearing Based on TDCNN
4.3. Comparison of Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ranjan, R.; Ghosh, S.K.; Kumar, M. Fault diagnosis of journal bearing in a hydropower plant using wear debris, vibration and temperature analysis: A case study. Proc. Inst. Mech. Eng. 2020, 234, 235–242. [Google Scholar] [CrossRef]
- Sharma, R.B.; Parey, A. Condition monitoring of gearbox using experimental investigation of acoustic emission technique. Procedia Eng. 2017, 173, 1575–1579. [Google Scholar] [CrossRef]
- Guan, Y.C.; Tong, P.; Feng, Z.P. Analysis of fault current signal characteristics of planetary gearbox based on ICEEMDAN method and frequency demodulation. Vib. Shock 2019, 38, 41–47. [Google Scholar]
- Zhang, X.X.; Li, S.B.; Zhe, L.X. Research on fault diagnosis of rolling bearing based on machine learning algorithm. Comb. Mach. Tools Autom. Process. Technol. 2020, 7, 36–39+44. [Google Scholar]
- Wang, J.; Du, G.; Zhu, Z. Fault diagnosis of rotating machines based on the EMD manifold. Mech. Syst. Signal Process. 2020, 135, 106443. [Google Scholar] [CrossRef]
- Long, J.Y.; Qin, Y.X.; Yang, Z. Discriminative feature learning using a multiscale convolutional capsule network from attitude data for fault diagnosis of industrial robots. Mech. Syst. Signal Process. 2023, 182, 109569. [Google Scholar] [CrossRef]
- Wang, H.; Dong, G.M.; Chen, J. A novel dictionary learning named deep and shared dictionary learning for fault diagnosis. Mech. Syst. Signal Process. 2023, 182, 109570. [Google Scholar] [CrossRef]
- Zhou, K.; Diehl, E.; Tang, J. Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations. Mech. Syst. Signal Process. 2023, 185, 109772. [Google Scholar] [CrossRef]
- Zinai, R.; Hammami, A.; Chaari, F. Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector. C. R. Mec. 2019, 34, 663–675. [Google Scholar] [CrossRef]
- Ge, J.; Niu, T.; Xu, D. A rolling bearing fault diagnosis method based on EEMD-WSST signal reconstruction and multi-scale entropy. Entropy 2020, 22, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.; Wu, Y.; Gong, H. A novel intelligent method for bearing fault diagnosis based on EEMD permutation entropy and gg clustering. Appl. Sci. 2020, 10, 386. [Google Scholar] [CrossRef] [Green Version]
- Lobato, T.H.G.; Silva, R.R.D.; Costa, E.S.D. An integrated approach to rotating machinery fault diagnosis using, EEMD, SVM, and augmented data. J. Vib. Eng. Technol. 2020, 8, 403–408. [Google Scholar] [CrossRef]
- Li, G.H.; Fu, Z.F.; Zeng, X. Rolling bearing fault diagnosis based on EEMD and SOM. Noise Vib. Control 2020, 40, 87–91. [Google Scholar]
- Xiao, M.; Zhang, C.; Wen, K. Bearing fault feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise. J. Vibroeng. 2018, 20, 2622–2631. [Google Scholar] [CrossRef] [Green Version]
- Vanraj Dhami, S.S. Non-contact incipient fault diagnosis method of fixed-axis gearbox based on CEEMDAN. R. Soc. Open Sci. 2017, 4, 170616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Lin, J.; Ding, J. A novel wheelset bearing fault diagnosis method integrated CEEMDAN, periodic segment matrix, and SVD. Shock Vib. 2018, 2018, 1382726. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Z.; Ouazri, J. A fault diagnosis method of rolling element bearings based on CEEMDAN. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2017, 231, 1804–1815. [Google Scholar] [CrossRef]
- Hu, C.; Shen, B.G.; Xie, Z.M. Fault diagnosis method of bearing based on EMD-FastICA and DGA-ELM network. Sol. Energy J. 2021, 42, 208–219. [Google Scholar]
- Lu, Q.; Li, M. A method combining fractal analysis and single channel ICA for vibration noise reduction. Shock Vib. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Song, Y.Z.; Tang, B.P.; Yan, B.S. Bearing fault diagnosis method based on EWT and ICA combined noise reduction. Comb. Mach. Tools Autom. Process. Technol. 2020, 7, 45–48, 54. [Google Scholar]
Number of Layers | Layer Name | Parameters |
---|---|---|
1 | input layer | input matrix 40 × 40 |
2 | convolution layer_1 | core size 17, number 20, step size 1 |
3 | batch integration | number of channels: 20 |
4 | activation function | ReLU |
5 | pooling layer_1 | 2 × 2 |
6 | convolution layer_2 | Core size 9, number 40, step size 1 |
7 | batch integration | number of channels: 40 |
8 | activation function | ReLU |
9 | pooling layer_2 | 2 × 2 |
10 | full connection layer | 100 |
11 | Output layer (softmax) | 10 |
Fault Type | Fault Size/mm | Signal Length | Speed (r/min) | Torque (Nm) |
---|---|---|---|---|
Normal_1 | - | 40,000 | 1965–2366 | 32 |
Inner ring_2 | 0.53 | 40,000 | 1965–2366 | 32 |
Ball_3 | 0.53 | 40,000 | 1965–2366 | 32 |
Outer ring_4 | 0.53 | 40,000 | 1965–2366 | 32 |
Outer & inner ring_5 | 0.18 | 40,000 | 1965–2366 | 32 |
Inner ring & ball_6 | 0.18 | 40,000 | 1965–2366 | 32 |
Outer ring & ball_7 | 0.18 | 40,000 | 1965–2366 | 32 |
ICA Components | MPE1 | MPE2 | MPE3 | MPE4 | MPE5 | Box Dimension | Kurtosis | Correlation Coefficient |
---|---|---|---|---|---|---|---|---|
ICA1 | 0.9702 | 0.9463 | 0.9834 | 0.9702 | 0.9655 | 1.6102 | 6.2456 | 0.0460 |
ICA2 | 0.9805 | 0.9832 | 0.9769 | 0.9716 | 0.9640 | 1.6569 | 8.4172 | 0.1186 |
ICA3 | 0.7454 | 0.5638 | 0.4908 | 0.4339 | 0.4115 | 1.2235 | 8.3421 | 0.0105 |
ICA4 | 0.6027 | 0.5334 | 0.5211 | 0.5373 | 0.5616 | 1.3262 | 4.7376 | 0.0061 |
ICA5 | 0.9862 | 0.9831 | 0.9794 | 0.9713 | 0.9683 | 1.6448 | 5.3347 | 0.6510 |
ICA6 | 0.4897 | 0.6912 | 0.8233 | 0.9021 | 0.9405 | 1.4517 | 4.1905 | 0.0053 |
ICA7 | 0.9745 | 0.9878 | 0.9819 | 0.9723 | 0.9647 | 1.7026 | 5.3354 | 0.2754 |
ICA8 | 0.8014 | 0.9237 | 0.9208 | 0.9416 | 0.8569 | 1.5732 | 3.8780 | 0.1003 |
ICA9 | 0.9838 | 0.9659 | 0.9783 | 0.9700 | 0.9699 | 1.6555 | 4.0085 | 0.1583 |
ICA10 | 0.7497 | 0.9718 | 0.9531 | 0.9690 | 0.9565 | 1.5524 | 4.2529 | 0.0166 |
Model | Recognition Accuracy (%) | Iteration Time (s) | |
---|---|---|---|
Training Accuracy | Testing Accuracy | ||
CEEMDANICA-TDCNN | 100 | 100 | 131 |
CEEMDANICA-BPNN | 96.76 | 99.52 | 170 |
CEEMDANICA-SAE | 95.1 | 95.67 | 97 |
CEEMDANICA-MLP | 100 | 71.43 | 84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Chen, Y.; Wang, W.; Wu, Y.; Liu, R. Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network. World Electr. Veh. J. 2022, 13, 184. https://doi.org/10.3390/wevj13100184
Li G, Chen Y, Wang W, Wu Y, Liu R. Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network. World Electric Vehicle Journal. 2022; 13(10):184. https://doi.org/10.3390/wevj13100184
Chicago/Turabian StyleLi, Guangxin, Yong Chen, Wenqing Wang, Yimin Wu, and Rui Liu. 2022. "Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network" World Electric Vehicle Journal 13, no. 10: 184. https://doi.org/10.3390/wevj13100184
APA StyleLi, G., Chen, Y., Wang, W., Wu, Y., & Liu, R. (2022). Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network. World Electric Vehicle Journal, 13(10), 184. https://doi.org/10.3390/wevj13100184