Virtual Constant Signal Injection-Based MTPA Control for IPMSM Considering Partial Derivative Term of Motor Inductance Parameters
Abstract
:1. Introduction
2. MTPA Control Based on Virtual Constant Signal Injection Method
2.1. Mathematical Model of dq-Axis of IPMSM
2.2. The Principle of MTPA Control
2.3. Virtual Constant Signal Injection Method
- (a)
- D-axis reference current id_ref
- (b)
- Q-axis reference current iq_ref
3. Error Analysis and Error Compensation Method of Virtual Constant Signal Injection Method
3.1. Error Analysis
3.2. Error Compensation Method
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, T.; Yan, Y.; Zhou, Z.; Xiao, M.; Xia, C. Linear Quadratic Regulator Control for PMSM Drive Systems Using Nonlinear Disturbance Observer. IEEE Trans. Power Electron. 2020, 35, 5093–5101. [Google Scholar] [CrossRef]
- Liu, Q.; Hameyer, K. High-Performance Adaptive Torque Control for an IPMSM with Real-Time MTPA Operation. IEEE Trans. Energy Convers. 2017, 32, 571–581. [Google Scholar] [CrossRef]
- Jung, S.; Hong, H.; Nam, K. Current Minimizing Torque Control of the IPMSM Using Ferrari’s Method. IEEE Trans. Power Electron. 2013, 28, 5603–5617. [Google Scholar] [CrossRef]
- Kim, S.; Sul, S. Speed Control of Interior Permanent Magnet Synchronous Motor Drive for Flux Weakening Operation. IEEE Trans. Ind. Appl. 1997, 33, 43–48. [Google Scholar]
- Hoang, K.; Wang, J.; Aorith, H. Online Feedback-Based Field Weakening Control of Interior Permanent Magnet Brushless AC Drives for Traction Applications Accounting for Nonlinear Inverter Characteristics. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April 2014. [Google Scholar] [CrossRef]
- Morimoto, S.; Sanada, M. Wide-Speed Operation of Interior Permanent Magnet Synchronous Motors with High-Performance Current Regulator. IEEE Trans. Ind. Appl. 1994, 30, 920–926. [Google Scholar] [CrossRef]
- Underwood, S.; Husain, I. Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2009, 57, 2435–2443. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y. Maximum Torque Per Ampere (MTPA) Control for IPMSM Drives Based on a Variable-Equivalent-Parameter MTPA Control Law. IEEE Trans. Power Electron. 2019, 34, 7092–7102. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Geng, Q.; Shi, T. Maximum Torque Per Ampere (MTPA) Control of IPMSM Systems Based on Controller Parameters Self-Modification. IEEE Trans. Veh. Technol. 2020, 69, 2613–2620. [Google Scholar] [CrossRef]
- Lin, F.; Huang, M.; Chen, S.; Hsu, C. Intelligent Maximum Torque per Ampere Tracking Control of Synchronous Reluctance Motor Using Recurrent Legendre Fuzzy Neural Network. IEEE Trans. Power Electron. 2019, 34, 12080–12094. [Google Scholar] [CrossRef]
- Bolognani, S.; Petrella, R.; Prearo, A.; Sgarbossa, L. Automatic Tracking of MTPA Trajectory in IPM Motor Drives Based on AC Current Injection. IEEE Trans. Ind. Appl. 2011, 47, 105–114. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Zhao, W.; Chen, Q. A Novel MTPA Control Strategy for IPMSM Drives by Space Vector Signal Injection. IEEE Trans. Ind. Electron. 2017, 64, 9243–9252. [Google Scholar] [CrossRef]
- Xia, J.; Guo, Y.; Li, Z.; Jatskevich, H.; Zhang, X. Step-Signal-Injection-Based Robust MTPA Operation Strategy for Interior Permanent Magnet Synchronous Machines. IEEE Trans. Energy Convers. 2019, 34, 2052–2061. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y. Maximum Torque per Ampere (MTPA) Control for IPMSM Drives Using Signal Injection and an MTPA Control Law. IEEE Trans. Ind. Inform. 2019, 15, 5588–5598. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J.; Chen, X. Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection. IEEE Trans. Power Electron. 2014, 30, 5036–5045. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J. Extension of Virtual-Signal-Injection-Based MTPA Control for Interior Permanent-Magnet Synchronous Machine Drives Into the Field-Weakening Region. IEEE Trans. Ind. Electron. 2015, 62, 6809–6817. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J. Self-Learning MTPA Control of Interior Permanent-Magnet Synchronous Machine Drives Based on Virtual Signal Injection. IEEE Trans. Ind. Appl. 2016, 52, 3062–3070. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J.; Koc, M. On Accuracy of Virtual Signal Injection based MTPA Operation of Interior Permanent Magnet Synchronous Machine Drives. IEEE Trans. Power Electron. 2017, 33, 7405–7408. [Google Scholar] [CrossRef]
- Sun, T.; Koc, M.; Wang, J. MTPA Control of IPMSM Drives Based on Virtual Signal Injection Considering Machine Parameter Variations. IEEE Trans. Ind. Electron. 2018, 65, 6089–6098. [Google Scholar]
- Wang, J.; Huang, X.; Yu, D.; Chen, Y.; Zhang, J.; Niu, F.; Feng, Y.; Cao, W.; Zhang, H. An Accurate Virtual Signal Injection Control of MTPA for an IPMSM with Fast Dynamic Response. IEEE Trans. Power Electron. 2018, 33, 7916–7926. [Google Scholar]
- Chen, Z.; Yan, Y.; Shi, T.; Gu, X.; Wang, Z.; Xia, C. An Accurate Virtual Signal Injection Control for IPMSM with Improved Torque Output and Widen Speed Region. IEEE Trans. Power Electron. 2021, 36, 1941–1953. [Google Scholar] [CrossRef]
Parameters | Symbol | Value | Unit |
---|---|---|---|
Pole pairs | p | 4 | \ |
Flux linkage | ψf | 0.09398 | Wb |
Stator resistance | Rs | 0.032 | Ω |
d-axis inductance | Ld | 0.437 | mH |
q-axis inductance | Lq | 1.119 | mH |
Rated speed | nN | 3820 | r/min |
Rated torque | TN | 150 | N·m |
Peak torque | TP | 320 | N·m |
Rated voltage | UN | 540 | V |
Rated current | IN | 135 | A |
Peak current | IP | 275 | A |
Te_ref (N·m) | VCSIM | Proposed Method | Error | |||||
---|---|---|---|---|---|---|---|---|
Te1 (N·m) | Is1 (A) | η1 | Te2 (N·m) | Is2(A) | η2 | Is2 − Is1 (A) | η2 − η1 | |
30 | 30.23 | 50.27 | 96.77% | 30.11 | 50.50 | 96.78% | 0.25 | 0.01% |
60 | 59.77 | 86.26 | 95.63% | 59.67 | 85.81 | 95.75% | 0.48 | 0.12% |
90 | 89.21 | 119.40 | 94.62% | 89.23 | 118.67 | 94.78% | 0.13 | 0.16% |
120 | 118.94 | 150.92 | 93.76% | 118.91 | 152.03 | 93.98% | −1.46 | 0.22% |
150 | 148.67 | 186.66 | 92.74% | 148.78 | 185.54 | 93.15% | −2.54 | 0.41% |
180 | 178.53 | 222.81 | 91.63% | 178.89 | 219.27 | 92.19% | −3.98 | 0.57% |
210 | 208.15 | 260.21 | 90.32% | 208.83 | 253.24 | 91.23% | −7.11 | 0.92% |
240 | 237.83 | 303.56 | 88.88% | 238.67 | 286.58 | 90.29% | −14.88 | 1.42% |
270 | 266.72 | 345.27 | 87.07% | 268.61 | 321.37 | 89.17% | −25.51 | 2.09% |
300 | 292.35 | 385.79 | 84.97% | 297.99 | 357.91 | 87.92% | −34.86 | 2.96% |
320 | \ | \ | \ | 316.93 | 384.37 | 86.89% | \ | \ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Q.; Li, Q.; Xu, Y.; Lin, Z.; Chen, W.; Li, X. Virtual Constant Signal Injection-Based MTPA Control for IPMSM Considering Partial Derivative Term of Motor Inductance Parameters. World Electr. Veh. J. 2022, 13, 240. https://doi.org/10.3390/wevj13120240
Miao Q, Li Q, Xu Y, Lin Z, Chen W, Li X. Virtual Constant Signal Injection-Based MTPA Control for IPMSM Considering Partial Derivative Term of Motor Inductance Parameters. World Electric Vehicle Journal. 2022; 13(12):240. https://doi.org/10.3390/wevj13120240
Chicago/Turabian StyleMiao, Qiang, Qiang Li, Yamei Xu, Zhichen Lin, Wei Chen, and Xinmin Li. 2022. "Virtual Constant Signal Injection-Based MTPA Control for IPMSM Considering Partial Derivative Term of Motor Inductance Parameters" World Electric Vehicle Journal 13, no. 12: 240. https://doi.org/10.3390/wevj13120240
APA StyleMiao, Q., Li, Q., Xu, Y., Lin, Z., Chen, W., & Li, X. (2022). Virtual Constant Signal Injection-Based MTPA Control for IPMSM Considering Partial Derivative Term of Motor Inductance Parameters. World Electric Vehicle Journal, 13(12), 240. https://doi.org/10.3390/wevj13120240