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Abstract: The existing intelligent vehicle trajectory-planning methods have limitations in terms
of efficiency and safety. To overcome these limitations, this paper proposes an automatic driving
trajectory-planning method based on a variable Gaussian safety field. Firstly, the time series bird’s-
eye view is used as the input state quantity of the network, which improves the effectiveness of the
trajectory planning policy network in extracting the features of the surrounding traffic environment.
Then, the policy gradient algorithm is used to generate the planned trajectory of the autonomous
vehicle, which improves the planning efficiency. The variable Gaussian safety field is used as the
reward function of the trajectory planning part and the evaluation index of the control part, which
improves the safety of the reinforcement learning vehicle tracking algorithm. The proposed algorithm
is verified using the simulator. The obtained results show that the proposed algorithm has excellent
trajectory planning ability in the highway scene and can achieve high safety and high precision
tracking control.

Keywords: autonomous driving; planning algorithm; variable Gaussian safety field; reinforcement
learning; policy gradient

1. Introduction

In recent years, autonomous driving technology has developed rapidly due to its
significant economic potential and advantages in improving traffic efficiency and driving
safety. Various methods have been proposed to solve the decision-making problem of
autonomous vehicles in highway driving tasks. Most studies have considered decision
making as a control problem. As an unavoidable part of the autonomous driving system,
trajectory planning is of great significance to the study of the autonomous vehicle. Avoid-
ing the surrounding obstacles accurately and driving safely and efficiently based on the
upper perception and prediction results are the basic requirements for automobile driving.
Therefore, most autonomous driving researchers are now focusing on more intelligent, safe
and efficient trajectory-planning methods.

The existing trajectory-planning methods are generally divided into four categories:
potential field methods [1], sample-based methods [2], search-based methods [3], and
optimization-based methods [4]. A potential field method simulates the movement of
a controlled object in space into a forced movement of a particle in a virtual force field
and plans the future trajectory of a vehicle by calculating the combined force field to
which the vehicle is subjected. However, this method relies on accurate modeling of the
environment, which will put the training into the dilemma of the local optimal solution
and increase the computational cost. The sampling-based methods are mainly divided into
fast random search tree (RRT) and probability path map (PRM) methods. The probability
map path method is based on the graph structure, converts the continuous space into a
discrete space, and uses the search algorithms such as A* to find paths on the route map
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to improve search efficiency. However, this method needs to solve the boundary value
problem and does not focus on generating paths in the process of building the graph. The
search-based planning algorithms mainly refer to map search methods, including A*, D*,
and the corresponding variants. This kind of algorithm is widely used in the field of robot
motion planning, but its planned path does not consider the geometric constraints of the
road and has poor smoothness. Qi Xuanxuan et al. [5] introduced simulated annealing
to optimize the expansion of nodes and heuristic functions, and guided the algorithm to
search for the target point, which improved the inefficiency of the traditional A* algorithm
but still fell into the dilemma of a suboptimal solution. To improve sampling efficiency
and avoid suboptimal dilemmas for agents, Claussmann et al. [6] classified the spatial
configuration for route planning into three main categories: sampling [7], connection
unit [8], and raster representation (Lattice) [9]. The raster representation can be used to
predict and plan based on the moving obstacles around the vehicle while considering the
kinematic constraints. However, the raster method is difficult to sample completely and
can only sample better driving tracks. It is also difficult for the complete search method
to consider the dynamic constraints of the automobile. The trajectory planning based on
the optimization method has higher computational power requirements for the vehicle
computer, and the optimization delay between each frame is large. In summary, most of the
existing traditional trajectory-planning methods have relatively stable security performance
and excellent computational efficiency. However, they focus only on the generation of the
optimal path and can fall into the suboptimal dilemma.

In recent years, deep reinforcement learning (DRL) has shown satisfactory perfor-
mance in both trajectory planning and trajectory tracking control. Feher et al. [10] trained
deep deterministic policy gradient (DDPG) agents to generate waypoints for vehicle track-
ing and achieved good results. However, the algorithm only focused on the lateral trajectory
and provided a suboptimal solution. Several studies have used original sensor measure-
ments to generate turn angles and throttle values [11–16] in an end-to-end manner. The
deep deterministic actor-critic (DDAC) algorithm [11,12] can keep the vehicle as far as
possible on the center line of the lane and has achieved satisfactory results. However,
this algorithm only considers the lateral control, not the longitudinal vehicle following.
Lingli Yu et al. [15,16] proposed to use the DDPG algorithm to reduce the dependence on
sample data. Their method had more continuous corner control and less lateral error when
a vehicle was traveling. Although better results have been shown in the simulation envi-
ronment, the agent is still affected by turn and throttle fluctuations and does not consider
safety issues when interacting with other vehicles in highway conditions resulting in poor
stability and safety.

To solve the above-mentioned problems, a vehicle safety planning and control method
based on the variable Gauss safety field is designed in this paper. A planning model is
constructed using a time series bird’s-eye view as a state quantity and policy gradient
algorithm. The timeliness and security of the planning model are verified by experiments.
The reinforcement learning method of multi-task partitioning is used to partition and
train the whole automatic driving trajectory tracking control task. Compared with the
general end-to-end reinforcement learning auto-driving method, the multi-task partitioned
training method reduces the training duration by dividing the entire auto-driving tracking
control task into several sub-tasks and improves the noise input method in the longitudinal
control module to further improve the training efficiency and provide a smoother driving
experience. Meanwhile, protecting traffic participants is the most important topic in driving
theory. Wang et al. [17,18] proposed the driving safety field theory modeling method and
developed a collision warning algorithm, field experiments were conducted to verify the
proposed algorithm. However, the whole framework contains several factors of driver,
vehicle, and road, which bring great difficulties to practical application. To improve the
practicability of safety field theory, a variable Gaussian safety field model is proposed to
reveal the dynamic field characteristics of vertices. We use the variable Gaussian safety field
model as the reward function of the planning module and combined with the constraint
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and evaluation index of the control module. The model combines a Gaussian field in both
directions to form an envelope and varies with the vehicle speed angle. While ensuring
reasonable trajectory generation, the interaction of the ego vehicle with the surrounding
vehicles is utilized to actively avoid the surrounding vehicles when they enter the Gaussian
field, which improves the safety performance of the vehicle in high-speed scenarios such as
highways. The simulation results in CARLA show that the vehicle safety planning control
method based on the variable Gauss safety field has good planning efficiency and better
safety compared with the traditional algorithms.

The main contributions of this paper are as follows:

(1) An automatic driving trajectory-planning method based on time series bird’s-eye
view and policy gradient algorithm is designed. The policy gradient algorithm is
used to improve the ability of automatic driving vehicle trajectory planning and
the efficiency of Lattice sampling method for trajectory planning. The time series
bird’s-eye view combined with the policy gradient algorithm can enhance the ability
of feature extraction of the policy network, make the network convergence easier, and
improve the feasibility of the method.

(2) The variable Gauss security field is added as the evaluation index of the reward
function and control part to improve the security of trajectory and control effect.

2. Route Planning Algorithm

The goal of trajectory planning for autonomous driving is to find the optimal trajectory
in advance for a vehicle. On the one hand, it is necessary to ensure the safety of the vehicle;
On the other hand, getting to the destination through obstacles as soon as possible, reducing
traffic pressure and improving driving efficiency are also important criteria to measure the
effectiveness of the planned trajectory. Figure 1 shows that the trajectory planning module
plays a key role in the overall auto-driving system.
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Figure 1. Autopilot system flow chart.

2.1. Time Series Bird’s-Eye View and Strategic Network

The agents of reinforcement learning obtain the state input through interaction with
the surrounding complex traffic environment to conduct effective learning training. One of
the difficulties of the existing reinforcement learning algorithm is obtaining effective state
features from complex environments. Overly redundant states will increase the learning
difficulty of the agent. It is particularly important to make it easier for an agent to extract
valid features. Therefore, this paper designs a policy network and corresponding time
series bird’s-eye view as the state quantity of the reinforcement learning, enabling the
network to extract better environmental features.

2.1.1. Policy Network State Quantity

For an effective policy network for reinforcement learning, it is essential to obtain
the perceptual information including lane lines, pedestrians, vehicles, and obstacles from
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the surrounding environment as well as the predictive tracks for the next few moments
including dynamic obstacles.

The sequential bird’s-eye view significantly improves the learning efficiency of the
policy network. Figure 2 shows the time series bird’s-eye view matrix diagram.
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Figure 2. A time series bird’s-eye view matrix diagram.

The bird’s-eye view is a three-dimensional matrix composed of lateral displacement,
vertical displacement and time. The specific elements in the matrix diagram shown in
Figure 2 include (a) the current position status of the ego vehicle, (b) the ego vehicle,
(c) obstacles, (d) the non-driving area and (e) the exercisable area, (f) the reference line,
(g) the planned trajectory.

The generation of the time series bird’s-eye view includes the following two steps:
(1) According to the perception module of the autonomous vehicle, obtain the surrounding
environmental information, including dynamic and static obstacles and lane lines. The
prediction module is used to obtain the position information of dynamic obstacles in the
future time of 0 ∼ tend. (2) The information obtained from the perception module and the
information is used to generate a bird’s-eye view of features in three dimensions: horizontal,
vertical and time.

The size of the three-dimensional the time series bird’s-eye view matrix is (40, 400, 80).
The first dimension 40 represents the horizontal range of 10 m on the left and right of the
reference line, with the horizontal displacement interval of 0.5 m; The second dimension
400 represents the longitudinal 200 m forward range with the ego vehicle as the origin, the
longitudinal displacement interval is 0.5 m, and the third dimension 80 represents the time
range within the next 8 s, the time interval is 1 s. The (c) obstacles and (d) the non-driving
area are represented by −1 in the time series bird’s-eye view matrix; (e) the exercisable
area is represented by 0 in the time series bird’s-eye view matrix; (f) the reference line
is represented by 1 in the time series bird’s-eye view. In the matrix, the reference line
represents higher priority than (c) obstacles, (d) the non-driving area and (e) the exercisable
area. At the same time, (a) the current position status of the ego vehicle, (b) the ego vehicle,
and (g) the planned trajectory are not specifically represented in the time series bird’s-eye
view matrix.

Figure 3 shows the vertical view of a time series bird’s-eye view with a green rect-
angle representing the vehicles on the highway and a dashed grey line representing the
driveway sidelines.
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Figure 3. Time series bird’s-eye view top view.

The generation of a time series bird’s-eye view includes the following two steps:
(1) Obtain the surrounding environment information, including dynamic and static obsta-
cles, and lane lines, according to the perception module of the automobile. Obtain dynamic
obstacles using prediction module in the future 0 ∼ tend location information within the
end. (2) Generate cross-sectional, vertical, and temporal feature bird’s-eye views using the
information obtained from the perception and prediction modules. Then, train using the
bird’s-eye view as the state input.

2.1.2. Strategic Network Structure

Figure 4 shows the structure of the policy network πθ(z, a). The network includes a
convolution feature extraction network consisting of one convolution layer and a fully con-
nected network consisting of three fully connected layers. Where z is the input state quantity
of the policy network, including the time series bird’s-eye view matrix and the history track
of the vehicle, θ denote the weights and offset parameters for the network and a is the output
of the policy network, that is, the final state of the planning trajectory a =

{
s,

.
s,

..
s, l,

.
l,

..
l, t
}

,

where s,
.
s and

..
s are the final longitudinal position, the end-of-longitudinal speed, and the

acceleration of the longitudinal end state of the vehicle, respectively, while l,
.
l and

..
l are the

lateral end state position, the lateral end-state speed and the acceleration of the lateral end
state of the vehicle, respectively. The input of the convolution feature extraction network
is the time series aerial view matrix and the output is the final extracted environmental
feature information. The input of the fully connected network is the convolution feature.
The environmental feature information and the historical track information of the vehicle
are extracted from the network output.
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2.2. Variable Gauss Safety Field Theory

Since reinforcement learning explores policies and rewards by making agents con-
stantly try and error, the security of reinforcement learning is lower than the other methods.
Improving the security of reinforcement learning remains the focus of research. The variable
Gauss security field model based on risk center transfer further improves the security of
trajectory planning and control methods and serves as the reward function of the trajectory
planning part and the constraint boundary of the control part.

Figure 5 shows that a static vehicle is abstracted as a rectangle with a length of lv, a
width of wv, and the risk center O(x0, y0) is its geometric center. The static security field of
the vehicle is described by a two-dimensional Gaussian function as:

Ssta = Ca · exp(− (x− x0)
2

a2
x

− (y− y0)
2

b2
y

) (1)

where Ca is the field strength factor, ax and by represent the function of vehicle shape. The
main control parameter for the shape of a static safety field is anisotropy:

ε =
a2

x − b2
y

a2
x + b2

y
=

φ2 − 1
φ2 + 1

(2)
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Parameter ε equivalently expressed in aspect ratio ∅ = ax/by = lv/wv.
The direction of the safety field is a vector from the risk center whose isoelectric line

is projected upward into a series of ellipses. In Figure 5, the red rectangle represents the
vehicle, the area in the solid red rectangle is called the core domain, the area between the
red and the yellow ellipses is called the restriction domain, the area between the yellow
and the blue ellipses is called the expansion domain, and each area represents a different
risk state. The sizes of these different domains are related to the shape and motion of the
vehicle and can be determined based on the parameters ax, by of the Gaussian function (1).
The Gauss security field is variable. The aspect ratio of the virtual vehicle will change with
the change of the vehicle motion state and will significantly change the core, restriction and
extension domains of the Gauss security field.

Figure 6 shows the overhead projection of the dynamic safety field. It can be seen that
when the vehicle is in motion, the risk center will transfer following the vector kv

→
v , the

new risk center becomes O′(x0
′, y0

′) and there are: x′0 = x0 + kv

∣∣∣→v ∣∣∣ cos β

y′0 = y0 + kv

∣∣∣→v ∣∣∣ sin β
(3)
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where
→
v is the velocity vector of the vehicle motion, kv is the regulator and 0 < kv < 1 or

−1 < kv < 0, the sign corresponds to the front and back directions of the movement. β is
the transferred angle between the vector and the x-axis.
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A virtual vehicle is formed with a length of l′v and width of w′v under the transfer of
the risk center, whose geometric center is (x′0, y′0), which establishes its dynamic security
field as:

Sdyn = Ca · exp(−
(x− x′0)

2

(a′x)
2 −

(y− y′0)
2

(b′y)
2 ) (4)

where a′x and b′y are parameters related to vehicle shape and motion state. The new aspect
ratio is expressed as ∅′ = ax

′/by
′ = lv ′/wv

′.

2.3. Improved Lattice Programming Algorithm Based on Strategic Gradient Algorithm

The traditional Lattice programming algorithm achieves trajectory planning by sam-
pling the target vertically and horizontally. This method will lead to the dilemma of a
suboptimal solution for the sample-fitting trajectory, and it would be difficult to obtain
the optimal trajectory. However, too many sampling points will lead to complex and
inefficient calculations.

The Lattice algorithm is improved by using the policy gradient algorithm to directly
obtain the optimal final state sample points as shown in Figure 7. This improved method
abandons sampling with high time complexity and cost function evaluation for each
alternate trajectory, which considerably improves the timeliness of the algorithm. Although
the training process of reinforcement learning has better universality than the general rule-based
planning algorithm, the design of the reward function based on the final control effect will
make it more suitable for complex traffic scenes and complex vehicle dynamic features.

2.3.1. Track Planning Agent Design

The trajectory output by general dynamic programming, Monte Carlo sampling and
time series difference methods will have a complete state action sequence < s0, a0, s1, a1 · · ·
send−1, aend−1, send > and a trajectory consists of several state–action pairs as shown in
Figure 8. Different actions a in each step will inevitably lead to changes in the overall
trajectory. This will necessarily result in an exponential increase in the complexity of the
solution as the length of the trajectory will increase. The simplified trajectory τ is composed
of the start state s0, action a and end state send. In the start state s0, executing action a
produces a unique trajectory τ, reaching the end state send.
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Figure 8. Diagrams of single-step and multi-step dynamic planning trajectory outputs.

In practice, the policy gradient algorithm is used instead of the last state sampling
process in the Lattice algorithm. The end state of the track is used as the action space A:

A =
{

send,
.
send,

..
send, lend,

.
lend,

..
lend

}
(5)

Policy network πθ(z, a) maximizes the expected return of the output trajectory as an
optimization objective:

J(π) = ∑τ
p(τ, θ) · r(τ) (6)

where z denotes the state features of the surrounding traffic environment, a is the network
output action, θ is a network parameter, p = (τ, θ) is the probability of executing action a
and outputting track τ under parameter θ and state z, and r(τ) is the reward function of
trajectory τ.

The gradient rise method is used to optimize πθ(z, a) from Equation (6):

θ = θ + α · ∇θ J(π) (7)
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To calculate the derivative of the optimization objective with respect to network
parameter θ, the strategy gradient is derived as:

∇θ J(θ) = ∇θ∑τ p(τ, θ) · r(τ)
= ∑τ∇θ p(τ, θ) · r(τ)
= ∑τ

p(τ,θ)
p(τ,θ)∇θ p(τ, θ) · r(τ)

= ∑τ p(τ, θ)∇θ log p(τ, θ) · r(τ)

(8)

To improve the efficiency of training, during the training process, the agent continu-
ously stores the experience data < z, a, τ, r > from the interaction with the environment
in real-time into the experience pool (Memory). The Monte Carlo method is also used to
randomly extract the mini-batch-sized empirical data from the experience pool for training:

∇θ J(θ) ≈ 1
n∑n

i=1∇θ log p(τ, θ) · r(τ) (9)

From Formula (9), the update direction of the final policy parameters θ is:

θ = θ + α · 1
n∑n

i=1∇θ log p(τ, θ) · r(τ) (10)

To enhance the agent’s exploring ability in unfamiliar state space and avoid the agent
falling into local optimal space during training, the output of the policy network πθ(z, a)
will conform to normal distribution. It consists of two parts: mean µ(z, a) and variance
σ(z, a):

πθ(z, a) =
1√

2π · σ(z, θ)
exp(− (z− µ(z, θ))2

2σ2(z, θ)
) (11)

During the learning process of the policy network πθ(z, a), the mean µ(z, a) and the
variance σ(z, a) of the output keep approaching argmaxQ(z, a) and 0, respectively, and the
probability of the agent taking random behavior exploration keeps decreasing. During
training, the agent selects action a =

{
s,

.
s,

..
s, l,

.
l,

..
l, t
}

from this normal distribution as the
training output and executes it.

2.3.2. Reward Function Design

Reinforcement learning obtains the amount of state by interacting with the environ-
ment and evaluates the training agent by a reward function. The agents obtain higher
returns by continuously optimizing their network of policies. Therefore, the design of
the reward function is critical to the convergence of the agent, which affects the final
decision-making results of the overall model. Moreover, a reasonable reward function
design can also make the agent obtain more incentives from the environment and accelerate
the convergence speed of the agent.

The reward function design for the trajectory planning section includes the
following sections:

reward = k1 · rspeed + k2 · racc + k3 · rlateral + k4 · rcom f ort + k5 · radditional + k6 · rsa f e (12)

In the formula, rspeed = −∑t<ttotal
t·
(
νtarget − νt

)2 is the speed reward, its goal is to

keep the speed at the target speed; racc = −∑t<ttotal

..
s2

t and rcom f ort = −∑t<ttotal

..
lt

2 are
the longitudinal and lateral comfort rewards, respectively, their goals are to maintain low
longitudinal acceleration and low lateral acceleration, respectively; rlateral = −∑t<ttotal

l2
t is

the lateral deviation reward, its goal is to maintain a small lateral deviation from the ref-

erence line; radditoanal = −∑t<total

(
st − sactual

t

)2
+
(

lt − lactual
t

)2
is the additional coupling

reward, the objective is to maintain the coupling force between the planned trajectory and
the controller and vehicle dynamics, and to maintain a better horizontal and vertical track-
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ing accuracy of the vehicle during actual tracking; and rsa f e is the safety reward. k1 ∼ k6
is the proportion weight of each reward function. Where, k1 = 1.0, k2 = 0.2, k3 = 1.0,
k4 = 0.2, k5 = 0.5, and k6 = 1.0. The value of k1 ∼ k6 is obtained through debugging, and
the specific value comparison is shown in Figure 9 below.
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The design of rsa f e is constrained by the variable Gaussian safety field, as shown below:
When the vehicle is stationary:

rsa f e,lat =

{
−100 i f dlat < lv
0 i f dlat >lv

rsa f e,lon =

 −100 i f dlon < 3lv√
9−w2

v

0 i f dlon > 3lv√
9−w2

v

(13)

When the vehicle is moving:

rsa f e,lat =

{
−100 i f dlat < l′v
0 i f dlat > l′v

rsa f e,lon =


−100 i f dlon < 4l′v√

16−(w′v)2

0 i f dlon > 4l′v√
16−(w′v)2

(14)

where

w′v = wv + 2·kv·
∣∣∣→v ∣∣∣· sin β

l′v = lv + 2·kv·
∣∣∣→v ∣∣∣· cos β

, lv and wv are the length and the width of the agent,

respectively,
→
v is the speed vector of vehicle motion, kv is the adjustment factor, and β is

the angle between the transfer vector and the x-axis. After the actual vehicle test, kv = 0.35.

3. Controller Design

The traditional trajectory planning module and the control module are simple upper
and lower-level relationships. The trajectory planning module outputs the optimal trajec-
tory and the controller tracks the control. Although this mode is simple and easy to operate,
it cannot meet the real-time requirements in complex traffic environments. Figure 10 shows
the relationship diagram of the proposed feedback design model. It can be seen from the
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figure that the trajectory planning agent based on the policy gradient algorithm, the trajec-
tory tracking controller and the environment form a planning control environment closed
loop. The proposed loop feedback design model will enable the agents to continuously
learn to adapt to the environment and adapt to the trajectory tracking controller. This
method effectively links the traffic environment, the planner and the controller, so that the
output trajectory of the planner can effectively adapt to the dynamic features of the vehicle
and the controller. To enable the agent to stably, efficiently and safely track the optimal
trajectory output by the planner, and improve the efficiency, the training of the control part
is divided into horizontal control and vertical control.
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3.1. Horizontal Trajectory Tracking Control Model Training

The goal of the traditional horizontal trajectory tracking task [19,20] is to enable
vehicles to drive stably on the lane line without deviating, regardless of the state relationship
with other vehicles. However, when the vehicle tracks and controls the track, the first
consideration is the safety of the track, that is, it will not collide with other vehicles.
Therefore, the variable Gaussian safety field is introduced as the evaluation index, and
the state quantity and reward function are adjusted. The variables including the distance
di from other vehicles, the lateral relative coordinate xi−v, the coordinate (xi, yi) of the
navigation point in the current vehicle coordinate system, the heading deviation ϕ and the
speed v and acceleration

.
v of the control vehicle are added as the state variables:

slane−keep =< d0, d1, . . . , x0, x1, . . . , x1−v, x2−v, . . . , ϕ, v,
.
v > (15)

The output action is only the steering wheel angle asteer ∈ [−1, 1]. For the design
of the reward function for lane keeping, the lateral error x0 between the current vehicle
coordinate and the lane centerline, the deviation ϕ of the heading angle and the relative
distance di from other vehicles are considered as the evaluation index reward functions:

rsa f e,lat = − log(
∣∣∣ 1√

2
w′v − d

∣∣∣+ 1, 1.2)

rsa f e,lon = − log(
∣∣∣ 1√

2
l′v − d

∣∣∣+ 1, 1.2)

rlane−keep = −k1abs(x0)− k2 sin ϕ

(16)

where

w′v = wv + 2·kv·
∣∣∣→v ∣∣∣· sin β

l′v = lv + 2·kv·
∣∣∣→v ∣∣∣· cos β

, lv and wv are the length and the width of the agent,

respectively,
→
v is the speed vector of vehicle motion, kv is the adjustment factor, and β is

the angle between the transfer vector and the x-axis. After the actual vehicle test, kv = 0.35.
If the lateral deviation of the current position of the autonomous vehicle is greater

than the set maximum lateral deviation threshold value x0max during the training, the
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current round of iterative training will be ended for the next round of training. Through the
cumulative reward mechanism, agents that enhance learning continuously obtain higher
reward reports. Hence, they can take more potential threats into account. However, the
dynamic features of the vehicle will be hidden in the state quantity of the past few moments.
Thus, it would be difficult to fully understand the current state of the intelligent vehicle only
through the current state quantity. To enable the agent to better understand the dynamic
features of the intelligent vehicle at the current time and output more reasonable trajectory
tracking actions, the state quantities at the current time and at the past four times are
stacked together as network inputs.

3.2. Training of Longitudinal Trajectory Tracking Control Model

To maintain an ideal distance between the ego vehicle and the vehicle in front without
any collision with the vehicle in front, the ego vehicle is expected to cruise at a constant
speed when there is no vehicle in front. When there are other vehicles in front of the ego
vehicle, the road information is not considered, instead only the information of the current
vehicle and the vehicle ahead is considered as the state quantity. Figure 11 describes the
cruise mission status. The longitudinal trajectory tracking control task considers the speed
v and acceleration

.
v of the current vehicle, speed vl and acceleration

.
vl of the vehicle in

front, the distance d from the vehicle in front and the expected speed vdes of the current
vehicle as the state variables:

sacc =< y0, y1, . . . , ϕ, v,
.
v > (17)
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Output action aacc ∈ [−1, 1] of the agent, including accelerator action athrottle and
brake action abrake: {

athrottle = aacc, abrake = 0 i f aacc ≥ 0
athrottle = 0, abrake = aacc i f aacc < 0

(18)

For vertical control tasks, the reward function is designed as:

racc =

{
−k5abs(v− vdes)− k6abs(d− ddes) i f d > dsa f e

−100 i f d ≤ dsa f e
(19)

where ddes and dsa f e are the expected and safe distances from the vehicle in front, respec-
tively. When the distance between the intelligent vehicle and the vehicle in front is less
than the safe distance, the reward is −100 and the current interaction is stopped to start the
next round of interaction. During longitudinal training, the speed vl of the vehicle in front
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and the expected speed vdes of the current vehicle are randomly given each round, so that
the training model can be generalized to more complex situations.

The traditional training mostly uses Gaussian noise or Ornstein Uhlenbeck (OU)
noise to promote agents to actively explore the environment at the beginning of training.
However, unnecessary exploration will prolong the training time of agents. Therefore, in
this paper, a Multi-Head Actor network structure is designed for the tasks with convex
solution space in longitudinal control tasks. The main function of the proposed structure
is to make the output action noisy. Action noise reflects the uncertainty measure of the
optimal solution of the current policy. The Multi-head Actor network structure is used to
construct this uncertainty measurement method.

The output of the Online Actor network is connected to multiple Head networks.
To reflect the difference of each Head network, the initialization and training sampling
experience pool of each Head network are independent and the way to converge to the
optimal solution space is also different. Therefore, the variance of the Head network
output action is used to estimate the uncertainty measure of the output action of the Actor
network as:{

Nt = {k · var(µ( st| θµonline)) i f k · var(µθµonline
( st|θµonline)) < Nthreshold

Nthreshold else
(20)

where Nt and Nthreshold are the real-time action noise and the threshold noise, respectively,
θ is the adopted policy, µ

(
st|θµonline

)
is the deterministic action of the network output, and

k is the weight parameter.
Similar to the horizontal control part, the vertical control part also selects the current

state quantity of the agent and the state quantity of the past four times as the network input,
making the network easier to converge and having high training efficiency.

4. Experiment and Analysis

The simulation experiment is based on the open-source autopilot simulator CARLA,
which supports the development, training and validation of autopilot systems. In addition
to open-source code and API protocol, CARLA also provides open mathematical assets
(urban layout, buildings and vehicles) that can be freely invoked. CARLA works through
the client mode. It has a specific python API interface that can realize simulation environ-
ment configuration, environment interaction and vehicle control through interface code.
CARLA is suitable as a training platform for automatic driving reinforcement learning. The
simulation training was completed under the environment of TOWN06 and TOWN04 in
CARLA 0.9.9. Figure 12 shows the specific CARLA simulation scenario.
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4.1. Trajectory Planning Experiment Based on PG Algorithm

When training the trajectory planning module, other obstacle vehicles were randomly
generated for each round of training to enable the trained agents to target complex traffic
conditions. In a random environment, the average reward of each round was used to
evaluate the training effect of the agent. When the agent reached the specified number
of steps or encounters a collision, it directly started the next round of training. To avoid
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randomness, the final training results were obtained by averaging the five training results.
The training results are shown in Figure 13. The red curve is the average reward, and
the red-shaded part is the sliding average of the five training rewards. Due to the strong
randomness of the training environment, the rewards show a strong jitter with the change
of the round. The rewards show an overall upward trend with the change of rounds,
indicating that the agents are increasingly adapting to the changing traffic environment
to obtain higher rewards during the training process. After 100 rounds, the variance of
rewards tends to decrease, and the training results of agents become more stable.
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Figure 13. The change in average reward of the track planning module with the number of
training wheels.

As shown in Figure 14, the red curve represents the reward curve of the planning
method based on the time series bird’s-eye view and the policy gradient algorithm proposed
in this paper, and the blue curve represents the reward curve of the planning method using
the DDPG algorithm. Because of the strong randomness of the training environment, the
reward fluctuates greatly with the change of the round. In the comparison of average
rewards, both curves are almost the same. However, it is obvious that the DDPG algorithm
represented by the blue curve has convergence effect only after 100 rounds, while the
planning method proposed in this paper starts to converge gradually after 70 rounds.
Therefore, the proposed planning method has higher convergence efficiency and stability.
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4.2. Safety Control Module Experiment

In the control module, due to the randomness of the steps that the autonomous vehicle
can take during the training process, it is not suitable to use a single reward or a cumulative
reward as the evaluation standard of the training effect of the agent at the current moment.
Therefore, it is reasonable to take the average reward of each step of the current round
as the evaluation standard of the training effect of the current round. The abscissa is the
number of training rounds, and the ordinate is the average reward obtained in each round.
Figure 15 shows the change in the training curve of the horizontal trajectory tracking task.
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It can be seen from Figure 15 that in the first 15 rounds of the lateral trajectory tracking
control task, the agent is still in the free exploration stage, and the reward curve fluctuates
and does not converge. With the progress of training, the agent continuously optimizes
its strategic network, makes more reasonable behavior, obtains higher rewards and op-
timizes its network again according to the rewards obtained from feedback, forming a
virtuous circle. After 50 rounds, the reward curve begins to converge and achieves good
training results.

In this paper, the variable Gaussian safety field is used as the constraint and evaluation
index of the control part. Figure 16 shows the reward curve of the variable Gaussian safety
field. The red curve represents the reward curve of the lateral tracking control considering
the relationship with other vehicle state quantities under the variable Gaussian safety field.
The blue curve represents the reward curve of the traditional lateral tracking control under
the variable Gaussian safety field. In both cases, the average value of the five experiments
is taken. Figure 16 clearly shows that the reward curve of the safety lateral tracking control
method proposed in this paper is superior to the traditional lateral tracking control, with
higher safety performance and greater response space to emergency conditions. At the
beginning of several training rounds, since the agent did not interact with other vehicles
in the opening exploration phase, the average reward was 0, as shown in Figure 16. From
the sixth round, the agent interacts with other vehicles in the environment, the variable
Gaussian safety field acts, and the reward curve changes.
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Figure 17 shows the average reward of the longitudinal trajectory tracking control
task over time. It can be seen that the average reward changes with the training times.
The blue and red curves represent the average reward change curves of the agents with
Gaussian noise and adaptive noise exploration, respectively, and the shaded part is the
standard deviation of five experiments. Figure 17 shows that both types of agents have
achieved good training results in the longitudinal trajectory tracking control task. Due
to the randomness of the ego vehicle’s speed and the state of the vehicle ahead in each
training round, the average reward of the lateral trajectory tracking control task fluctuates
to some extent. However, similar to the lateral trajectory tracking control task, the training
effect of the adaptive noise detection method is better than that of the common noise
attenuation method.
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5. Conclusions

In this paper, a vehicle safety planning control method based on the variable Gaussian
safety field is designed. The policy gradient algorithm is used to improve the driving safety
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of autonomous vehicles and make the driving trajectory of autonomous vehicles more
intelligent. The spatiotemporal bird’s-eye view proposed in combination with the policy
gradient algorithm as a state variable can enhance the ability of feature extraction of the
policy network and make the network convergence easier. The variable Gaussian safety
field is added as the reward function of the trajectory planning module and the evaluation
index of the control module to improve the safety and rationality of the output trajectory
and tracking control, respectively. In the longitudinal control module, Gaussian noise
input is improved to avoid repeated invalid exploration of agents and enhance training
efficiency. Compared with the traditional planning control algorithm, the proposed method
has the following advantages: (1) the spatiotemporal bird’s-eye view is used as the input
state of the policy network enabling the trajectory planning policy network to effectively
extract the features of the surrounding traffic environment. The planning trajectory of
autonomous vehicles is generated through reinforcement learning, which improves the
trajectory planning ability of autonomous vehicles in complex scenes. The efficiency of
the lattice sampling method for trajectory planning algorithm avoids invalid sampling in
complex traffic scenes; (2) the variable Gaussian safety field is added as a reward function to
improve the safety of trajectory and control effect; (3) the traditional noise input is improved
and the multi-head actor network structure is designed to add noise in the output action
and improve the training efficiency. The experimental results demonstrate and validate
that the proposed framework is superior to the traditional methods.

At the same time, this paper does not consider the scenarios other than an expressway,
and how to change lanes in an emergency. In the future, we will test and improve the
algorithm in more complex environments, such as ramps and urban roads. From another
point of view, the single vehicle will be extended to the fleet, and the driving efficiency and
safety of the fleet on the expressway will be considered.
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