Toward Synthetic Data Generation to Enhance Skidding Detection in Winter Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vehicle Models Commonly Used
2.2. Neural Network Structures
3. Results
3.1. Simulated Vehicle Dynamics
3.2. Real Vehicle Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial neuaral network |
CAN | Controller area network |
GNSS | Global navigation satellite system |
GoG | Center of Gravity |
MEMS | Micro-electro-mechanical systems |
TDNN | Time-delayed neural network |
NAR | nonlinear auto-regressive |
NARX | nonlinear auto-regressive network with exogenous inputs |
SNR | Signal to noise ration |
OBD2 | On-board diagnostic 2 |
References
- Klouttse Ayevide, F. (Univérsité du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada). Internal Literature Review, 2021.
- Mohammed, A.S.; Amamou, A.; Ayevide, F.K.; Kelouwani, S.; Agbossou, K.; Zioui, N. The Perception System of Intelligent Ground Vehicles in All Weather Conditions: A Systematic Literature Review. Sensors 2020, 20, 6532. [Google Scholar] [CrossRef] [PubMed]
- D. O. Transport. Weather Impact on Safety. Available online: https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm (accessed on 20 September 2022).
- NHTSA. Traffic Safety Facts. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812806 (accessed on 20 September 2022).
- SAE J3016: Levels of Driving Automation. S. International. 2019. Available online: https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic (accessed on 20 September 2022).
- Ahn, C.; Peng, H.; Tseng, H.E. Robust Estimation of Road Frictional Coefficient. IEEE Trans. Control Syst. Technol. 2013, 21, 1–13. [Google Scholar] [CrossRef]
- Nam, K. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles. Sensors 2015, 15, 385–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanthakumar, A.J.D.; Baisya, D.; Shrivastava, S. Development of mathematical model for real time estimation and comparison of individual lateral tire force generation. Mater. Today Proc. 2021, 45, 6755–6766. [Google Scholar] [CrossRef]
- Angelo, B.; Andrea, F.S.T.; Nicola, A. Combined regression and classification artificial neural networks for sideslip angle estimation and road condition identification. Veh. Syst. Dyn. 2019, 58, 1766–1787. [Google Scholar]
- Thomaidis, G.; Kotsiourou, C.; Grubb, G.; Lytrivis, P.; Karaseitanidis, G.; Amditis, A. Multi-sensor tracking and lane estimation in highly automated vehicles. IET Intell. Transp. Syst. 2013, 7, 160–169. [Google Scholar] [CrossRef]
- Zang, S.; Ding, M.; Smith, D.; Tyler, P.; Rakotoarivelo, T.; Kaafar, M.A. The Impact of Adverse Weather Conditions on Autonomous Vehicles: How Rain, Snow, Fog, and Hail Affect the Performance of a Self-Driving Car. IEEE Veh. Technol. Mag. 2019, 14, 103–111. [Google Scholar] [CrossRef]
- Lee, U.; Jung, J.; Shin, S.; Jeong, Y.; Park, K.; Shim, D.H.; Kweon, I.S. EureCar turbo: A self-driving car that can handle adverse weather conditions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2301–2306. [Google Scholar]
- Novi, T.; Capitani, R.; Annicchiarico, C. An integrated artificial neural network–unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2018, 233, 1864–1878. [Google Scholar] [CrossRef]
- Marti, E.; de Miguel, M.A.; Garcia, F.; Perez, J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intell. Transp. Syst. Mag. 2019, 11, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Grip, H.; Imsland, L.; Johansen, T.; Kalkkuhl, J.; Suissa, A. Vehicle sideslip estimation. IEEE Control. Syst. 2009, 29, 36–52. [Google Scholar]
- Hsu, Y.H.J.; Laws, S.M.; Gerdes, J.C. Christian. Estimation of Tire Slip Angle and Friction Limits Using Steering Torque. IEEE Trans. Control Syst. Technol. 2010, 18, 896–907. [Google Scholar] [CrossRef]
- Melzi, S.; Sabbioni, E. On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. Mech. Syst. Signal Process. 2011, 25, 2005–2019. [Google Scholar] [CrossRef]
- Fang, P.; Cai, Y.; Chen, L.; Wang, H.; Li, Y.; Sotelo, M.A.; Li, Z. A high-performance neural network vehicle dynamics model for trajectory tracking control. Inst. Mech. Eng. Part D J. Automob. Eng. 2022. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Zhang, G.; Fan, J.; Jia, S. Neural network adaptive sliding mode control for omnidirectional vehicle with uncertainties. ISA Trans. 2019, 86, 201–214. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Wei, Y.; Wang, J. Neural network adaptive position tracking control of underactuated autonomous surface vehicle. J. Mech. Sci. Technol 2020, 34, 855–865. [Google Scholar] [CrossRef]
- Huang, W.; Wong, P.K.; Wong, K.I.; Vong, C.M.; Zhao, J. Adaptive neural control of vehicle yaw stability with active front steering using an improved random projection neural network. Veh. Syst. Dyn. 2019, 59, 396–414. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Learning. In Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2010; pp. 706–868. [Google Scholar]
- Aalizadeh, B. Comparison of neural network and neurofuzzy identification of vehicle handling under uncertainties. Trans. Inst. Meas. Control. 2019, 41, 4230–4239. [Google Scholar] [CrossRef]
- Rajamani, R. Lateral vehicle dynamics. In Vehicle Dynamics and Control, 2nd ed.; Ling, F.F., Ed.; Springer: New York, NY, USA, 2006; pp. 15–48. [Google Scholar]
- Pi, D.W.; Chen, N.; Wang, J.X.; Zhang, B.J. Design and evaluation of sideslip angle observer for vehicle stability control. Int. J. Automot. Technol. 2011, 12, 391–399. [Google Scholar] [CrossRef]
- Pacejika, H.B. Tire and Vehicle Dynamics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Cheng, S.; Li, L.; Yan, B.; Liu, C.; Wang, X.; Fang, J. Simultaneous estimation of tire side-slip angle and lateral tire force for vehicle lateral stability control. Mech. Syst. Signal Process. 2019, 132, 168–182. [Google Scholar] [CrossRef]
- Singh, K.B.; Ali, A.M.; Taheri, S. An Intelligent Tire Based Tire-Road Friction Estimation Technique and Adaptive Wheel Slip Controller for Antilock Brake System. J. Dyn. Syst. Meas. Control. 2013, 135, 031002. [Google Scholar] [CrossRef]
- Hashemi, E.; Pirani, M.; Khajepour, A.; Kasaiezadeh, A.; Chen, S.-K.; Litkouhi, B. Corner-based estimation of tire forces and vehicle velocities robust to road conditions. Control. Eng. Pract. 2017, 61, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Kanghyun, N.; Fujimoto, H.; Hori, Y. Lateral Stability Control of In-Wheel-Motor-Driven Electric Vehicles Based on Sideslip Angle Estimation Using Lateral Tire Force Sensors. IEEE Trans. Veh. Technol. 2012, 61, 1972–1985. [Google Scholar] [CrossRef]
- Kunsoo, H.J.K.; Kyongsu, Y.; Dong-Il, D.C. Monitoring system design for estimating the lateral tire force. In Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, 8–10 May 2002; Volume 2, pp. 875–880. [Google Scholar] [CrossRef]
- Lian, Y.F.; Zhao, Y.; Hu, L.L.; Tian, Y.T. Cornering stiffness and sideslip angle estimation based on simplified lateral dynamic models for four-in-wheel-motor-driven electric vehicles with lateral tire force information. Int. J. Automot. Technol. 2015, 16, 669–683. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Wang, Z. A Time-delay Neural Network of Sideslip Angle Estimation for In-wheel Motor Drive Electric Vehicles. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020. [Google Scholar]
- Liu, W.; He, H.; Sun, F. Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter. J. Frankl. Inst. 2016, 353, 834–856. [Google Scholar] [CrossRef]
- Nam, K.; Fujimoto, H.; Hori, Y. Advanced Motion Control of Electric Vehicles Based on Robust Lateral Tire Force Control via Active Front Steering. IEEE/Asme Trans. Mechatronics 2014, 19, 289–299. [Google Scholar] [CrossRef]
- Jin, X.; Yin, G. Estimation of lateral tire–road forces and sideslip angle for electric vehicles using interacting multiple model filter approach. J. Frankl. Inst. 2015, 352, 686–707. [Google Scholar] [CrossRef]
- Jing, H.W.; Hu, C.; Wang, J.; Yan, F.; Chan, N. Vehicle lateral motion control considering network-induced delay and tire force saturation. In Proceedings of the 2016 American Control Conference, Boston, MA, USA, 6–8 July 2016. [Google Scholar]
- Singh, K.B.; Taheri, S. Accelerometer Based Method for Tire Load and Slip Angle Estimation. Vibration 2019, 2, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Shaoyi, B.; Lanchun, Z.; Kai, Z.; Yongzhi, W.; Weixing, H. Vehicle Sideslip Angle Estimation Based on General Regression Neural Network. Math. Probl. Eng. 2016, 2016, 3107910. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chu, L.; Zhang, J.; Guo, C.; Li, J. Design of Vehicle Stability Controller Based on Fuzzy Radial Basis Neural Network Sliding Mode Theory with Sideslip Angle Estimation. Appl. Sci. 2021, 11, 1231. [Google Scholar] [CrossRef]
- Niskanen, A.; Tuononen, A. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators. Sensors 2015, 14, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Gerdes, J.C. Analysis of Feasible Tire Force Regions for Optimal Tire Force Allocation with Limited Actuation. IEEE Intell. Transp. Syst. Mag. 2017, 9, 75–87. [Google Scholar] [CrossRef]
- Singh, K.B.; Arat, M.A.; Taheri, S. Literature review and fundamental approaches for vehicle and tire state estimation. Veh. Syst. Dyn. 2018, 57, 1643–1665. [Google Scholar] [CrossRef]
- Singh, K.B.; Taheri, S. Estimation of tire–road friction coefficient and its application in chassis control systems. Syst. Sci. Control. Eng. 2014, 3, 39–61. [Google Scholar] [CrossRef] [Green Version]
- Kanghyun, N.; Sehoon, O.; Hiroshi, F.; Yoichi, H. Estimation of Sideslip and Roll Angles of Electric Vehicles Using Lateral Tire Force Sensors Through RLS and Kalman Filter Approaches. IEEE Trans. Ind. Electron. 2013, 60, 988–1000. [Google Scholar]
- Eunjae, L.; Hojin, J.; Seibum, C. Tire Lateral Force Estimation Using Kalman Filter. Int. J. Automot. Technol. 2018, 19, 669–676. [Google Scholar]
- Acosta, M.; Kanarachos, S. Tire lateral force estimation and grip potential identification using Neural Networks, Extended Kalman Filter, and Recursive Least Squares. Neural Comput. Appl. 2017, 30, 3445–3465. [Google Scholar] [CrossRef]
- ISO-26262-1-5:2018; Road Vehicles Functional Safety. ISO: Geneva, Switzerland, 2018.
- Wang, H.; Xu, Z.; Do, M.T.; Zheng, J.; Cao, Z.; Xie, L. Neural-network-based robust control for steer-by-wire systems with uncertain dynamics. Neural Comput. Appl. 2015, 26, 1575–1586. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Du, Y.; Li, Q. Optimization of the tire ice traction using combined Levenberg–Marquardt (LM) algorithm and neural network. Ournal Braz. Soc. Mech. Sci. Eng. 2019, 41, 40. [Google Scholar] [CrossRef]
- De Jesús Rubio, J. Stability Analysis of the Modified Levenberg–Marquardt Algorithm for the Artificial Neural Network Training. IEEE Trans. Neural Net. Learn. Syst. 2021, 8, 3510–3524. [Google Scholar] [CrossRef]
- Kermani, B.G.; Schiffman, S.S.; Nagle, H.T. Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sens. Actuators 2005, 110, 13–22. [Google Scholar] [CrossRef]
- Rana, M.J.; Shahriar, M.S.; Shafiullah, M. Levenberg—Marquardt neural network to estimate UPFC-coordinated PSS parameters to enhance power system stability. Neural Comput. Appl. 2019, 31, 1237–1248. [Google Scholar] [CrossRef]
Rank | Dynamics Variable | Description | Unit |
---|---|---|---|
1–4 | Wheel y-axis Acceleration | [m/s] | |
5 | Vehicle Acceleration z-axis | [m/s] | |
6 | Vehicle Velocity x-axis | [m/s] | |
7 | Steering Wheel angle | [-] | |
8 | Vehicle Acceleration y-axis | [m/s] | |
9 | Vehicle Angular Accelerations x-axis | [s] | |
10 | Vehicle Angular Velocities y-axis | [s] | |
11 | Vehicle Angular Velocities z-axis | [s] | |
12 | Vehicle Angular Accelerations z-axis | [s] | |
13 | Vehicle Angular Accelerations y-axis | [s] | |
14 | Wheel y-axis Jerk | [m/s] | |
15 | Vehicle Acceleration x-axis | [m/s] | |
16 | Vehicle Jerk y-axis | [m/s] | |
17 | Vehicle Angular Velocity x-axis | [s] |
Dynamics Variable | Description | Unit |
---|---|---|
Steering Wheel angle | [-] | |
Motor Load | [%] | |
Vehicle Velocity x-axis | [m/s] | |
Vehicle Acceleration | [m/s] | |
Vehicle Jerk | [m/s] | |
Vehicle Angular Velocities | [s] | |
Vehicle Angular Accelerations | [s] | |
Vehicle Angular Jerk | [s] | |
Wheel Angular Velocity | [s] | |
Wheel Velocity (calculated using effective radius) | [m/s] | |
Wheel y-axis Acceleration | [m/s] | |
Wheel y-axis Jerk | [m/s] |
Rank | Dynamics Variable | Description | Unit |
---|---|---|---|
1 | Vehicle Angular Accelerations x-axis | [s] | |
2–5 | Wheel y-axis Acceleration | [m/s] | |
6 | Vehicle Velocity x-axis | [m/s] | |
7 | Steering Wheel angle | [-] | |
8 | Vehicle Acceleration y-axis | [m/s] | |
9 | Vehicle Acceleration z-axis | [m/s] | |
10 | Vehicle Angular Velocities y-axis | [s] | |
11 | Vehicle Angular Velocities z-axis | [s] | |
12 | Vehicle Angular Accelerations z-axis | [s] | |
13 | Vehicle Angular Accelerations y-axis | [s] | |
14 | Vehicle Angular Velocity x-axis | [s] | |
15 | Vehicle Acceleration x-axis | [m/s] | |
16 | Wheel y-axis Jerk | [m/s] | |
17 | Vehicle Jerk y-axis | [m/s] |
Rank | Dynamics Variable | Description | Unit |
---|---|---|---|
1–4 | Wheel y-axis Acceleration | [m/s] | |
5 | Vehicle Acceleration z-axis | [m/s] | |
6 | Vehicle Velocity x-axis | [m/s] | |
7 | Steering Wheel angle | [-] | |
8 | Vehicle Acceleration y-axis | [m/s] | |
9 | Vehicle Angular Accelerations x-axis | [s] | |
10 | Vehicle Angular Velocities y-axis | [s] | |
11 | Vehicle Angular Velocities z-axis | [s] | |
12 | Vehicle Angular Accelerations z-axis | [s] | |
13 | Vehicle Angular Accelerations y-axis | [s] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKenzie, B.; Kelouwani, S.; Gaudreau, M.-A. Toward Synthetic Data Generation to Enhance Skidding Detection in Winter Conditions. World Electr. Veh. J. 2022, 13, 231. https://doi.org/10.3390/wevj13120231
McKenzie B, Kelouwani S, Gaudreau M-A. Toward Synthetic Data Generation to Enhance Skidding Detection in Winter Conditions. World Electric Vehicle Journal. 2022; 13(12):231. https://doi.org/10.3390/wevj13120231
Chicago/Turabian StyleMcKenzie, Bryan, Sousso Kelouwani, and Marc-André Gaudreau. 2022. "Toward Synthetic Data Generation to Enhance Skidding Detection in Winter Conditions" World Electric Vehicle Journal 13, no. 12: 231. https://doi.org/10.3390/wevj13120231
APA StyleMcKenzie, B., Kelouwani, S., & Gaudreau, M. -A. (2022). Toward Synthetic Data Generation to Enhance Skidding Detection in Winter Conditions. World Electric Vehicle Journal, 13(12), 231. https://doi.org/10.3390/wevj13120231