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Abstract: This paper investigates the unintentional demagnetization (UD) characteristics of
low-coercive-force (LCF) permanent magnets (PMs), in switched flux hybrid magnet memory
machines (SF-HMMMs). Although the LCF PM field is magnetically in parallel to the magnetic
fields produced by the NdFeB PM, as well as the armature reaction in the investigated machines, the
UD phenomenon of LCF PMs still possibly occurs, particularly, under on-load operation due to the
magnetic saturation effect. First, the UD effect is revealed by the frozen permeability method (FPM),
and analytically explained via a magnetic circuit model. Various UD types are then identified with
the finite-element (FE) method, coupled with a virtual linear hysteresis curve (VLHC) of LCF PM
and FPM. In addition, the dimension and grade of the LCF PM are designed with the aid of VLHC,
in order to prevent the UD effect. Finally, a fabricated SF-HMMM prototype is tested to verify the
theoretical analyses.

Keywords: hybrid magnet; frozen permeability method; memory machine; permanent magnet (PM);
unintentional demagnetization (UD); switched flux

1. Introduction

Due to high torque/power density, expedient thermal management and high rotor
robustness, switched flux permanent magnet (SFPM) machines are of growing research
interest in the last decade [1–5]. Nevertheless, the non-adjustable air-gap flux makes the
constant-power speed range of the conventional SFPM machines relatively restricted, which
is undesirable for wide-speed-range applications. Therefore, some alternative topologies,
equipped with DC field excitations [4], are developed to cope with the limited speed range.
However, the continuous excitation copper loss and low efficiency, particularly under
high-speed low-load states, are the major issues of those SFPM machines with additional
DC field windings.

Very recently, in order to achieve an energy-efficient flux adjustment, the concept of
memory machine (MM) [6–22] has been extended to SFPM machines, forming a new type
of switched flux hybrid magnet MM (SF-HMMM) [23–25]. The auxiliary DC magnetizing
coils are employed to generate a current pulse, thereby facilitating the online magnetization,
since transient remagnetizing and demagnetizing current pulses are applied to adjust the
air-gap flux, which simply requires a short action time with negligible copper losses. In
addition, the magnetic saturation will be decreased with the demagnetization of LCF PMs,
resulting in a reduction in iron loss. Thus, the efficiency under high-speed operation can be
further improved, which will improve the overall driving cycle efficiency desired for EV
traction applications. In addition, with a flexible adjustment of the air-gap magnetic field,
the CPSR of the machine can be extended to enhance the flux-weakening performance
expected for wide-speed-range applications.

Since low-coercive-force (LCF) magnets are utilized in the (SF-HMMM) [24–26], the
flexible air-gap flux adjustment can be achieved due to the variable magnetization states
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(MSs) of LCF PMs. It should be noted that MS is characterized by the remanence flux
density of the LCF PM under a specific magnetization level, compared to that under full
positive magnetization. In this paper, three typical MSs are defined, i.e., flux-enhanced,
zero magnetization, as well as flux-weakened, respectively. Meanwhile, the associated
excitation copper loss is negligible, resulting in high-efficiency operation, with a wide
range of speeds and loads. For the SF-HMMM [24–26], two sets of magnets are usually
used, in order to improve the torque density, i.e., NdFeB and LCF PMs. In these cases,
both excellent low-speed torque-boosting and high-speed flux-weakening capability can
be achieved simultaneously. Various new topologies of SF-HMMMs are reported in [27],
in terms of either double or single stator structures. The detailed design considerations,
including the stator slot/rotor pole combinations, are detailed in [28]. It can be found that
the 6-stator slot SF-HMMMs exhibit satisfactory electromagnetic performance, in terms
of high torque density, excellent flux adjustability, and high torque to magnet mass ratio.
In addition, for the 6-stator slot case, the 13-rotor pole machine has higher torque with
low torque ripple, acceptable material cost, and good flux adjustable capability, despite
the presence of the unbalanced magnetic pull. However, it is worth noting that though
either armature reaction field or NdFeB PM field is theoretically in parallel with LCF PM
field in SF-HMMMs, the possibility of the unintentional demagnetization (UD) effect may
still exist, especially under on-load operation [27]. This kind of demagnetization refers to
the accidental decline in the working points of LCF PM to the unstable nonlinear major
line or minor recoil lines of the hysteresis model. Obviously, the UD effect is adverse to
the on-load dynamic performance, as well as the accurate online magnetization control.
Besides, in the existing literature [23–31], an in-depth understanding of the UD mechanism
and types, as well as detailed design principle of LCF PM in the DC-magnetized memory
machines, is still unreported. Meanwhile, how to reveal the underlying UD mechanism and
identify the specific UD type are unexplored. Therefore, this paper has first revealed and
investigated why and how the armature reaction and NdFeB PM fields affect the accidental
demagnetization, giving the design criterion to avoid the UD, as well as judgement basis
for identifying the type of UD, etc. The main advantage over the existing literature refers to
the fact this paper utilizes the combined solution of analytical modelling and a numerical
hysteresis model, as well as design optimization, considering LCF PM grade to eliminate
the UD.

This paper attempts to investigate the UD characteristics of LCF magnets in SF-HMMM
comprehensively. The paper is organized as follows: In Section 2, the UD phenomenon
and the associated side effects on the electromagnetic performance of the machine are
revealed by the frozen permeability method (FPM) [32]. The causes and mechanism of the
UD phenomenon is then analytically revealed, with the aid of a simplified magnetic circuit
model. In Section 3, different UD types are identified with the FE method, coupled with a
virtual linear hysteresis curve (VLHC) of LCF PM and FPM, so as to provide an insightful
understanding of the UD phenomenon. In Section 4, the parameters and property of the
LCF magnet are optimized with VLHC, in order to establish a general design guideline for
eliminating the UD effect. An optimized prototype is manufactured and tested in Section 5,
followed by the conclusion in Section 6.

2. Unintentional Demagnetization Effects of SF-HMMM
2.1. SF-HMMM Structure

Figure 1 shows the topology of the proposed SF-HMMM, with 6/11 stator-slot/rotor-
pole configuration. The tangentially magnetized NdFeB PMs and radially magnetized
LCF PMs sandwiched between the outer stator ring and the inner “U” stator segments
are located in the stator core. Both hybrid PMs and windings are located on the stator,
which permits good armature reaction withstand capability and easy thermal dissipation.
It should be noted that in the SF-HMMM design, the magnetizing coil is directly wound on
the LCF magnet, in order to facilitate the remagnetization or demagnetization process. The
salient rotor with neither magnets nor coils, similar to that of switched reluctance machines,
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is mechanically robust. The NdFeB PM serves as a dominant contributor for air-gap flux,
while the LCF PM acts as a flux adjustor due to its changeable MS.
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Figure 1. Topology of the investigated SF-HMMM. (a) 3D exploded view. (b) Cross-sectional view.

The investigated SF-HMMM exhibits the advantages of the high torque density of
a conventional SFPM flux machine, variable PM flux characteristics, as well as high effi-
ciency maintaining within a duty-cycled operation. It can be seen that the flux leakage
exists outside the stator yoke in the SF-HMMM. This phenomenon is resulted by not
only the stator/rotor reluctance saliency, but also the nature of the SFPM machine, i.e.,
the flux modulation machine, which relies on abundant field harmonics for the effective
torque production.

2.2. Description of UD Effect

In order to clearly illustrate the unintentional demagnetization characteristics, a rela-
tively lower coercive force, with “−120 kA/m”, is exemplified in the SF-HMMM first. In
fact, the LCF coercive force value will be optimized to avoid the UD effect in Section 4.

The open-circuit field distributions at the flux-enhanced state before or after one
electrical cycle of q-axis current excitation (Iq = 14.14 A) are shown in Figure 2. The
corresponding variations of radial flux densities of three typical points in the LCF PM are
shown in Figure 3. The whole process, reflecting the UD effect, includes three periods. The
first and third electrical periods refer to the open-circuit states, while the middle one is the
on-load state, which are described as follows.
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Figure 2. Illustration of on-load UD effect: open-circuit field distributions (a) before or (b) after the
q-axis current excitation (Iq = 14.14 A).
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2.2.1. Rotor Position (0◦~360◦): Self-Demagnetization

During the first electrical period, the operating points of the LCF PM are already below
the knee points, i.e., not located in the stable linear region of the hysteresis curve. This
means that the magnetic energy of the LCF PM is unable to be effectively utilized. This type
of UD can be termed as self-demagnetization of the LCF PM, similar to the effect resulting
from a large air-gap.

2.2.2. Rotor Position (360◦~720◦): Coupling Demagnetization

During the second electrical period, the flux density of the LCF PM drops drastically,
followed by the reversion to a higher level after the armature fields are withdrawn. Nev-
ertheless, the operating points of the LCF PM still decline to a lower level compared to
the initial state. It implies that the external NdFeB or armature fields have penetrated
through the LCF PM during the on-load state, which enforces the operating point to drop
down to a lower recoil line. This type of demagnetization can be termed as coupling
demagnetization. It should be noted that when the residual flux density and coercivity
of LCF PMs are low, the LCF PMs will be reversely magnetized by the NdFeB PMs. This
will result in the flux-weakened effect. This phenomenon can also be included in the
self-demagnetization category.

2.2.3. Rotor Position (720◦~1080◦): Post-Demagnetization

When the load current is withdrawn, the LCF PM is demagnetized conspicuously
during the on-load operation, though the LCF PM field is magnetically in parallel to the
magnetic fields produced by NdFeB PM and the armature reaction. However, it is still
unclear whether this UD is caused by the NdFeB PM or armature reaction field during
the on-load process. In order to reveal the UD effect, the FPM [32,33] is then employed
to extract the actual field distributions of NdFeB PM or armature fields under rated-load
operation, which are compared with those without using FPM, as shown in Figure 4. It
can be apparently seen that the field distributions, with or without accounting for the
on-load magnetic saturation, differ tremendously. This is mainly attributed to the fact
that a quantity of NdFeB PM and armature fields circulate through the LCF PMs due to
the cross-coupling effect [8], as evidenced in the stator yoke flux density distributions in
Figure 4.
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(b) armature reaction only.

The UD effect possibly leads to some adverse effects on the electromagnetic perfor-
mance, e.g., the reduction of torque capability. Moreover, the demagnetization will make
online MS control less predictable.

In order to quantify the UD level and associated performance degradation, an on-load
demagnetization ratio kemf, which refers to the reduction ratio of the back-EMF fundamental
magnitudes, is defined as [23]

kem f =
Em1 − Em2

Em1
× 100% (1)

where Em1 and Em2 are fundamental back-EMF magnitudes, before and after q-axis current
excitation, respectively.

The FE predicted kemf as a function of armature current magnitudes and current angles
is shown in Figure 5. It indicates that the LCF magnets are highly sensitive to the armature
current magnitude instead of the current angle.
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Figure 5. kemf as a function of armature current magnitudes and current angles.

The average electromagnetic torques and kemf resulting from various q-axis current
excitations when the LCF PM with coercive force of −120 kA/m is employed are shown in
Figure 6. It can be seen that the UD effect is aggravated with the increase in the armature
current value, which is mainly attributed to the cross-coupling effect of PM excitation and
armature fields. In addition, the flux-linkage and back-EMF diminutions will result in the
discrepancy of the reference look-up table of EMF versus magnetizing current at the open-
circuit state. Consequently, the precise online MS manipulation control becomes difficult.
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2.3. Analytical Investigation for the UD Phenomenon

In order to clearly illustrate the demagnetization mechanism, the simplified magnetic
circuit model, when the rotor aligns with the d-axis, is established as shown in Figure 7.
Fmag is the magnetizing MMF.
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Figure 7. Simplified magnetic circuit model of the SF-HMMM when the rotor aligns with d-axis position.

For the open-circuit condition, the fringing flux leakage is ignored for simplicity, i.e.,
the bypass air-gap magnetic reluctance Rg3 is assumed to be infinite. Consequently, the
maximum open-circuit air-gap flux Φδ+ can be obtained by synthesizing individual magnet
excited cases, based on the superimposition method, namely:

Φδ+ =
Fm1 ·

(
2Rm2 + Ry

)
+ 2Fm2 · Rm1(

Rg1 + Rg2 + 2Rst + Rr
)
(Rm1 + 2Rm2 + Rr) +

(
2Rm2 + Ry

)
Rm1

(2)

where Fm1 and Fm2 are the equivalent magneto-motive force (MMF) of NdFeB PM and LCF
PM, respectively; Rm1, and Rm2 are the magnetic reluctances of NdFeB PM and LCF PM,
respectively; Ry, Rst, and Rr are the magnetic reluctances of stator yoke, stator tooth and
rotor pole, respectively.

The NdFeB and LCF magnets can be modelled as MMF sources, viz.:

Fm1 = Hc1hm1 (3)

Rm1 =
hm1

µ0µr1 Am1
(4)

Fm2 = Hc2hm2 (5)
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Rm2 =
hm2

µ0µr2 Am2
(6)

where hm1 and hm2 are the thicknesses of NdFeB PM and LCF PM, respectively; Hc1 and
Hc2 are the coercivities of NdFeB PM and LCF PM, respectively; Am1 and Am2 are the cross-
sectional areas of NdFeB PM and LCF PM, respectively; µ0 is the vacuum permeability; Hc1
and Hc2 are the relative permeabilities of NdFeB PM and LCF PM, respectively; and both
Rg1 and Rg2 are the air-gap magnetic reluctances.

For the sake of simplification of (2), variables R1 and R2 are defined as follows:

R1 = 2Rst + Rg1 + Rg2 + Rr (7)

R2 = 2Rm2 + Ry (8)

By substituting (3)–(8) into (2), the no-load line function for determining the operating
point of LCF PMs can be obtained by ignoring the flux leakage, i.e.,:

Φδ+ =
2× Rm1

R1(Rm1 + R2) + Rm1Rm2
Fm2 +

Fm1 × R2

R1(Rm1 + R2) + Rm1Rm2
(9)

On the other hand, when the SF-HMMM operates at the on-load operation, the
localized magnetic saturation is more likely to occur, particularly in the stator teeth. The
equivalent armature reaction MMF Fa should be considered, and consequently, (9) can be
rewritten as:

Φ′δ+ = kml Fm2 + ∆Φδ2+ (10)

where Φδ+’ are the maximum on-load air-gap flux, the slope of the load line, and the
horizontal intercept of the load line and:

kml
′ =

(
Rm1 +

R3R4

R3 + R4
+ R1

′
)

/
(

Rm1R3R4

R3 + R4
+ Rm1R1

′
)

(11)

∆Φδ2+ =

(
Fm1

R1
′ + R3

R1
′ + R3 + Rm1

+ Fa
R3

R3 + R4

)
/R1

′ (12)

with
R1
′ = Rst + Rg2 + Rr (13)

R3 = Rg1 + Rst (14)

R4 = Rg2 + Rst (15)

It can be found from the above equations that the slope of the load line turns out to
be lower than that under no-load operation, as an additional air-gap path with magnetic
reluctance R4 is added in the open-circuit case. In addition, the horizontal intercept4Φδ2+
is higher in comparison to the open-circuit one. As a result, it is theoretically identified that
the on-load UD tends to be more severe than the open-circuit case.

In order to clearly illustrate the UD phenomenon, a set of LCF hysteresis curves, having
various coercive force values, are shown in Figure 8 Obviously, the hysteresis nonlinearity
and the coercive force values significantly affect the location of the operating points.

2.3.1. Self-Demagnetization

For the self-demagnetization, it can be inferred from (9) that if the NdFeB magnet
usage increases, it results in magnetic saturation. Thus, the slope of the load line decreases
with the increase in R1. In this case, the self-demagnetization will occur, as shown in
Figure 8a.
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Figure 8. Illustration of the different UD cases by hysteresis curves of LCF PMs with different coercive
forces. (a) Self-demagnetization. (b) On-load coupling demagnetization. (c) Prevention of the UD effect.

2.3.2. Coupling Demagnetization

For the coupling demagnetization case, when the load current rises under on-load
operation, Fa will increase, resulting in the increment of ∆Φδ2+. Consequently, the load line
will shift along the negative horizontal axis, and the working points drop to a lower recoil
line. This means that the coupling demagnetization will happen, as illustrated in Figure 8b.

Based on (9)~(15), in order to prevent the UD effect, the value of Rm1 can be designed
lower, and the magnetic saturation of the stator core should be reduced, with decreasing
R1 to R4. Alternatively, when the coercive force of the LCF PM increases, the load line is
located on the linear region, as illustrated in Figure 8c. As a whole, the underlying causes
for the UD effect have been analytically identified and explained.

3. Demagnetization Type Identification

The identification of the UD type is crucial for understanding the demagnetization
mechanism and establishing the design approach to eliminating the UD effect. Nonetheless,
in practice, although the demagnetization of the LCF PM can be detected by observing
the magnetic fields inside, it is still a bit troublesome to distinguish the demagnetization
type using direct FE simulation [8], particularly in the case of a small part of the PM
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demagnetized region. In the direct FE, the flux density of each PM element is required
to compare with the threshold values of the knee points. Therefore, it is necessary to
develop a new method, so as to identify the demagnetization type in a computationally
efficient manner.

First, we propose a VLHC [27], as illustrated in Figure 9, which is able to identify what
kinds of UD effects occur. The performance degradation level caused by this undesired
demagnetization behavior is also estimated. Obviously, the VLHC can be treated as an
extended line of the upper recoil line of the LCF magnet. The function of the VLHC in the
second quadrant can be given by:

B = Brknee + µ0µr2(H − Hknee) (16)

where Brknee, and Hknee are the knee point of the hysteresis model of the LCF PM and the
knee point coercivity of LCF PM, namely.
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Then, the VLHC is assigned to a new PM material to replace the original nonlinear
one, and an alternate FE analysis, similar to the process described in Figure 3, is carried out
with FPM [33]. The resultant fundamental magnitudes of back-EMFs are then compared
with those results obtained from the FE analyses, with actual LCF PM subject to q-axis
current excitations. Here, Eref is defined as the fundamental back-EMF obtained by the
VLHC model.

The VLHC model is able to provide a quick solution to identify and quantify different
demagnetization types, as well as levels, which is quite different from the case of the NdFeB
PM. This is also helpful to understand the UD mechanism in a quantitative way. In addition,
the VLHC can facilitate the design optimization and analysis process, since it provides a
direct index to confirm whether the UD occurs.

The overall identification flowchart is shown in Figure 10, which can be described
as follows: initially, if Eref and Em1 are equal, the initial working points are located on
the upper limit recoil line. In other words, the self-demagnetization can be prevented.
Furthermore, by comparing Em1 and Em2, if they are equal, the UD effect can be avoided.
Otherwise (Em1 > Em2), only the coupling UD effect occurs, and the working points of the
LCF PMs will shift to the lower recoil lines during the on-load operation.
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On the other hand, if Eref > Em1, both UD types possibly occur, and the situations can
be analogously subdivided into two cases, according to the relation between Em1 and Em2.
First, if Em1 and Em2 are equal, only the self-demagnetization occurs. Otherwise, both kinds
of UDs simultaneously exist.

The FPM is utilized to extract the individual contribution of either NdFeB PM or
armature fields to the demagnetization of the LCF magnets. First, when the armature
current excitation is removed, the variation of flux density in the PM point A (see Figure 3)
is shown in Figure 11. When the LCF PM and armature excitations are simultaneously
considered, the variation results are analogously obtained as well. It can be observed
that both NdFeB and armature fields cause the on-load UD of the LCF PMs. In addition,
as illustrated in Table 1, the satisfactory agreement of the summation of the individual
cases and the resultant case has validated the effectiveness of this analysis method. These
analysis results are employed to identify which excitation source is responsible for the UD
effect of the LCF PMs. This can help a machine designer to understand the underlying UD
mechanism better, and design the magnetic circuit of the SF-HMMM in a reasonable way.
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Table 1. Operating Flux Densities of LCF PMs during Demagnetization.

Conditions Open-Circuit Armature + LCF PM Resultant

Before Iq = 14.14 A 0.388 0.776 0.234
After Iq = 14.14 A 0.470 0.860 0.412

Demag. values 0.083 0.084 0.179

4. LCF PM Design Guidelines for Elimination of UD Effect

This section focuses on the optimization of sizing and grade of the LCF magnets,
which is of great significance for the prevention of the UD effect. Initially, a reference
demagnetization ratio kremf is utilized to indicate whether the self-demagnetization occurs
prior to the load current excitation, which is defined as:

krem f =
Ere f − Em1

Ere f
× 100% (17)

It should be noted that the FPM is used to freeze the iron permeability, in each case, so
as to conduct a fair comparison with the actual cases. As a result, the variations in kremf and
kemf with Hc2 and hm2 are shown in Figure 12.
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It can be observed that both demagnetization ratios experience a fluctuation with
the increase in the PM thickness, since the reversed remagnetization of the LCF PM with
lowwer coercivity and thickness is caused by the NdFeB magnetic field. It shows that the
parameters of “hm2 = 3.2 mm and coercivity Hc2 = −240 kA/m” are selected for the final
design, which can well prevent both the coupling and self-demagnetizations. The overall
design process of the sizing and grade of the LCF PM is illustrated in Figure 13.
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5. Experimental Validation

A 6/11-pole SF-HMMM prototype is manufactured and tested, in order to verify the
foregoing theoretical analyses. The stator/rotor assemblies, control board and test platform
are shown in Figure 14. The design specifications of the prototype are listed in Table 2.
The circuit board, including the drive and magnetization control modules, is shown in
Figure 14c. The test setup is shown in Figure 14c, which is employed to measure the
machine dynamic performance and torque speed curve. The prototype is coupled to a
brushed DC machine as the load generator. Meanwhile, an encoder is utilized for rotor
position detection and a torque transducer is for torque measurement.
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Table 2. Design Parameters of 6-Stator-Slot/13-Rotor-Pole SF-HMMM Prototype.

Items Parameters

Rated speed (r/min) 400
Rated torque (Nm) 2.67
Rated current (Arms) 10
Rated current density (A/mm2) 6.5
Rated supply voltage (V) 18
Rated efficiency (%) 83.6
Outer diameter of stator (mm) 90
Split ratio 0.6
Air-gap length (mm) 0.5
Active stack length (mm) 25
Stator tooth width (mm) 3.2
Ratio of rotor pole to pitch 0.43
Turns of winding per phase 84
Turns of per magnetizing coil 100
LCF magnet thickness (mm) 3.2
LCF PM width (degree) 20
NdFeB/LCF PM grades N35SH/SB12B
NdFeB magnet thickness (mm) 3.5
NdFeB PM length (mm) 9.0
LCF magnet coercivity (-kA/m) 240
LCF magnet remanence (T) 0.8
Slot packing factor 0.5

When LCF PMs of the prototype are initialized as full MSs, the open-circuit phase
back-EMF is initially pre-measured as a reference benchmark. Afterwards, the prototype
machine is initially fed by various magnitudes of q-currents, and then the loaded currents
are subsequently withdrawn. As a consequence, the resultant open-circuit back-EMFs
are tested after withdrawing. In fact, the measurements refer to the open-circuit back-
EMFs before or after applying q-axis current excitation. The main purpose is to reflect
the unintentional demagnetization effect caused by the q-axis current. The FE-predicted
and measured open-circuit back-EMF waveforms are shown in Figure 15. In order to
reflect this process, the open-circuit voltage response to a temporary q-axis current of 5A
is illustrated in Figure 16. Meanwhile, the torque against current characteristics, with or
without VLHC, are plotted in Figure 17. Overall, satisfactory agreement between the FE
predictions and measurements is achieved. It demonstrates that the back-EMF rarely varies
with the increase in loaded currents. Furthermore, the fundamental back-EMFs and torques
are basically equal to the FE-predicted ones, running with VLHC. It implies that the MSs of
LCF magnets are well maintained under the on-load condition. As a result, the UD effect
can be effectively prevented as can be evidenced in Figure 15c that shows the variations
of fundamental EMF with the q-axis currents. The above experiment results confirm the
foregoing theoretical analyses and design approach.
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Figure 16. Measured terminal voltage transient response to a current pulse of Iq excitation of 5A,
400 r/min. (The magnetizing current and the d-axis armature current values are both set as zero).
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6. Conclusions

In this paper, the UD effects of LCF PMs in SF-HMMMs were comprehensively
investigated. It can be found that though the fields excited by PMs and armature reaction
are in parallel, the UD of LCF PMs still occurs, particularly under heavy on-load operations.
The FPM is employed to reveal the UD effect, and it shows that the LCF magnets are highly
sensitive to the load current magnitude, rather than the current angle. Meanwhile, the
UD effect is aggravated with the increase in the load current value. A simplified magnetic
circuit model is utilized to analytically reveal the UD mechanism, which indicates that the
cross-coupling magnetic saturation is mainly responsible for the UD effect. A VLHC of LCF
PM is then developed to identify various UD types. It demonstrates that there are mainly
two kinds of UD types, i.e., self- and coupling UDs, which are caused by the undesired
deviations in the load line, under open-circuit and on-load states, respectively. The design
guidelines for the PM sizing and grade are established, which can well prevent the UD effect.
The theoretical analyses are validated by the experiments on an SF-HMMM prototype.
Overall, it should be further emphasized that more specific and special LCF magnets with
higher electromagnetic performance, as well as a simpler mechanical structure, should be
developed in the future, in order to extend the serving life cycle of the proposed SF-HMMM.
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