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Abstract: In this paper, we propose the use of a neural network to identify lateral skidding events of
road vehicles used during winter driving conditions. Firstly, data from a simulation model was used
to identify the essential vehicle dynamics variables needed and to create the network structure. Then
this network was retrained to classify real-world vehicle skidding events. The final network consists
of a 3 layer network with 10, 5 and 1 output neurons 13 inputs, 4 outputs and a 5 step time delay. The
retrained network was used on a limited set of real vehicle data and confirmed the effectiveness of
the network classifying lateral skidding events.
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1. Introduction

Increasing car safety is an ongoing concern for all manufacturers. During the last
few decades, several electromechanical systems have increased overall car safety. These
devices include anti-lock braking, electronic stability control and lane departure warning
systems among others. Most of these systems, however, have limitations. Firstly, these
systems were designed for use with a human driver as part of the vehicle system. The
presence of a human in the control loop greatly reduces the need for vehicle control as the
systems are only there to assist the drivers in certain very specific situations and rely on the
driver when these systems underperform [1–5]. Secondly, none of these systems take into
consideration that the tire-road force generation may be fluctuating or can be very low. This
situation happens quite often in several different driving conditions, including cold winter
conditions. This situation can lead to large undesirable vehicle path deviations on snowy
or icy roads making it difficult for the driver to correct the vehicle dynamics and avoid an
incident [1–5]. Thirdly, these systems have been developed for internal combustion engines
and their specific dynamics. As all types of electric vehicles become more prominent, it has
become clear that these systems do not allow for an optimal use of the electric drive’s faster
reaction capabilities both from a safety and an energy efficiency standpoint. It is therefore
necessary to design new control systems with the targeted vehicle type and class to ensure
proper optimization.

It is essential to have a very good estimate of the tire-road interaction to be able to
properly calculate the effects of the proposed change to the vehicle steering wheel angle
or the acceleration and brake torque. Without the ability to estimate possible skidding of
the wheels with regards to the road surface, it is impossible to finely control vehicle dy-
namics [6]. This information can take many forms, tire side-slip and slip-ratio estimations,
tire force estimations, tire-road friction coefficient estimation or simply an indication of
impending skidding. Only with this information can the control system take appropriate
decisions. With this knowledge we can conclude that the current state of autonomous
vehicle development and currently used mass-market technology does not allow com-
plete vehicle autonomy (SAE International levels 4–5 autonomy levels) for all driving
conditions [5–9].
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Tire dynamics are quite complex, non-linear and vary over time due to tire tread wear
and vehicle loading. Winter driving conditions are mostly unexplored and are particularly
complex as the tire-road reaction effort is a function of numerous factors. The temperature,
tire type, tire wear, vehicle loading, the presence of snow and/or ice and the use of road
abrasives and salts affect the ability of a tire to transmit efforts to the roadway [7,10–12].
This situation is further complexified by the fact that the tire can be exposed to different
road conditions over a short amount of time. Most classical model driven approaches
fail in predicting and classifying wheel and vehicle dynamics accurately in real time. The
use of GNSS navigation data is promising [6] but is still limited as signal availability is
not guaranteed and resolution may vary to a degree that it becomes irrelevant for vehicle
dynamics calculations. Compensation using different varieties of optimal estimation,
Kalman filters or sliding mode observers, are promising but performance degrades as
GNSS signal unavailability increases because of acceleration integration drift [6,10–12]. The
currently available sensor system in cars does not allow precise calculation of wheel slip
parameters and full dynamic knowledge of the wheel states and requires the addition of
sensors to the vehicle [13,14].

Over the last two decades, several studies have explored the use of artificial intelligence
as a means of overcoming the complexity of using classical vehicle dynamic models [15–21].
Many of the studies conclude that the highly nonlinear nature of a complete vehicle coupled
with the varying nature of the different parameters make the classical models inefficient
when used for real-world vehicle control. Neural networks can be structured and trained
to represent these non-linear behaviours, even if the entire model is not known, if given
the appropriate input and training data. As can be observed from several sources. The
use of simulation data from high-fidelity simulators can generate data that can be used
to train the neural networks to adjust their weights and biases to properly predict the
looked-for vehicle dynamics or behaviour [18–21]. It must be understood by the creator
of such a neural network that the predictive performance of such a tool now resides on
the network structure and on the quality and quantity of the date that is used to train the
network [22]. As only a certain aspect of the vehicle dynamics is usually looked for, in the
case of most of these studies; either the side-slip angle or the friction coefficient, the neural
network can therefore forego several data inputs that do not influence the output being
estimated, something that is very difficult to do using classical vehicle models as the model
hypotheses usually require all the selected inputs to be present [18].

In their article, Fang et al. [18] focuses on the creation of a neural network that is
initially trained using simulation data as it is easily generated. The network was then used
with real world data obtained from a highly instrumental vehicle. Tests were run on dry
and wet asphalt to vary the road friction coefficient resulting in a low error when estimating
the vehicle acceleration and angular acceleration with regards to the vertical axis. This
methodology was used for many articles reviewed. As for most of the available literature,
no tests were run on real road conditions in winter driving situations [1]. Although using a
different variant, X. Lu, X. Zhang, G. Zhang et al. [19], develop a functional neural network
for the control of an omnidirectional vehicle using four separate motors for propulsion and
direction. Aalizadeh in the article [23], compared a neurofuzzy algorithm and a standard 3
layer 20-10-1 neural network for the identification of yaw rate, for three different driving
manoeuvre and two different road surface coefficients. The article demonstrates a standard
neural network is very accurate at estimating the yaw rate given a limited number of
vehicle dynamics information.

The current study has two goals; firstly, identifying what is the minimum vehicle
dynamic parameters that must be used to properly identify wheel side-slip and secondly
identifying all lateral skidding events that have occurred with high accuracy while being
driven in real winter conditions. All vehicle dynamics information currently available on
the vehicle CAN-bus is considered available for the current study. Wheel mounted sensors
have been added to the vehicle wheels to be able to capture the y-axis acceleration (ISO
8855-2011 axis definition). Skidding is defined as the moment that the lateral or longitudinal
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tire reaction force no longer increase even though the vehicle steering or propulsion systems
indicate that the reactions should increase (inability of the tire-road interaction to increase
the reaction efforts). Classification error close to 0 is assumed to be necessary considering
that the safety of the occupants and bystanders are at risk.

In the proposed method, the first step is to simulate realistic vehicle dynamics data
(including wheel y-axis acceleration) using CarSim™software and use the information
to prepare a preliminary artificial neural network (ANN) able to predict wheel lateral
(side-slip) slip. For the first step, it is hypothesized that a network’s ability to identify the
correct tire side-slips will allow a future network to correctly classify real world skid events.
The simulation data will be obtained using CarSim™software. As real world vehicle testing
consumes large amounts of time can put drivers in dangerous situations and generates
data that requires a high amount of work to process adequately, the first step is to correctly
identify what variables are required to set up an optimized ANN using simulated data. The
second step will use the proven network structure and minimum data input, obtained from
the first step, to create a new ANN that is able to classify the tire behaviour as “skidding”
or “not skidding” from real world vehicle tests done during winter driving conditions
in a controlled setting. The results of the first and second part of this study will be used
to fully equip a test vehicle with dynamic sensors and run extensive tests in all types of
driving conditions, both in a simulation and the real world, and fully optimize the detection
algorithm for use in a generalized setting (all types of driving weather and conditions).

The major contributions of this work are as follows:
(1) Identifying the minimal vehicle dynamic information requirements needed to

identify real world slipping,
(2) Creating an ANN able to classify the skidding with high accuracy.

2. Materials and Methods
2.1. Vehicle Models Commonly Used

Modelling a complete vehicle is a complex task. The number of parts, the highly non-
linear behaviours of several components and the lack of appropriate models to represent
some components are some of the reasons modelling vehicles has proven to be such a chal-
lenge. Additionally, vehicle parameters change drastically over time due to several factors
including component wear, material property variability, vehicle loading, road surface
conditions and so on. Several different sources use several different simplified models to
predict vehicle dynamics. Among the most popular are the bicycle model, see Figure 1
and the 4-wheel model, see Figure 2. Equations (1)–(8) describe these models [6,24,25]. As
can be seen from these models they do not take into consideration the tire dynamics or the
tire-road interaction, these are assumed to be infinitely rigid and having no slip. These
models are not very useful in determining wheel slip as they do not model the tire-road
interactions.

Vehicle centre of gravity (CoG) bicycle model ignoring road bank angle is given by
Equation (1).

may = Fy f + Fyr (1)

where m, ay, Fy f and Fyr are the vehicle mass, centre of mass y-axis acceleration, front tire
lateral force and rear tire lateral force, respectively.The lateral acceleration is defined as:

ay = ÿ + Vxψ̇ (2)

where ÿ, Vx and ψ̇ are vehicle lateral acceleration due to pure lateral tire motion, vehicles
centre of mass x-axis velocity and z-axis angular velocity (yaw rate). Substituting (2) into
(1) we obtain 3.

m(ÿ + Vxψ̇) = Fy f + Fyr (3)
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To add the lateral tire forces to the system of equations the underlying small side slip
hypothesis must be understood. These equations do not consider low friction road surfaces.
The tire-road interaction is summed up in the cornering stiffness coefficient, Cα f [24].

Fy f = 2Cα f (α f ) (4)

Fyr = 2Cαr(−αr) (5)

where Cα f and Cαr are the tire proportionality constants and α f and αr are the angles
between the tire orientation and the direction of travel. The angles between the direction of
the tire and their paths can be calculated using the small angle approximations as (6) and
(7), respectively, [24].

α f =
ẏ + aψ̇

Vx
(6)

αr =
ẏ− bψ̇

Vx
(7)

where ẏ is the vehicle y-axis velocity. Finally, the model needs the moment balance about
the z− axis to be complete.

Izψ̈ = aFy f − bFyr (8)

where a and b are the distances between the vehicle centre of mass and front and back
wheel centre of masses. Finally, Iz and ψ̈ are the vehicle z-axis inertia and vehicle z-axis
angular acceleration.

Figure 1. Typical vehicle bicycle model [6,8,13,24,26,27].

The simple four-wheel vehicle model in Figure 2 follows almost identical dynamic
equations modelling but with the addition of the two missing wheels. The limitations
remain the same, no proper tire-road interaction and very simplified tire models.
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Figure 2. Typical simplified vehicle model [6,8,13,24,26,27].

Tire modelling is very complex and not completely understood [26]. Several different
tire models have been developed in the last 100 years. Among the most advanced, accurate
and used models are the Magic Formula series of models. These are all semi-empirical
models and require several parameters and scaling factors to produce accurate results [26].
For an in-depth analysis of the formulas, parameters and scaling factors please refer to
chapter 4 of [26]. The parameters and scaling factors are; tire construction, tire stiffness,
inflation pressure, load, temperature, wear and rotation speed, requiring the model to be
updated at every calculation step to produce adequate results over a long period. Although
work is ongoing on smart tires [28], the technology has yet to be deployed to the mass
market. Therefore, the use of tire models are of limited help in actually determining side
slip as they also suffer from the same limitations as the previously described models, they
are computationally heavy, need to be updated as conditions change and current sensors
do not produce the required data for real-time parameter update.

To get a good understanding of longitudinal and lateral tire maximum reaction forces,
Figures 3 and 4 depict the slip versus force of a tire when modelled using the MFSWIFT
formula [27,29–35]. The MFSWIFT tire model is a computationally simplified tire model
based on the complete magic formula tire model. It is extensively used for simulation
purposes because of its accurate representation of tire dynamics and very quick calculation
time. One of this paper’s hypotheses is that the final classification network is able to detect
skidding based on the fact that a similar network was good at estimating side slip (or slip
ratio) [36,37]. The fact that tires exhibit quasi-linear behaviour when the slips are small
and then exhibit non-linear behaviour before saturating indicates that the final artificial
neural network (ANN) should be able to classify the change given some sort of time history
allowing the network to recognize the change from the quasi-linear region to the non-linear
region [38–40]. As to keep implementation costs low, this should be done using only
currently available car sensor data along with the addition of wheel lateral acceleration.
Although this paper’s objectives deal exclusively with lateral tire slip, it is fully understood
that tires have a traction limit that is a function of both the longitudinal and lateral tire
dynamics [41–44].
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Figure 3. Generic tire longitudinal slip ratio vs. longitudinal force for different normal tire force
cases.

Figure 4. Generic tire lateral side slip angle vs. lateral force for different normal tire force cases.

Published studies have used different variants of the Kalman filter (most used side
slip optimal state estimator) to fusion data and obtain the tire slip angle [13,34,45,46]. The
Kalman filter is a linear estimator and slip angle dynamics are non-linear with a high
dimensional making this state estimator valid for only short periods of time while the
non-linear response can be estimated by a linear model. Since most classical method tries
to approximate this non-linearity, they will provide a rough side-slip estimation which
makes it difficult to further perform a good skidding classification.

Although this technique gives good results, most studies use a global navigation
satellite signal (GNSS) as the necessary measurement to add to the update step of the
Kalman filter estimator. Although it is possible for the Kalman filter [47] to also use the
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wheel lateral acceleration as the necessary input to estimate the wheel side-slip, the limited
capacity to adequately model the vehicle will usually lead to the use of artificial intelligence
to fill in the model gaps, therefore it is deemed more efficient to use the ANN to directly
compute the side slip or skid events.

Several commercially available highly complex vehicle simulation systems are avail-
able. Among these are Carsim™, AutoSim AS™, ADAMSCar™and The Mathworks™
Simscape-Vehicle-Template-21.1.2.6. These systems model most vehicle parts and interac-
tions and are able to produce vehicle data that is of high enough quality to use as design and
optimization tools. These systems, however, require enormous computational resources to
produce these results. Energy, space and weight available on road vehicles do not allow
these types of systems to be currently used for real-time on-board computing. Additionally,
given the safety concerns with relying on an enormously complex software system to
provide real-time critical information for assisting in safety-critical decision-making, a func-
tional safety assessment and testing will be required and would add several software and
hardware layers for redundancy, increasing the size and computational requirements even
further [48]. Therefore, these types of systems are not well suited for on-board applications.

The inherent complexity, changing conditions and limited computational resources
available to indicate the use of an artificial neural network as valid tool for the estimation
of side-slip and the classification of vehicle skidding [15–17]. The neural network, when ad-
equate inputs, structure and training are used, are able to develop high levels of non-linear
relationships even when the system dynamics are not well understood. Vehicle dynamics
are causal but are not fully understood or modelled accurately, therefore time-delayed-
neural network has the required structure to create the required links between several
input variables and the target output. Analysis of the different vehicle models, tire models
and side slip equations [24], indicates that there is always at least one parameter missing
from most vehicle on-board sensors. Be it, wheel load [24], tire deformation [28], lateral
tire force [7] or self-aligning moment reduction [24] are missing to accurately estimate tire
lateral slip in all driving conditions. For this article αwheely has been selected as the addi-
tional piece of information. Wheel y-axis acceleration can very easily be obtained through a
micro-electro-mechanical sensor (MEMS) which are readily available and cost effective. In
this study, wireless sensors were placed directly on the wheel hub as this requires minimal
investment and yields direct results for wheel y-axis acceleration. The sensor could also be
placed on any portion of the vehicle’s suspension that is stiffly connected to the wheel in
the wheel y-axis (i.e., steering knuckle) to be able to connect the sensor through a wired
connection.

2.2. Neural Network Structures

Two different types of neural networks will be used, one for the side slip estimation
and a second for the classification of skid events.

The first neural network will be regressive and is used to estimate the side slip angle of
a each wheel. Firstly, it will be trained using simulation data and create a baseline network
for the next network [49]. The second network will be a discriminating network that will
classify real-world vehicle dynamics into a “skidding” and “not skidding.”

The side-slip estimation uses a supervised time-delayed feed-forward regression
neural network (TDNN) that outputs a value that can range from −∞ to ∞. Although the
output could be composed of continuous values from −∞ to ∞, the side slip angle rarely
exceeds 20 degrees [0.4 rad] as tire lateral skidding often occurs at this point. Although
not presented in this report, substantial work was done using a nonlinear autoregressive
network with exogenous inputs (NARX) and nonlinear autoregressive network (NAR)
types. Training yielded good results, R > 0.9, but failed to report good results when using
validation and testing data. The cause of the bad results is the use of the previously
estimated side slip as an input value for the network. This leads the network to diverge
quite rapidly.
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The need to have high resolution output values without being subjected to asymptotic
maximum or minimum value behaviour indicates that the final activation function should
be a linear output activation function. The outputs of other hidden layers should also
be able to vary in the negative and positive values to allow the directional nature of the
values being calculated to filter through the network during training. The tangent-sigmoïd
activation function will be used for these layers.

The network was trained using the Levenberg–Marquardt training algorithm. This
training algorithm is commonly used for a large variety of different neural network training
given its versatility [50–53]. The Levenberg–Marquardt training algorithm was successfully
used to train a 3 layer 10-8-1 standard neural network for the identification of rubber-ice
friction coefficient in a laboratory setting in Gao et al.’s study [50]. Although in different
fields of interest, this training algorithm is very successful for the standard and time-delayed
neural network as is mentioned in [52,53].

Several different neural network training algorithms were also tested to ensure that
it was the optimal solution for this problem. The highly non-linear nature of the problem
indicates that the scaled conjugate gradient should be a quick option for this task. The scaled
conjugate gradient training algorithm was close to 100 times faster than the Levenberg–
Marquardt algorithm but with a decrease in the regression factor of one half. This low
regression factor is insufficient for the task being done and the scaled conjugate gradient
algorithm was not used. The same pattern, although not as pronounced, was observed for
several different training algorithms including; resilient back propagation, Fletcher-Powell
conjugate gradient and one step secant. The behaviour of the vehicle is highly causal
as demonstrated above, and the network will have increased accuracy by having time
delayed elements. The amount of time delayed inputs will have to be adjusted for the final
real-world data as the acquisition frequency will dictate the amount needed.

The final network size was obtained by the optimization of the network using the list
of linearly important variables, see Table 1 for the list used. A series of different network
structures were created where the number of neurons per layer varied. The optimization
required several training, testing and validation cycles be run for several different first and
second layer neuron quantities. The results (MSE) of each combination was plotted and
compared to the others. The simplest network that showed high levels of performance
(small MSE) was used to keep the final network as small as possible. The network selected
was a 3 layer network, with 10, 5 and 1 neurons for each layer, respectively. Adding
extra neurons or layers did not increase the network’s ability estimate side-slip with a
significantly lower performance error. See Figure 5 for iteration values, all testing was done
using 17 input variables.

Figure 5. Performance error versus network size with 13 final variables.
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The tire-road interaction is the limiting factor in transferring lateral road reactions.
With this definition, the problem at hand can be easily be formulated in terms of probability
rules. Equation (9) demonstrates this in the form of Bayes’ rule.

P(SideSlip | Y( f , input)) =
P(Y( f , input) | SideSlip)P(SideSlip)

P(Y( f , input))
(9)

The second network will have the same structure but will be discriminative given
that the goal is not to estimate but rather to classify, more information is presented in
Section 3.2.

3. Results
3.1. Simulated Vehicle Dynamics

In the context of this study, an optimized ANN will be one that has minimized the
number of inputs while maintaining a low error and be sufficiently computationally light
to be able to output values at a frequency greater than 60 Hz.

Data was generated from several different vehicle configurations and steering ma-
neuvers (8 electric vehicle configurations and 18 different routes including different road
friction coefficients, where mu is equal to 1, 0.6 or 0.3).

As the original data obtained from the simulation models is free of any noise or
perturbations, it is important to test the proposed ANN architecture with data containing
noise. This will ensure that the network is adequately stable and generalized before starting
work on real-world data. The data obtained from the simulation was modified by adding
white Gaussian noise (MATLAB™R2021b function “awgn” with a SNR of 30 dB, leading to
approximately 5% SNR). The signal was then filtered using a sliding average filter with
25 sample size window using the MATLAB™2021b function “slidingavg”.

As the simulation model outputs several hundred variables, it is essential to select the
variables that are the most efficient at estimating the desired output, wheel side-slip angles,
while reducing the number of input variables. A three-level feature selection process was
used to reduce the amount of input variables to a minimum. The first filter was to remove
all variables that are not available, either directly or through direct calculation, on the
test car either through the vehicle CAN bus or through the addition sensors available.
The second variable reduction was made through the use of linear and non-linear feature
selection [22]. The last filter was a correlation study to ensure that the input variables do
not exhibit high levels of correlation as those that do must be excluded as to not induce a
system bias with regards to the correlated data [22].

The vehicle dynamics parameters that are available on the test car are included in
Table 2. This list became the starting point for the second step of the input variable selection.
Global navigation satellite system (GNSS) data was removed as signal availability is not
guaranteed. The use of optimal state estimators can compensate the slow update speed
and possible lack of signal for a certain time, this technology cannot as of yet be relied upon
for real-time side-slip estimation. The even though the data was not going to be used, it
was nonetheless left in the two feature selection steps to verify the significance of these
elements.

Two different feature selection tools were used. The first linear (input to target) filter
type feature selection tool, the minimum redundancy maximum relevance algorithm was
used. For this study the MATLAB™R2021b “fsrmrmr” function was used. This tool was
selected as not only does it maximizes the linear relevance between the input and the target
but it also minimizes the redundancy of the input variables. This tool is extremely useful
as the removal of input data that has exhibited correlation must be removed. The result of
this filtering is shown in Table 1. The remaining variables were considered not significant
due to their low-linear relationship.
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Table 1. Sorted list of linearly related input variables.

Rank Dynamics Variable Description Unit

1–4 aywheeli

Wheel y-axis
Acceleration [m/s2]

5 az
Vehicle Acceleration

z-axis [m/s2]

6 vx Vehicle Velocity x-axis [m/s]
7 θsw Steering Wheel angle [-]

8 ay
Vehicle Acceleration

y-axis [m/s2]

9 ω̇x
Vehicle Angular

Accelerations x-axis [s−2]

10 ωy
Vehicle Angular
Velocities y-axis [s−1]

11 ωz
Vehicle Angular
Velocities z-axis [s−1]

12 ω̇z
Vehicle Angular

Accelerations z-axis [s−2]

13 ω̇y
Vehicle Angular

Accelerations y-axis [s−2]

14 ȧwheely Wheel y-axis Jerk [m/s3]

15 ax
Vehicle Acceleration

x-axis [m/s2]

16 ȧy Vehicle Jerk y-axis [m/s3]

17 ωx
Vehicle Angular
Velocity x-axis [s−1]

Table 2. List of potential network input variables.

Dynamics Variable Description Unit

θsw Steering Wheel angle [-]
τMT Motor Load [%]
vx Vehicle Velocity x-axis [m/s]
ai Vehicle Acceleration [m/s2]
ȧi Vehicle Jerk [m/s3]
ωi Vehicle Angular Velocities [s−1]
ω̇i Vehicle Angular Accelerations [s−2]
ω̈i Vehicle Angular Jerk [s−3]

ωwheel Wheel Angular Velocity [s−1]

vwheely

Wheel Velocity (calculated
using effective radius) [m/s]

aywheeli
Wheel y-axis Acceleration [m/s2]

ȧywheeli
Wheel y-axis Jerk [m/s3]

This first type of filter does not verify if there are any non-linear relationships between
the inputs and the target. Therefore a sequential wrapper feature selection tool was used.
For this study the MATLAB™R2021b “sequentialfs” function was used. This algorithm
selects subsets from the original list that result in the lowest error and does so until there
are no longer any improvements. As with all wrapper methods used in feature selection,
this feature selection tool needs to run the full ANN training using the different subsets to
compare the results. To do this efficiently a three layer (10, 5 and 1 neurons per layer) feed-
forward neural network was used. This step clearly identified that the angular acceleration
in the vehicle x-axis, ω̇x, was extremely important. The remaining variables were an order
of magnitude less significant.The sorted results are presented in Table 3.

A correlation (Pearson correlation with a p-value 0.05 significance level) was run to
reduce the risk that the non-independent data be over-represented in the network’s output.
When the 12 input signals (including the lateral acceleration of each wheel) resulting from
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first filtering steps were run for correlation, it is clear that many of the variables exhibit
large correlation. The major contributor of this situation stems from the nature of the data
used. Most of the data is that of the vehicle rolling in a relatively straight line with very few
lateral events, therefore leading the data concerned with lateral dynamics to be very similar
for large portions of the time. If the final network is to be generalized for most driving
scenarios, the inclusion realistic driving scenarios must be maintained. This indicates that
the network will have to function properly regardless of the presence of data exhibiting
linear correlation. Correlation heat map is shown in Figure 6 (This might lead to the need
to have side-slip range specific ANN being used to help alleviate the linear correlation
issue as to separate the data with low lateral dynamics from the data with higher lateral
dynamics.)

Table 3. Sorted list of variable following wrapper methods

Rank Dynamics Variable Description Unit

1 ω̇x
Vehicle Angular

Accelerations x-axis [s−2]

2–5 aywheeli

Wheel y-axis
Acceleration [m/s2]

6 vx Vehicle Velocity x-axis [m/s]
7 θsw Steering Wheel angle [-]

8 ay
Vehicle Acceleration

y-axis [m/s2]

9 az
Vehicle Acceleration

z-axis [m/s2]

10 ωy
Vehicle Angular
Velocities y-axis [s−1]

11 ωz
Vehicle Angular
Velocities z-axis [s−1]

12 ω̇z
Vehicle Angular

Accelerations z-axis [s−2]

13 ω̇y
Vehicle Angular

Accelerations y-axis [s−2]

14 ωx
Vehicle Angular
Velocity x-axis [s−1]

15 ax
Vehicle Acceleration

x-axis [m/s2]

16 ȧwheely Wheel y-axis Jerk [m/s3]
17 ȧy Vehicle Jerk y-axis [m/s3]

A variable probability density analysis was also run for each variable. By far most
variables exhibit Gaussian distribution with a very narrow spread and centred around 0. A
few variables, including vehicle and wheel y-axis acceleration, have a bimodal behaviour
where most data is focused around the mean but significant number of samples are observed
close to the variable maximums and minimums. This behaviour is quite consequential to
the observed vehicle paths. They represent the saturation values before vehicle skidding
occurs. This is highly useful information as it indicates that these variables should be good
indicators of vehicle skidding.

The TDNN uses 13 input variables and 4 output variables that can be found in Table 4.
As the system is causal, adding several time delays, 5 in the case of this study, to the input
structure is an efficient way a transferring the causality to the network outcome. The
network structure diagram is shown in Figure 7. This network functions using the 13 input
variables at t0, t−1, t−2, t−3, t−4 for a total of 65 total inputs. All the most important input
combinations have been tested to ensure that the final input variables were optimal. The
results are presented in Figure 8.
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Table 4. Final list of input variables.

Rank Dynamics Variable Description Unit

1–4 aywheeli

Wheel y-axis
Acceleration [m/s2]

5 az
Vehicle Acceleration

z-axis [m/s2]

6 vx Vehicle Velocity x-axis [m/s]
7 θsw Steering Wheel angle [-]

8 ay
Vehicle Acceleration

y-axis [m/s2]

9 ω̇x
Vehicle Angular

Accelerations x-axis [s−2]

10 ωy
Vehicle Angular
Velocities y-axis [s−1]

11 ωz
Vehicle Angular
Velocities z-axis [s−1]

12 ω̇z
Vehicle Angular

Accelerations z-axis [s−2]

13 ω̇y
Vehicle Angular

Accelerations y-axis [s−2]

3.2. Real Vehicle Dynamics

Understanding the real world data flow is important to be able to correctly analyze
any sources of data degradation or any time delays in the different data streams. The
main issue stemming from the preliminary data collection run is the maximum available
frequency that the currently used data collection is able to run. The OBD2-bus recorder
used can collect the data at a 10 Hz rate. As will be seen further, this has proven to be
adequate for the classification during post treatment but it is likely that this rate is too
slow if the information is to be used for vehicle control purposes [48]. The reminder of the
data-flow analysis does not indicate any particular issues with the treatment of the data
as long as the data can either all be collected at the same time. The data was then filtered
using the same filter as with the noised simulated data.

Analysis of the correlation data from the real world testing has revealed a greater
amount of signal disparity than the simulation data analysis. This is to be expected given
the amount of sensor noise and real world disturbances. The reduced signal correlation will
need to be further investigated in a future study with a greater sample size as the disparity
in the simulation and the real world data is quite large and only by increasing sample size
and sensor data frequency will adequately statistical analysis be valid.

As the side-slip value is unknown using the real world data, the network’s key
performance index was changed from identifying the slip angle to classifying each time
step as skid or no skid. Before setting up further and exhaustive testing, it was essential to
prove that the neural network structure was able to classify skidding events on short test
runs. Three test runs were conducted on a non-standardized test path running a simple
steering direction change on icy conditions on a packed gravel road. Skidding events were
identified by the test car driver during testing.
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Figure 6. Correlation heatmap of final variables.
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Figure 7. Architecture of final 13-input artificial neural network.

Figure 8. Number of input variables versus performance error with 10-5-1 network structure.

Using the same TDNN as was developed for the previous step, the network was
retrained with the real world data and a simple binning layer was added to classify the
results. Although it has been shown that the currently used data has been recorded at
a frequency that is not adequate for real-time identification, excellent classification will
justify further research as the proposed network will be an excellent starting point for the
complete implementation. Classification of the skid events was done with 100 % accuracy.
Figure 9, shows the results before the binning layer as the results of the binning layer were
trivial to show. The last regressive layer before the binning shows that there is quite good
regression coefficient indicating network stability. The final network regression (prior to
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binning) MES yields a performance coefficient of 4.5126 × 10−6 and a R-value in excess of
0.9999.

Figure 9. Results of skidding event classification for run 1 of the real world testing.

4. Discussion

The side-slip estimation performance gives satisfactory results when using simulated
data. The classification ANN has also correctly classified the skid events of all three real-
world tests. This is a strong indication that the proposed network structure can be further
generalized using a similar approach but with a much larger real-world data set.

When looking at the final series of input variables and comparing them to the classic
full vehicle model, it is interesting to notice that many of the retained variables are the
same. Vehicle longitudinal speeds, vehicle lateral and vertical accelerations, steering wheel
angle (proportional to wheel angle), and vehicle pitch and yaw rates are all base line pieces
of information for the classical models. This information is to be expected as these elements
or their integrals which are obtainable by the ANN with the use of the time-delayed
elements, have strong linear dependencies with the side-slip calculations. Additionally
these variables exhibit a very strong linear correlation with the different wheel side-slip
values. The high level of importance of the three components of angular acceleration
is an unexpected result. This has mainly been identified during the wrapper method
feature selection. As these variables did not rank as high during the minimum redundancy
maximum relevance feature selection, it is indicative of a non-linear relationship in the
case of a neural network estimation. Additionally, the vehicle angular accelerations are
not directly measurable and are therefore not present in the current literature. The vehicle
angular accelerations can be very easily calculated for use in an ANN as all the information
is readily available as long as a 6-axis inertial unit is available. The optimal time step that
needs to be used for the numerical calculation of each derivation will have to be done using
real-world data where precise side-slip information is available.

The real world data acquisition that was used for this study was too slow for real
time identification of side-slip angles or skidding events and the available sensor hardware
needs to be analyzed to ensure that it will be adequate for the intended purpose (battery
life and ingress protection are major issues). The network will need to be optimized once
better quality data is available from the real world vehicle. These elements should only
lead to a better quality network and better estimation.

Lastly, as manual indication of skidding is prone to error, a more robust technique is
needed to identify skidding. The vehicle will need to be outfitted with additional sensors
to be able to accurately calculate the side-slip angle of the different wheels and identify the
exact time when the tire reaction forces change from having a quasi-linear reaction to a
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non-linear behaviour that occurs before and during skidding. This will allow the precise
calculation of the wheel side-slips and a allow mathematical calculations of skidding.

As the results of this research indicates, the addition of wheel-mounted sensors to
obtain the y-axis acceleration, combined with the information already available on most
production automobiles and the time-delayed neural network developed can lead to
excellent estimation of tire side-slip using synthetic winter driving data. The network
was also tested using a limited amount of real vehicle data. Again the results were very
convincing. This information is crucial in the advance of autonomous vehicles as the
controller needs to be able to have this information in order to accurately control a vehicle
in all types of weather. This will allow a vehicle controller to apply the optimal correction
to ensure the vehicle stays on the desired course.

5. Conclusions

A good understanding of the input and output variables and the relationship between
them is needed to correctly create and train an ANN. Several steps were taken to ensure
that only the minimum number of inputs were used to generate side-slip estimation with
simulated data. After the feature selection phase, 13 inputs were selected as the optimal
value for side-slip estimation of the four wheels. This resulted in a network with the ability
to estimate the side-slip angle with an average error of 0.04° for each wheel. The network
structure was tested using a limited amount of real-world data and showed excellent
classification of the skidding events, for three trial runs with driver identified skidding
events. Therefore it can be concluded that the two objectives of this paper have been fully
realized. The results also warrants further investigation using more extensive standardized
vehicle testing.

The real world data acquisition that was used for this study was too slow for real
time identification of side-slip angles or skidding events and the available sensor hardware
needs to be analyzed to ensure that it will be adequate for the intended purpose. An
additional study using normalized real world testing will be run with updated sensors.
The network will need to be updated with the better-quality data and then run in real time.

Lastly, as manual indication of skidding is prone to error, a more robust technique is
needed to identify skidding. The vehicle will need to be outfitted with additional sensors
to be able to accurately calculate the side-slip angle of the different wheels and identify the
exact time when the tire reaction forces change from a quasi-linear reaction to the non-linear
behaviour that occurs before and during skidding. This will allow the precise calculation
of the wheel side-slips and a allow mathematical calculation of skidding without the need
to include human identification for network training.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial neuaral network
CAN Controller area network
GNSS Global navigation satellite system
GoG Center of Gravity
MEMS Micro-electro-mechanical systems
TDNN Time-delayed neural network
NAR nonlinear auto-regressive
NARX nonlinear auto-regressive network with exogenous inputs
SNR Signal to noise ration
OBD2 On-board diagnostic 2
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