Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network
Abstract
:1. Introduction
2. Related Works
3. Location and Capacity of Intelligent Charging Pile Based on RNN Algorithm
3.1. Subsection
3.2. Firefly Algorithm and Its Application Characteristics
3.3. Firefly Algorithm and Its Application Characteristics
4. Model Simulation Experiment Results and Analysis
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Z.; Ai, Y.; Chen, J.; Wang, F.; Zhang, W. Deep Recurrent Neural Network Architecture of High Order Indirect Integration Method. Neural Process. Lett. 2022, 54, 1233–1253. [Google Scholar] [CrossRef]
- Selvaggio, A.Z.; Sousa, F.M.M.; da Silva, F.V.; Vianna, S.S. Application of long short-term memory recurrent neural networks for localisation of leak source using 3D computational fluid dynamics. Process Saf. Environ. Prot. 2022, 159, 757–767. [Google Scholar] [CrossRef]
- Xu, M.; Liu, W.; Xu, J.; Xia, Y.; Mao, J.; Xu, C.; Hu, S.; Huang, D. Recurrent Neural Network Based Link Quality Prediction for Fluctuating Low Power Wireless Links. Sensors 2022, 22, 1212. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y. A personalized lane keeping system for autonomous vehicles based on recurrent neural network with temporal dependencies. J. Mech. Sci. Technol. 2022, 36, 565–574. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, Q.; Shen, Y.; Qian, C.; Xu, F.; Zhu, Q. Application of recurrent neural network to mechanical fault diagnosis: A review. J. Mech. Sci. Technol. 2022, 36, 527–542. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Chandra, D.R.; Grimaccia, F.; Mussetta, M. Short Term Electric Power Load Forecasting Using Principal Component Analysis and Recurrent Neural Networks. Forecasting 2022, 4, 149–164. [Google Scholar] [CrossRef]
- Gonzalez, J.; Yu, W.; Telesca, L. Gated Recurrent Units Based Recurrent Neural Network for Forecasting the Characteristics of the Next Earthquake. Cybern. Syst. 2021, 53, 209–222. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Qi, L. Bayesian Regularization Algorithm Based Recurrent Neural Network Method and NSGA-II for the Optimal Design of the Reflector. Machines 2022, 10, 63. [Google Scholar] [CrossRef]
- Gao, Y.; No, A. Age Estimation from fMRI data using recurrent neural network. Appl. Sci. 2022, 12, 749. [Google Scholar] [CrossRef]
- Wang, G.; Hao, Z.; Zhang, B.; Jin, L. Convergence and robustness of bounded recurrent neural networks for solving dynamic Lyapunov equations. Inf. Sci. 2021, 588, 106–123. [Google Scholar] [CrossRef]
- Tao, Y.; Huang, M.H.; Chen, Y.P.; Yang, L. Review of optimized layout of electric vehicle charging infrastructures. J. Cent. South Univ. 2021, 28, 3268–3278. [Google Scholar] [CrossRef]
- Liu, W.; Tang, Y.; Yang, F.; Dou, Y.; Wang, J. A Multi-Objective Decision-Making Approach for the Optimal Location of Electric Vehicle Charging Facilities. Comput. Mater. Contin. 2019, 60, 813–834. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Sarder, M.D. Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int. J. Electr. Power Energy Syst. 2018, 105, 110–122. [Google Scholar] [CrossRef]
- Rajani, B.; Kommula, B.N. An optimal energy management among the electric vehicle charging stations and electricity distribution system using GPC-RERNN approach. Energy 2022, 245, 12–78. [Google Scholar] [CrossRef]
- Gao, J.; Wang, M.; Song, Z.; Zhuge, J.; Xing, S. Study on site selection of airport charging pile based ongenetic algorithm. Comput. Eng. Appl. 2019, 54, 210–216. [Google Scholar]
- Huang, Y.; Yu, J.; Leng, J.; Liu, B.; Yi, Z. Continuous Recurrent Neural Networks Based on Function Satlins. Neural Process. Lett. 2022, 54, 1–23. [Google Scholar] [CrossRef]
- An, H.; Fang, X.; Liu, Z.; Li, Y. Research on a soft-measurement model of gasification temperature based on recurrent neural network. Clean Energy 2021, 6, 97–104. [Google Scholar] [CrossRef]
- Mirzazadeh, Z.S.; Hassan, J.B.; Mansoori, A. Assignment model with multi-objective linear programming for allocating choice ranking using recurrent neural network. RAIRO-Oper. Res. 2021, 55, 3107–3119. [Google Scholar] [CrossRef]
- Rai, A.K.; Senthilkumar, R.; Aruputharaj, K. Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization (FRNN-MDSO) for hyperspectral image based face recognition in real time door locking applications. J. Intell. Fuzzy Syst. 2021, 41, 6589–6599. [Google Scholar] [CrossRef]
- Es Saiydy, M.; Zitane, M. Dynamic behavior of a class of delayed lotka–volterra recurrent neural networks on time scales. Russ. Math. 2021, 65, 59–75. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.; Song, Q.; Yang, X. Quasi-Projective Synchronization of Distributed-Order Recurrent Neural Networks. Fractal Fract. 2021, 5, 260. [Google Scholar] [CrossRef]
- Kang, I.; Pang, S.; Zhang, Q.; Fang, N.; Barbastathis, G. Recurrent neural network reveals transparent objects through scattering media. Optics Express 2021, 29, 5316–5326. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Yan, K.; Yang, H.; Bedal, J.; Qin, Z. A sparse spike deconvolution method based on Recurrent Neural Network like improved Iterative Shrinkage Thresholding Algorithm. Geophys. Prospect. Pet. 2022, 58, 533–540. [Google Scholar]
- Kuang, B.; Nnabuife, S.G.; Sun, S.; Whidborne, J.F.; Rana, Z.A. Gas-liquid flow regimes identification using non-intrusive Doppler ultrasonic sensor and convolutional recurrent neural networks in an s-shaped riser. Digit. Chem. Eng. 2022, 2, 100012. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Wai, R.-J. Design of Adaptive Distributed Secondary Control Using Double-Hidden-Layer Recurrent-Neural-Network-Inherited Total-Sliding-Mode Scheme for Islanded Micro-Grid. IEEE Access. 2022, 99, 1. [Google Scholar] [CrossRef]
- Saeed, A.; Li, C.; Gan, Z. Short-Term Wind Speed Interval Prediction using LUBE based Quasi-Recurrent Neural Network. J. Phys. Conf. Ser. 2022, 2189, 15–19. [Google Scholar] [CrossRef]
- Yuan, Y.; Luo, Y.; Kang, L.; Ni, J.; Zhang, Q. Range Alignment in ISAR Imaging Based on Deep Recurrent Neural Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 27–34. [Google Scholar] [CrossRef]
- Luo, C.; Zhao, X.; Sun, Y.; Li, X.; Ye, Y. PredRANN: The spatiotemporal attention Convolution Recurrent Neural Network for precipitation now casting. Knowl. Based Syst. 2022, 239, 107–109. [Google Scholar] [CrossRef]
- Kaczmarek, T.; Będowska-Sójka, B.; Grobelny, P.; Perez, K. False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network. Res. Int. Bus. Financ. 2022, 60, 7–9. [Google Scholar] [CrossRef]
- Caseri, A.N.; Santos, L.B.L.; Stephany, S. A convolutional recurrent neural network for strong convective rainfall now casting using weather radar data in Southeastern Brazil. Artif. Intell. Geosci. 2022, 3, 8–13. [Google Scholar]
- Paraschiakos, S.; de Sá, C.R.; Okai, J.; Slagboom, P.E.; Beekman, M.; Knobbe, A. A recurrent neural network architecture to model physical activity energy expenditure in older people. Data Min. Knowl. Discov. 2022, 36, 1–36. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, C.; Li, B.; Hu, J. A One-Layer Recurrent Neural Network for Interval-Valued Optimization Problem with Linear Constraints. Neural Process. Lett. 2022, 54, 1–18. [Google Scholar] [CrossRef]
Period | Trip End Probability | Period | Trip End Probability | Period | Trip End Probability | Period | Trip End Probability |
---|---|---|---|---|---|---|---|
1 | 0 | 7 | 0.1239 | 13 | 0.0612 | 19 | 0 |
2 | 0 | 8 | 0.4055 | 14 | 0.0199 | 20 | 0 |
3 | 0 | 9 | 0.1899 | 15 | 0 | 21 | 0 |
4 | 0 | 10 | 0.0742 | 16 | 0.0076 | 22 | 0 |
5 | 0 | 11 | 0.1910 | 17 | 0.0091 | 23 | 0.0086 |
6 | 0.0127 | 12 | 0.0231 | 18 | 0 | 24 | 0 |
Road Condition | Air Temperature (°C) | Air Conditioner | Battery Life (km) |
---|---|---|---|
Unmanned | 20 | Closure | 249 |
Smooth | 18 | Closure | 237 |
Stroll | 0 | Heating | 182 |
Morning peak | 27 | Closure | 154 |
Holiday peak | 39 | Refrigeration | 133 |
Charging Pile Code | Investment Cost (10,000 yuan/year) | Operating Cost (10,000 yuan/year) | |
---|---|---|---|
1 | 600 | 137.12 | 29.12 |
2 | 500 | 101.33 | 23.12 |
3 | 400 | 88.42 | 19.88 |
4 | 300 | 78.19 | 18.76 |
5 | 200 | 60.78 | 15.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S. Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network. World Electr. Veh. J. 2022, 13, 186. https://doi.org/10.3390/wevj13100186
Su S. Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network. World Electric Vehicle Journal. 2022; 13(10):186. https://doi.org/10.3390/wevj13100186
Chicago/Turabian StyleSu, Shangbin. 2022. "Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network" World Electric Vehicle Journal 13, no. 10: 186. https://doi.org/10.3390/wevj13100186
APA StyleSu, S. (2022). Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network. World Electric Vehicle Journal, 13(10), 186. https://doi.org/10.3390/wevj13100186